1
|
Li Y, Ye T, Li F, Tan S. Chalcogen-Bonding-Enabled, Light-Driven Decarboxylative Oxygenation of Amino Acid Derivatives and Short Peptides Using O 2. Angew Chem Int Ed Engl 2025; 64:e202502233. [PMID: 40113597 DOI: 10.1002/anie.202502233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/02/2025] [Accepted: 03/20/2025] [Indexed: 03/22/2025]
Abstract
Here we report a photocatalytic method for the decarboxylative oxygenation of amino acid derivatives and short peptides using dioxygen as a green oxidant. A reverse catalytic strategy utilizing Lewis basic diphenyl diselenide as a Lewis acid catalyst to activate carboxylic acid via chalcogen bonding interaction is the key to this work. This synthetic method is tolerant of functionalities present in both natural and non-proteinogenic amino acids, enabling the efficient synthesis of C-terminal amides or imides. Mechanistic studies suggest there is a dual noncovalent interaction between diphenyl diselenide and carboxylic acid, which allows radical decarboxylation through photoinduced intermolecular electron transfer. This new activation mode of carboxylic acids will add a new dimension to classical decarboxylative reactions.
Collapse
Affiliation(s)
- Yuzheng Li
- School of Pharmacy and Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Yantai University, Yantai, 264005, China
| | - Taiqiang Ye
- School of Pharmacy and Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Yantai University, Yantai, 264005, China
| | - Feng Li
- School of Pharmacy and Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Yantai University, Yantai, 264005, China
| | - Shenpeng Tan
- School of Pharmacy and Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Yantai University, Yantai, 264005, China
| |
Collapse
|
2
|
Forouzanfar F, Ahmadzadeh AM, Pourbagher-Shahri AM, Gorji A. Significance of NMDA receptor-targeting compounds in neuropsychological disorders: An in-depth review. Eur J Pharmacol 2025; 999:177690. [PMID: 40315950 DOI: 10.1016/j.ejphar.2025.177690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/16/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
N-methyl-D-aspartate receptors (NMDARs), a subclass of glutamate-gated ion channels, play an integral role in the maintenance of synaptic plasticity and excitation-inhibition balance within the central nervous system (CNS). Any irregularities in NMDAR functions, whether hypo-activation or over-activation, can destabilize neural networks and impair CNS function. Several decades of experimental and clinical investigations have demonstrated that NMDAR dysfunction is implicated in the pathophysiology of various neurological disorders. Despite designing a long list of compounds that differentially modulate NMDARs, success in developing drugs that can selectively and effectively regulate various NMDAR subtypes while showing encouraging efficacy in clinical settings remains limited. A better understanding of the basic mechanism of NMDAR function, particularly its selective regulation in pathological conditions, could aid in designing effective drugs for the treatment of neurological conditions. Here, we reviewed the experimental and clinical investigations that studied the effects of available NMDAR modulators in various neurological disorders and weighed up the pros and cons of the use of these substances on the improvement of functional outcomes of these disorders. Despite numerous efforts to develop NMDAR modulatory drugs that did not produce the desired outcomes, NMDARs remain a significant target for advancing novel drugs to treat neurological disorders. This article reviews the complexity of NMDAR signaling dysfunction in different neurological diseases, the efforts taken to examine designed compounds targeting specific subtypes of NMDARs, including challenges associated with using these substances, and the potential enhancements in drug discovery for NMDAR modulatory compounds by innovative technologies.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Mahmoud Ahmadzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran; Department of Neurosurgery, Münster University, Münster, Germany; Epilepsy Research Center, Münster University, Münster, Germany.
| |
Collapse
|
3
|
Donello JE, McIntyre RS, Pickel DB, Stahl SM. Demystifying the Antidepressant Mechanism of Action of Stinels, a Novel Class of Neuroplastogens: Positive Allosteric Modulators of the NMDA Receptor. Pharmaceuticals (Basel) 2025; 18:157. [PMID: 40005971 PMCID: PMC11858332 DOI: 10.3390/ph18020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Plastogens are a class of therapeutics that function by rapidly promoting changes in neuroplasticity. A notable example, ketamine, is receiving great attention due to its combined rapid and long-term antidepressant effects. Ketamine is an N-methyl-D-aspartate receptor (NMDAR) antagonist, and, in addition to its therapeutic activity, it is associated with psychotomimetic and dissociative side effects. Stinels-rapastinel, apimostinel, and zelquistinel-are also plastogens not only with rapid and long-term antidepressant effects but also with improved safety and tolerability profiles compared to ketamine. Previous descriptions of the mechanism by which stinels modulate NMDAR activity have been inconsistent and, at times, contradictory. The purpose of this review is to clarify the mechanism of action and contextualize stinels within a broader class of NMDAR-targeting therapeutics. In this review, we present the rationale behind targeting NMDARs for treatment-resistant depression and other psychiatric conditions, describe the various mechanisms by which NMDAR activity is regulated by different classes of therapeutics, and present evidence for the stinel mechanism. In contrast with previous descriptions of glycine-like NMDAR partial agonists, we define stinels as positive allosteric modulators of NMDAR activity with a novel regulatory binding site.
Collapse
Affiliation(s)
| | - Roger S. McIntyre
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Stephen M. Stahl
- Department of Psychiatry and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Psychiatry, University of Cambridge, Cambridge CB2 2QQ, UK
- California Department of State Hospitals, Sacramento, CA 95814, USA
| |
Collapse
|
4
|
Chrobak AA, Siwek M. Drugs with glutamate-based mechanisms of action in psychiatry. Pharmacol Rep 2024; 76:1256-1271. [PMID: 39333460 PMCID: PMC11582293 DOI: 10.1007/s43440-024-00656-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Psychopharmacotherapy of major psychiatric disorders is mostly based on drugs that modulate serotonergic, dopaminergic, or noradrenergic neurotransmission, either by inhibiting their reuptake or by acting as agonists or antagonists on specific monoamine receptors. The effectiveness of this approach is limited by a significant delay in the therapeutic mechanism and self-perpetuating growth of treatment resistance with a consecutive number of ineffective trials. A growing number of studies suggest that drugs targeting glutamate receptors offer an opportunity for rapid therapeutic effect that may overcome the limitations of monoaminergic drugs. In this article, we present a review of glutamate-modulating drugs, their mechanism of action, as well as preclinical and clinical studies of their efficacy in treating mental disorders. Observations of the rapid, robust, and long-lasting effects of ketamine and ketamine encourages further research on drugs targeting glutamatergic transmission. A growing number of studies support the use of memantine and minocycline in major depressive disorder and schizophrenia. Amantadine, zinc, and Crocus sativus extracts yield the potential to ameliorate depressive symptoms in patients with affective disorders. Drugs with mechanisms of action based on glutamate constitute a promising pharmacological group in the treatment of mental disorders that do not respond to standard methods of therapy. However, further research is needed on their efficacy, safety, dosage, interactions, and side effects, to determine their optimal clinical use.
Collapse
Affiliation(s)
- Adrian Andrzej Chrobak
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21A, 31-501, Kraków, Poland
| | - Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, Kopernika 21A, 31-501, Kraków, Poland.
| |
Collapse
|
5
|
Brown KA, Gould TD. Targeting metaplasticity mechanisms to promote sustained antidepressant actions. Mol Psychiatry 2024; 29:1114-1127. [PMID: 38177353 PMCID: PMC11176041 DOI: 10.1038/s41380-023-02397-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The discovery that subanesthetic doses of (R, S)-ketamine (ketamine) and (S)-ketamine (esketamine) rapidly induce antidepressant effects and promote sustained actions following drug clearance in depressed patients who are treatment-resistant to other therapies has resulted in a paradigm shift in the conceptualization of how rapidly and effectively depression can be treated. Consequently, the mechanism(s) that next generation antidepressants may engage to improve pathophysiology and resultant symptomology are being reconceptualized. Impaired excitatory glutamatergic synapses in mood-regulating circuits are likely a substantial contributor to the pathophysiology of depression. Metaplasticity is the process of regulating future capacity for plasticity by priming neurons with a stimulation that alters later neuronal plasticity responses. Accordingly, the development of treatment modalities that specifically modulate the duration, direction, or magnitude of glutamatergic synaptic plasticity events such as long-term potentiation (LTP), defined here as metaplastogens, may be an effective approach to reverse the pathophysiology underlying depression and improve depression symptoms. We review evidence that the initiating mechanisms of pharmacologically diverse rapid-acting antidepressants (i.e., ketamine mimetics) converge on consistent downstream molecular mediators that facilitate the expression/maintenance of increased synaptic strength and resultant persisting antidepressant effects. Specifically, while the initiating mechanisms of these therapies may differ (e.g., cell type-specificity, N-methyl-D-aspartate receptor (NMDAR) subtype-selective inhibition vs activation, metabotropic glutamate receptor 2/3 antagonism, AMPA receptor potentiation, 5-HT receptor-activating psychedelics, etc.), the sustained therapeutic mechanisms of putative rapid-acting antidepressants will be mediated, in part, by metaplastic effects that converge on consistent molecular mediators to enhance excitatory neurotransmission and altered capacity for synaptic plasticity. We conclude that the convergence of these therapeutic mechanisms provides the opportunity for metaplasticity processes to be harnessed as a druggable plasticity mechanism by next-generation therapeutics. Further, targeting metaplastic mechanisms presents therapeutic advantages including decreased dosing frequency and associated diminished adverse responses by eliminating the requirement for the drug to be continuously present.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Tiliwaerde M, Gao N, Yang Y, Jin Z. A novel NMDA receptor modulator: the antidepressant effect and mechanism of GW043. CNS Neurosci Ther 2024; 30:e14598. [PMID: 38332552 PMCID: PMC10853642 DOI: 10.1111/cns.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
AIMS The N-methyl-D-aspartate (NMDA) receptor (NMDAR) has been proven to be strongly correlated with rapid antidepressant effects. Here, GW043, as a new compound targeting NMDAR, we explored its antidepressant effects and its mechanism of action. METHODS Our study utilized electrophysiological techniques to confirm the effect of GW043 on NMDAR currents. Additionally, we assessed the selectivity of GW043 through high-throughput receptor-ligand binding experiments. The antidepressant properties of GW043 were examined using rodent behavioral models including the Forced Swim Test (FST), Tail Suspension Test (TST), and Chronic Unpredictable Mild Stress (CUMS). Mechanistic insight into GW043's onset was gained through western blot analysis, BrdU staining, Golgi staining, and electrophysiological techniques. RESULTS Electrophysiological studies indicated that GW043 acts as a partial agonist of NMDAR. Behavioral experiments confirmed the antidepressant effect of GW043 in rodents. Mechanistic investigations revealed that GW043 modulates synaptic plasticity through the LTP and BDNF-mTOR pathways, consequently leading to an increase in the number of newborn neurons and subsequent antidepressant effects. CONCLUSION Our findings disclose that GW043, as a partial agonist of NMDAR, can reverse depression-like behaviors in rats by modulating synaptic plasticity, indicating its potential as an antidepressant agent.
Collapse
Affiliation(s)
- Murezati Tiliwaerde
- Department of Pharmacology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Nana Gao
- Department of Gastrointestinal Surgery and Clinical Nutrition, Beijing Shijitan HospitalCaptial Medical UniversityBeijingChina
| | - Yaqi Yang
- Department of Pharmacology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Department of Pharmacy, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Zengliang Jin
- Department of Pharmacology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Vecera CM, C. Courtes A, Jones G, Soares JC, Machado-Vieira R. Pharmacotherapies Targeting GABA-Glutamate Neurotransmission for Treatment-Resistant Depression. Pharmaceuticals (Basel) 2023; 16:1572. [PMID: 38004437 PMCID: PMC10675154 DOI: 10.3390/ph16111572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Treatment-resistant depression (TRD) is a term used to describe a particular type of major depressive disorder (MDD). There is no consensus about what defines TRD, with various studies describing between 1 and 4 failures of antidepressant therapies, with or without electroconvulsive therapy (ECT). That is why TRD is such a growing concern among clinicians and researchers, and it explains the necessity for investigating novel therapeutic targets beyond conventional monoamine pathways. An imbalance between two primary central nervous system (CNS) neurotransmitters, L-glutamate and γ-aminobutyric acid (GABA), has emerged as having a key role in the pathophysiology of TRD. In this review, we provide an evaluation and comprehensive review of investigational antidepressants targeting these two systems, accessing their levels of available evidence, mechanisms of action, and safety profiles. N-methyl-D-aspartate (NMDA) receptor antagonism has shown the most promise amongst the glutamatergic targets, with ketamine and esketamine (Spravato) robustly generating responses across trials. Two specific NMDA-glycine site modulators, D-cycloserine (DCS) and apimostinel, have also generated promising initial safety and efficacy profiles, warranting further investigation. Combination dextromethorphan-bupropion (AXS-05/Auvelity) displays a unique mechanism of action and demonstrated positive results in particular applicability in subpopulations with cognitive dysfunction. Currently, the most promising GABA modulators appear to be synthetic neurosteroid analogs with positive GABAA receptor modulation (such as brexanolone). Overall, advances in the last decade provide exciting perspectives for those who do not improve with conventional therapies. Of the compounds reviewed here, three are approved by the Food and Drug Administration (FDA): esketamine (Spravato) for TRD, Auvelity (dextromethorphan-bupropion) for major depressive disorder (MDD), and brexanolone (Zulresso) for post-partum depression (PPD). Notably, some concerns have arisen with esketamine and brexanolone, which will be detailed in this study.
Collapse
Affiliation(s)
- Courtney M. Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Alan C. Courtes
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Gregory Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Rodrigo Machado-Vieira
- John S. Dunn Behavioral Sciences Center at UTHealth Houston, 5615 H.Mark Crosswell Jr St, Houston, TX 77021, USA
| |
Collapse
|
8
|
Zanos P, Brown KA, Georgiou P, Yuan P, Zarate CA, Thompson SM, Gould TD. NMDA Receptor Activation-Dependent Antidepressant-Relevant Behavioral and Synaptic Actions of Ketamine. J Neurosci 2023; 43:1038-1050. [PMID: 36596696 PMCID: PMC9908316 DOI: 10.1523/jneurosci.1316-22.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
Ketamine is a well-characterized NMDA receptor (NMDAR) antagonist, although the relevance of this pharmacology to its rapid (within hours of administration) antidepressant actions, which depend on mechanisms convergent with strengthening of excitatory synapses, is unclear. Activation of synaptic NMDARs is necessary for the induction of canonical long-term potentiation (LTP) leading to a sustained expression of increased synaptic strength. We tested the hypothesis that induction of rapid antidepressant effects requires NMDAR activation, by using behavioral pharmacology, western blot quantification of hippocampal synaptoneurosomal protein levels, and ex vivo hippocampal slice electrophysiology in male mice. We found that ketamine exerts an inverted U-shaped dose-response in antidepressant-sensitive behavioral tests, suggesting that an excessive NMDAR inhibition can prevent ketamine's antidepressant effects. Ketamine's actions to induce antidepressant-like behavioral effects, up-regulation of hippocampal AMPAR subunits GluA1 and GluA2, as well as metaplasticity measured ex vivo using electrically-stimulated LTP, were abolished by pretreatment with other non-antidepressant NMDAR antagonists, including MK-801 and CPP. Similarly, the antidepressant-like actions of other putative rapid-acting antidepressant drugs (2R,6R)-hydroxynorketamine (ketamine metabolite), MRK-016 (GABAAα5 negative allosteric modulator), and LY341495 (mGlu2/3 receptor antagonist) were blocked by NMDAR inhibition. Ketamine acted synergistically with an NMDAR positive allosteric modulator to exert antidepressant-like behavioral effects and activation of the NMDAR subunit GluN2A was necessary and sufficient for such relevant effects. We conclude rapid-acting antidepressant compounds share a common downstream NMDAR-activation dependent effector mechanism, despite variation in initial pharmacological targets. Promoting NMDAR signaling or other approaches that enhance NMDAR-dependent LTP-like synaptic potentiation may be an effective antidepressant strategy.SIGNIFICANCE STATEMENT The anesthetic and antidepressant drug ketamine is well-characterized as an NMDA receptor (NMDAR) antagonist; though, the relevance and full impact of this pharmacology to its antidepressant actions is unclear. We found that NMDAR activation, which occurs downstream of their initial actions, is necessary for the beneficial effects of ketamine and several other putative antidepressant compounds. As such, promoting NMDAR signaling, or other approaches that enhance NMDAR-dependent long-term potentiation (LTP)-like synaptic potentiation in vivo may be an effective antidepressant strategy directly, or acting synergistically with other drug or interventional treatments.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Kyle A Brown
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Polymnia Georgiou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Biology, University of Cyprus, Nicosia 2109, Cyprus
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Scott M Thompson
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Todd D Gould
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Anatomy & Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Veterans Affairs Maryland Health Care System, Baltimore, Maryland 21201
| |
Collapse
|
9
|
Scangos KW, State MW, Miller AH, Baker JT, Williams LM. New and emerging approaches to treat psychiatric disorders. Nat Med 2023; 29:317-333. [PMID: 36797480 PMCID: PMC11219030 DOI: 10.1038/s41591-022-02197-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/21/2022] [Indexed: 02/18/2023]
Abstract
Psychiatric disorders are highly prevalent, often devastating diseases that negatively impact the lives of millions of people worldwide. Although their etiological and diagnostic heterogeneity has long challenged drug discovery, an emerging circuit-based understanding of psychiatric illness is offering an important alternative to the current reliance on trial and error, both in the development and in the clinical application of treatments. Here we review new and emerging treatment approaches, with a particular emphasis on the revolutionary potential of brain-circuit-based interventions for precision psychiatry. Limitations of circuit models, challenges of bringing precision therapeutics to market and the crucial advances needed to overcome these obstacles are presented.
Collapse
Affiliation(s)
- Katherine W Scangos
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Justin T Baker
- McLean Hospital Institute for Technology in Psychiatry, Belmont, MA, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
10
|
Abstract
Treatment of major depressive disorder (MDD) including treatment-resistant depression (TRD) remains a major unmet need. Although there are several classes of dissimilar antidepressant drugs approved for MDD, the current drugs have either limited efficacy or are associated with undesirable side effects and withdrawal symptoms. The efficacy and side effects of antidepressant drugs are mainly attributed to their actions on different monoamine neurotransmitters (serotonin, norepinephrine, and dopamine). Development of new antidepressants with novel targets beyond the monoamine pathways may fill the unmet need in treatment of MDD and TRD. The recent approval of intranasal Esketamine (glutamatergic agent) in conjunction with an oral antidepressant for the treatment of adult TRD patients was the first step toward expanding beyond the monoamine targets. Several other glutamatergic (AXS-05, REL-1017, AV-101, SLS-002, AGN24175, and PCN-101) and GABAergic (brexanolone, zuranolone, and ganaxolone) drugs are currently in different stages of clinical development for MDD, TRD and other indications. The renaissance of psychedelic drugs and the emergence of preliminary positive clinical trial results with psilocybin, Ayahuasca, 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), and lysergic acid diethylamide (LSD) may pave the way towards establishing this class of drugs as effective therapies for MDD, TRD and other neuropsychiatric disorders. Going beyond the monoamine targets appears to be an effective strategy to develop novel antidepressant drugs with superior efficacy, safety, and tolerability for the improved treatment of MDD and TRD.
Collapse
|
11
|
ERK/mTOR signaling may underlying the antidepressant actions of rapastinel in mice. Transl Psychiatry 2022; 12:522. [PMID: 36550125 PMCID: PMC9780240 DOI: 10.1038/s41398-022-02290-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Rapastinel as the allosteric modulator of N-methyl-D-aspartate receptor (NMDAR) produces rapid antidepressant-like effects dependent on brain-derived neurotrophic factor (BDNF) and VGF (nonacryonimic) release. Herein, we further explore the molecular mechanisms of the antidepressant effects of repeated administration with rapastinel in mice. Our results showed that continuous 3-day rapastinel (5 and 10 mg/kg, i.v.) produced antidepressant-like actions dependent on the increase in extracellular regulated protein kinase (ERK)/mammalian target of rapamycin (mTOR) signaling and downstream substrates p70S6 kinase (p70S6k) and the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), which may induce the expression of VGF and BDNF in the hippocampus and prefrontal cortex of mice. Furthermore, compared with a single treatment, our data indicated that 3-day repeated rapastinel treatment produced antidepressant-like actions accompanied by potentiation of ERK/mTOR/VGF/BDNF/tropomyosin-related kinase receptor B (TrkB) signaling. Based on previous and our supplementary data that showed the pivotal role of on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in the rapid release of VGF and BDNF and activation of TrkB by a single dose of rapastinel, we postulate that the antidepressant-like effects of single or repeated administration of rapastinel may result in the rapid release of VGF and BDNF or ERK/mTOR signaling pathway-mediated VGF/BDNF/TrkB autoregulatory feedback loop respectively. Our current work adds new knowledge to the molecular mechanisms that underlie the antidepressant-like actions of rapastinel in mice.
Collapse
|
12
|
Armstrong C, Ferrante J, Lamichhane N, Reavis Z, Walker D, Patkar A, Kuhn C. Rapastinel accelerates loss of withdrawal signs after repeated morphine and blunts relapse to conditioned place preference. Pharmacol Biochem Behav 2022; 221:173485. [PMID: 36302442 DOI: 10.1016/j.pbb.2022.173485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
The purpose of the present study was to evaluate the efficacy of rapastinel, an allosteric modulator of NMDA receptor function, to accelerate the loss of opioid withdrawal symptoms and blunt or prevent relapse to morphine conditioned place preference (CPP) in rats. Two studies were conducted. In study 1, adult and adolescent male and female rats were treated with increasing doses of morphine (5 mg/kg, bid to 25 mg/kg bid) for 5 days. On day 6 animals were treated with naloxone (1 mg/kg) and withdrawal was assessed. They were then treated with saline or rapastinel (5 mg/kg) on days 6 and 8, and withdrawal was assessed on day 9. Rapastinel treated animals exhibited significantly lower levels of withdrawal signs on day 9. No sex or age differences were observed. In Study 2, CPP for morphine was established in adult rats (males and females) by 4 daily pairings with saline and morphine (am/pm alternation). They were tested for CPP on day 5, and then treated with rapastinel (5 mg/kg) or saline daily on days 6-10 of extinction. On day 11 they received a final dose of rapastinel or saline followed by extinction trial. On day 12, animals received 1 mg/kg of morphine and were tested for relapse. Rapastinel did not affect extinction of CPP, but rapastinel-treated animals spent significantly less time in the previously morphine-paired side than saline-treated animals during the relapse trial. These findings of accelerated loss of withdrawal signs and blunted relapse to CPP suggest that rapastinel could provide an adjunctive therapy for opioid dependence during initiation of pharmacotherapy for opioid dependence.
Collapse
Affiliation(s)
- Christopher Armstrong
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Julia Ferrante
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Nidesh Lamichhane
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Zachery Reavis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, United States of America
| | - David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Ashwin Patkar
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, United States of America; Avance Psychiatry, 7850 Brier Creek Pkwy, Ste. 102, Raleigh, NC 27617, United States of America
| | - Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, United States of America.
| |
Collapse
|
13
|
Burgdorf JS, Zhang XL, Stanton PK, Moskal JR, Donello JE. Zelquistinel Is an Orally Bioavailable Novel NMDA Receptor Allosteric Modulator That Exhibits Rapid and Sustained Antidepressant-Like Effects. Int J Neuropsychopharmacol 2022; 25:979-991. [PMID: 35882204 PMCID: PMC9743962 DOI: 10.1093/ijnp/pyac043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The role of glutamatergic receptors in major depressive disorder continues to be of great interest for therapeutic development. Recent studies suggest that both negative and positive modulation of N-methyl-D-aspartate receptors (NMDAR) can produce rapid antidepressant effects. Here we report that zelquistinel, a novel NMDAR allosteric modulator, exhibits high oral bioavailability and dose-proportional exposures in plasma and the central nervous system and produces rapid and sustained antidepressant-like effects in rodents by enhancing activity-dependent, long-term synaptic plasticity. METHODS NMDAR-mediated functional activity was measured in cultured rat brain cortical neurons (calcium imaging), hNR2A or B subtype-expressing HEK cells, and synaptic plasticity in rat hippocampal and medial prefrontal cortex slices in vitro. Pharmacokinetics were evaluated in rats following oral administration. Antidepressant-like effects were assessed in the rat forced swim test and the chronic social deficit mouse model. Target engagement and the safety/tolerability profile was assessed using phencyclidine-induced hyperlocomotion and rotarod rodent models. RESULTS Following a single oral dose, zelquistinel (0.1-100 µg/kg) produced rapid and sustained antidepressant-like effects in the rodent depression models. Brain/ cerebrospinal fluid concentrations associated with zelquistinel antidepressant-like activity also increased NMDAR function and rapidly and persistently enhanced activity-dependent synaptic plasticity (long-term potentiation), suggesting that zelquistinel produces antidepressant-like effects by enhancing NMDAR function and synaptic plasticity. Furthermore, Zelquistinel inhibited phencyclidine (an NMDAR antagonist)-induced hyperlocomotion and did not impact rotarod performance. CONCLUSIONS Zelquistinel produces rapid and sustained antidepressant effects by positively modulating the NMDARs, thereby enhancing long-term potentiation of synaptic transmission.
Collapse
Affiliation(s)
- Jeffrey S Burgdorf
- Correspondence: Jeffrey Burgdorf, PhD, 1801 Maple Ave, Suite 4300, Evanston, IL, 60201, USA ()
| | - Xiao-Lei Zhang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Patric K Stanton
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Joseph R Moskal
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, Illinois, USA
| | | |
Collapse
|
14
|
Vasiliu O. Investigational Drugs for the Treatment of Depression (Part 2): Glutamatergic, Cholinergic, Sestrin Modulators, and Other Agents. Front Pharmacol 2022; 13:884155. [PMID: 35847011 PMCID: PMC9284317 DOI: 10.3389/fphar.2022.884155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
Many investigational drugs with antidepressant activity are currently explored in different phases of clinical research, with indications such as major depressive disorder, treatment-resistant major depression, bipolar depression, post-partum depression, and late-life depression. Although the vast majority of the antidepressants in clinical use are based on the monoaminergic hypothesis of depression, recent data supported the launching on the market of two new, non-monoamine-modulating drugs. Esketamine for treatment-resistant major depression and brexanolone for post-partum depression are two exceptions from the monoaminergic model, although their use is still limited by high costs, unique way of administration (only intravenously for brexanolone), physicians’ reluctance to prescribe new drugs, and patients’ reticence to use them. Glutamatergic neurotransmission is explored based on the positive results obtained by intranasal esketamine, with subanesthetic intravenous doses of ketamine, and D-cycloserine, traxoprodil, MK-0657, AXS-05, AVP-786, combinations of cycloserine and lurasidone, or dextromethorphan and quinidine, explored as therapeutic options for mono- or bipolar depression. Sestrin modulators, cholinergic receptor modulators, or onabotulinumtoxinA have also been investigated for potential antidepressant activity. In conclusion, there is hope for new treatments in uni- and bipolar depression, as it became clear, after almost 7 decades of monoamine-modulating antidepressants, that new pathogenetic pathways should be targeted to increase the response rate in this population.
Collapse
|
15
|
Rajagopal L, Huang M, He W, Ryan C, Elzokaky A, Banerjee P, Meltzer HY. Repeated administration of rapastinel produces exceptionally prolonged rescue of memory deficits in phencyclidine-treated mice. Behav Brain Res 2022; 432:113964. [PMID: 35718230 DOI: 10.1016/j.bbr.2022.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Rapastinel, a positive N-methyl-D-aspartate receptor (NMDAR) modulator with rapid-acting antidepressant properties, rescues memory deficits in rodents. We have previously reported that a single intravenous dose of rapastinel, significantly, but only transiently, prevented and rescued deficits in the novel object recognition (NOR) test, a measure of episodic memory, produced by acute or subchronic administration of the NMDAR antagonists, phencyclidine (PCP) and ketamine. Here, we tested the ability of single and multiple subcutaneous doses per day of rapastinel to restore NOR and operant reversal learning (ORL) deficits in subchronic PCP-treated mice. Rapastinel, 1 or 3 mg/kg, administered subcutaneously, 30 min before NOR or ORL testing, respectively, transiently rescued both deficits in subchronic PCP mice. This effect of rapastinel on NOR and ORL was mammalian target of rapamycin (mTOR)-dependent. Most importantly, 1 mg/kg rapastinel given twice daily for 3 or 5 days, but not 1 day, restored NOR for at least 9 and 10 weeks, respectively, which is an indication of neuroplastic effects on learning and memory. Both rapastinel (3 mg/kg) and ketamine (30 mg/kg), moderately increased the efflux of dopamine, norepinephrine, and serotonin in medial prefrontal cortex; however, only ketamine increased cortical glutamate efflux. This observation was likely the basis for the contrasting effects of the two drugs on cognition.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Wenqi He
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| | - Chelsea Ryan
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Ahmad Elzokaky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | | | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Wang YT, Zhang NN, Liu LJ, Jiang H, Hu D, Wang ZZ, Chen NH, Zhang Y. Glutamatergic receptor and neuroplasticity in depression: Implications for ketamine and rapastinel as the rapid-acting antidepressants. Biochem Biophys Res Commun 2022; 594:46-56. [DOI: 10.1016/j.bbrc.2022.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
|
17
|
Kojic M, Saelens J, Kadriu B, Zarate CA, Kraus C. Ketamine for Depression: Advances in Clinical Treatment, Rapid Antidepressant Mechanisms of Action, and a Contrast with Serotonergic Psychedelics. Curr Top Behav Neurosci 2022; 56:141-167. [PMID: 35312993 PMCID: PMC10500612 DOI: 10.1007/7854_2022_313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The approval of ketamine for treatment-resistant depression has created a model for a novel class of rapid-acting glutamatergic antidepressants. Recent research into other novel rapid-acting antidepressants - most notably serotonergic psychedelics (SPs) - has also proven promising. Presently, the mechanisms of action of these substances are under investigation to improve these novel treatments, which also exhibit considerable side effects such as dissociation. This chapter lays out the historical development of ketamine as an antidepressant, outlines its efficacy and safety profile, reviews the evidence for ketamine's molecular mechanism of action, and compares it to the proposed mechanism of SPs. The evidence suggests that although ketamine and SPs act on distinct primary targets, both may lead to rapid restoration of synaptic deficits and downstream network reconfiguration. In both classes of drugs, a glutamate surge activates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) throughput and increases in brain-derived neurotrophic factor (BDNF) levels. Taken together, these novel antidepressant mechanisms may serve as a framework to explain the rapid and sustained antidepressant effects of ketamine and may be crucial for developing new rapid-acting antidepressants with an improved side effect profile.
Collapse
Affiliation(s)
- Marina Kojic
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Johan Saelens
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Bashkim Kadriu
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Neuroscience, Janssen Research & Development, LLC, San Diego, CA, USA
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 373] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
19
|
Blaze J, Navickas A, Phillips HL, Heissel S, Plaza-Jennings A, Miglani S, Asgharian H, Foo M, Katanski CD, Watkins CP, Pennington ZT, Javidfar B, Espeso-Gil S, Rostandy B, Alwaseem H, Hahn CG, Molina H, Cai DJ, Pan T, Yao WD, Goodarzi H, Haghighi F, Akbarian S. Neuronal Nsun2 deficiency produces tRNA epitranscriptomic alterations and proteomic shifts impacting synaptic signaling and behavior. Nat Commun 2021; 12:4913. [PMID: 34389722 PMCID: PMC8363735 DOI: 10.1038/s41467-021-24969-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Epitranscriptomic mechanisms linking tRNA function and the brain proteome to cognition and complex behaviors are not well described. Here, we report bi-directional changes in depression-related behaviors after genetic disruption of neuronal tRNA cytosine methylation, including conditional ablation and transgene-derived overexpression of Nsun2 in the mouse prefrontal cortex (PFC). Neuronal Nsun2-deficiency was associated with a decrease in tRNA m5C levels, resulting in deficits in expression of 70% of tRNAGly isodecoders. Altogether, 1488/5820 proteins changed upon neuronal Nsun2-deficiency, in conjunction with glycine codon-specific defects in translational efficiencies. Loss of Gly-rich proteins critical for glutamatergic neurotransmission was associated with impaired synaptic signaling at PFC pyramidal neurons and defective contextual fear memory. Changes in the neuronal translatome were also associated with a 146% increase in glycine biosynthesis. These findings highlight the methylation sensitivity of glycinergic tRNAs in the adult PFC. Furthermore, they link synaptic plasticity and complex behaviors to epitranscriptomic modifications of cognate tRNAs and the proteomic homeostasis associated with specific amino acids.
Collapse
Affiliation(s)
- J Blaze
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - A Navickas
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - H L Phillips
- Departments of Psychiatry and Behavioral Sciences, Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - S Heissel
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - A Plaza-Jennings
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - S Miglani
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - H Asgharian
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - M Foo
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - C D Katanski
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - C P Watkins
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Z T Pennington
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - B Javidfar
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - S Espeso-Gil
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - B Rostandy
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - H Alwaseem
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - C G Hahn
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - H Molina
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - D J Cai
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - T Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - W D Yao
- Departments of Psychiatry and Behavioral Sciences, Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - H Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - F Haghighi
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Research and Development Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - S Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
| |
Collapse
|
20
|
Wang YT, Wang XL, Feng ST, Chen NH, Wang ZZ, Zhang Y. Novel rapid-acting glutamatergic modulators: Targeting the synaptic plasticity in depression. Pharmacol Res 2021; 171:105761. [PMID: 34242798 DOI: 10.1016/j.phrs.2021.105761] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) is severely prevalent, and conventional monoaminergic antidepressants gradually exhibit low therapeutic efficiency, especially for patients with treatment-resistant depression. A neuroplasticity hypothesis is an emerging advancement in the mechanism of depression, mainly expressed in the glutamate system, e.g., glutamate receptors and signaling. Dysfunctional glutamatergic neurotransmission is currently considered to be closely associated with the pathophysiology of MDD. Biological function, pharmacological action, and signal attributes in the glutamate system both regulate the neural process. Specific functional subunits could be therapeutic targets to explore the novel glutamatergic modulators, which have fast-acting, and relatively sustained antidepressant effects. Here, the present review summarizes the pathophysiology of MDD found in the glutamate system, exploring the role of glutamate receptors and their downstream effects. These convergent mechanisms have prompted the development of other modulators targeting on glutamate system, including N-methyl-d-aspartate receptor antagonists, selective GluN2B-specific antagonists, glycine binding site agents, and regulators of metabotropic glutamate receptors. Relevant researches underly the putative mechanisms of these drugs, which reverse the damage of depression by regulating glutamatergic neurotransmission. It also provides further insight into the mechanism of depression and exploring potential targets for novel agent development.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
21
|
Yang PS, Peng HY, Lin TB, Hsieh MC, Lai CY, Lee AS, Wang HH, Ho YC. NMDA receptor partial agonist GLYX-13 alleviates chronic stress-induced depression-like behavior through enhancement of AMPA receptor function in the periaqueductal gray. Neuropharmacology 2020; 178:108269. [DOI: 10.1016/j.neuropharm.2020.108269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
|
22
|
Rapid acting antidepressants in the mTOR pathway: Current evidence. Brain Res Bull 2020; 163:170-177. [DOI: 10.1016/j.brainresbull.2020.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
|
23
|
Banerjee P, Donello JE, Hare B, Duman RS. Rapastinel, an NMDAR positive modulator, produces distinct behavioral, sleep, and EEG profiles compared with ketamine. Behav Brain Res 2020; 391:112706. [PMID: 32461133 DOI: 10.1016/j.bbr.2020.112706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022]
Abstract
Rapastinel, a positive NMDAR modulator, produces rapid-acting and long-lasting antidepressant-like effects; however, unlike ketamine, the abuse potential for rapastinel is minimal. Ketamine has also been shown to induce psychotomimetic/dissociative side effects, aberrant gamma oscillations, and effects similar to sleep deprivation, which may potentially limit its clinical use. In this study, we compared the side effect profile and potential sleep-altering properties of rapastinel (3, 10, and 30 mg/kg) to ketamine (30 mg/kg) in rodents. In addition, we investigated corresponding changes in transcriptomics and proteomics. Rapastinel exhibited no effect on locomotor activity and prepulse inhibition in mice, while ketamine induced a significant increase in locomotor activity and a significant decrease in prepulse inhibition, which are indications of a psychosis-like state. The effects of rapastinel on sleep architecture were minimal, and rapastinel did not alter gamma frequency oscillations. In contrast, ketamine administration resulted in a greater latency to slow wave and REM sleep, disrupted duration of sleep, and affected duration of wakefulness during sleep. Further, ketamine increased cortical oscillations in the gamma frequency range, which is a property associated with psychosis. Rapastinel induced similar plasticity-related changes in transcriptomics to ketamine in rats but differed in several gene ontology classes, some of which may be involved in the regulation of sleep. In conclusion, rapastinel demonstrated a lower propensity than ketamine to induce CNS-related adverse side effects and sleep disturbances.
Collapse
Affiliation(s)
| | | | - Brendan Hare
- Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
24
|
Widman AJ, McMahon LL. Effects of ketamine and other rapidly acting antidepressants on hippocampal excitatory and inhibitory transmission. ADVANCES IN PHARMACOLOGY 2020; 89:3-41. [PMID: 32616211 DOI: 10.1016/bs.apha.2020.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A single sub-anesthetic intravascular dose of the use-dependent NMDAR antagonist, ketamine, improves mood in patients with treatment resistant depression within hours that can last for days, creating an entirely new treatment strategy for the most seriously ill patients. However, the psychomimetic effects and abuse potential of ketamine require that new therapies be developed that maintain the rapid antidepressant effects of ketamine without the unwanted side effects. This necessitates a detailed understanding of what cellular and synaptic mechanisms are immediately activated once ketamine reaches the brain that triggers the needed changes to elicit the improved behavior. Intense research has centered on the effects of ketamine, and the other rapidly acting antidepressants, on excitatory and inhibitory circuits in hippocampus and medial prefrontal cortex to determine common mechanisms, including key modifications in synaptic transmission and the precise location of the NMDARs that mediate the rapid and sustained antidepressant response. We review data comparing the effects of ketamine with other NMDAR receptor modulators and the muscarinic M1 acetylcholine receptor antagonist, scopolamine, together with evidence supporting the disinhibition hypothesis and the direct inhibition hypothesis of ketamine's mechanism of action on synaptic circuits using preclinical models.
Collapse
Affiliation(s)
- Allie J Widman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lori L McMahon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
25
|
Lee B, Pothula S, Duman RS. NMDAR modulators as rapid antidepressants: Converging and distinct signaling mechanisms. ACTA ACUST UNITED AC 2020; 4. [PMID: 34381955 PMCID: PMC8353843 DOI: 10.15761/icm.1000173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dysregulation of the glutamatergic system underlies the pathophysiology of depression. Both negative and positive modulation of NMDARs exert rapid and sustained antidepressant effects by reversing the dysregulated glutamatergic system. Research in the past decades has identified key signaling pathways activated by these rapid acting antidepressants. Here, we review the converging signaling mechanisms shared by rapid acting antidepressants and discuss the recent progress on distinct actions of NMDAR antagonists and NMDAR positive modulators to trigger rapid antidepressant actions.
Collapse
Affiliation(s)
- Boyoung Lee
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Santosh Pothula
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
26
|
Caracci F, Harary J, Simkovic S, Pasinetti GM. Grape-Derived Polyphenols Ameliorate Stress-Induced Depression by Regulating Synaptic Plasticity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1808-1815. [PMID: 31532659 DOI: 10.1021/acs.jafc.9b01970] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Major depressive disorder (MDD) is associated with stress-induced immune dysregulation and reduced brain-derived neurotrophic factor (BDNF) levels in sensitive brain regions associated with depression. Elevated levels of proinflammatory cytokines and reduced BDNF levels lead to impaired synaptic plasticity mechanisms that contribute to the pathophysiology of MDD. There is accumulating evidence that the administration of polyphenols at doses ranging from 5 to 180 mg/kg of body weight can normalize elevated levels of proinflammatory cytokines and abnormal levels of BDNF and, thus, restore impaired synaptic plasticity mechanisms that mediate depressive behavior in animal models of stress. This review will focus on the mechanisms by which grape-derived polyphenols normalize impaired synaptic plasticity and reduce depressive behavior in animal models of stress.
Collapse
Affiliation(s)
- Francesca Caracci
- Department of Neurology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place , Box 1137, New York , New York 10029 , United States
| | - Joyce Harary
- Department of Neurology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place , Box 1137, New York , New York 10029 , United States
| | - Sherry Simkovic
- Department of Neurology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place , Box 1137, New York , New York 10029 , United States
| | - Giulio Maria Pasinetti
- Department of Neurology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place , Box 1137, New York , New York 10029 , United States
- Geriatrics Research, Education and Clinical Center , JJ Peters VA Medical Center , Bronx , New York 10468 , United States
| |
Collapse
|
27
|
Liu H, Gong XD, Zhao X, Qian Y, Gu XP, Xia TJ. GLYX-13 pretreatment ameliorates long-term isoflurane exposure-induced cognitive impairment in mice. Neural Regen Res 2020; 15:128-135. [PMID: 31535661 PMCID: PMC6862406 DOI: 10.4103/1673-5374.264466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates that inhalation anesthetics induce or increase the risk of cognitive impairment. GLYX-13 (rapastinel) acts on the glycine site of N-methyl-D-aspartate receptors (NMDARs) and has been shown to enhance hippocampus-dependent learning and memory function. However, the mechanisms by which GLYX-13 affects learning and memory function are still unclear. In this study, we investigated these mechanisms in a mouse model of long-term anesthesia exposure. Mice were intravenously administered 1 mg/kg GLYX-13 at 2 hours before isoflurane exposure (1.5% for 6 hours). Cognitive function was assessed using the contextual fear conditioning test and the novel object recognition test. The mRNA expression and phosphorylated protein levels of NMDAR pathway components, N-methyl-D-aspartate receptor subunit 2B(NR2B)-Ca2+/calmodulin dependent protein kinase II (CaMKII)-cyclic adenosine monophosphate response element binding protein (CREB), in the hippocampus were evaluated by quantitative RT-PCR and western blot assay. Pretreatment with GLYX-13 ameliorated isoflurane exposure-induced cognitive impairment and restored NR2B, CaMKII and CREB mRNA and phosphorylated protein levels. Intracerebroventricular injection of KN93, a selective CaMKII inhibitor, significantly diminished the effect of GLYX-13 on cognitive function and NR2B, CaMKII and CREB levels in the hippocampus. Taken together, our findings suggest that GLYX-13 pretreatment alleviates isoflurane-induced cognitive dysfunction by protecting against perturbation of the NR2B/CaMKII/CREB signaling pathway in the hippocampus. Therefore, GLYX-13 may have therapeutic potential for the treatment of anesthesia-induced cognitive dysfunction. This study was approved by the Experimental Animal Ethics Committee of Drum Tower Hospital affiliated to the Medical College of Nanjing University, China (approval No. 20171102) on November 20, 2017.
Collapse
Affiliation(s)
- Huan Liu
- Department of Anesthesiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Xiang-Dan Gong
- Department of Anesthesiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Xin Zhao
- Department of Anesthesiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yue Qian
- Department of Anesthesiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Xiao-Ping Gu
- Department of Anesthesiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Tian-Jiao Xia
- Department of Anesthesiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
28
|
Duman RS, Deyama S, Fogaça MV. Role of BDNF in the pathophysiology and treatment of depression: Activity-dependent effects distinguish rapid-acting antidepressants. Eur J Neurosci 2019; 53:126-139. [PMID: 31811669 DOI: 10.1111/ejn.14630] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
The pathophysiology and treatment of depression have been the focus of intense research and while there is much that remains unknown, modern neurobiological approaches are making progress. This work demonstrates that stress and depression are associated with atrophy of neurons and reduced synaptic connectivity in brain regions such as the hippocampus and prefrontal cortex that contribute to depressive behaviors, and conversely that antidepressant treatment can reverse these deficits. The role of neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF), has been of particular interest as these factors play a key role in activity-dependent regulation of synaptic plasticity. Here, we review the literature demonstrating that exposure to stress and depression decreases BDNF expression in the hippocampus and PFC and conversely that antidepressant treatment can up-regulate BDNF in the adult brain and reverse the effects of stress. We then focus on rapid-acting antidepressants, particularly the NMDA receptor antagonist ketamine, which produces rapid synaptic and antidepressant behavioral actions that are dependent on activity-dependent release of BDNF. This rapid release of BDNF differs from typical monoaminergic agents that require chronic administration to produce a slow induction of BDNF expression, consistent with the time lag for the therapeutic action of these agents. We review evidence that other classes of rapid-acting agents also require BDNF release, demonstrating that this is a common, convergent downstream mechanism. Finally, we discuss evidence that the actions of ketamine are also dependent on another growth factor, vascular endothelial growth factor (VEGF) and its complex interplay with BDNF.
Collapse
Affiliation(s)
- Ronald S Duman
- Department of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Manoela Viar Fogaça
- Department of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
29
|
Duman RS, Shinohara R, Fogaça MV, Hare B. Neurobiology of rapid-acting antidepressants: convergent effects on GluA1-synaptic function. Mol Psychiatry 2019; 24:1816-1832. [PMID: 30894661 PMCID: PMC6754322 DOI: 10.1038/s41380-019-0400-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 11/09/2022]
Abstract
Efforts to develop efficacious antidepressant agents with novel mechanisms have been largely unsuccessful since the 1950's until the discovery of ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid and sustained antidepressant actions even in treatment-resistant patients. This finding has ushered in a new era for the development of novel rapid-acting antidepressants that act at the NMDA receptor complex, but without dissociative and psychotomimetic side effects of ketamine. Here, we review the current state of rapid-acting antidepressant drug development, including NMDA channel blockers, glycine site agents, and allosteric modulators, as well as ketamine stereoisomers and metabolites. In addition, we focus on the neurobiological mechanisms underlying the actions of these diverse agents and discuss evidence of convergent mechanisms including increased brain-derived neurotrophic factor signaling, increased synthesis of synaptic proteins, and most notably increased GluR1 and synaptic connectivity in the medial prefrontal cortex. These convergent mechanisms provide insight for potential additional novel targets for drug development (e.g., agents that increase synaptic protein synthesis and plasticity). Importantly, the convergent effects on synapse formation and plasticity also reverse the well-documented neuronal and synaptic deficits associated with stress and depression, and thereby target the underlying pathophysiology of major depressive disorder.
Collapse
Affiliation(s)
- Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Ryota Shinohara
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Manoela V Fogaça
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Brendan Hare
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
30
|
Huang N, Wang Y, Zhan G, Yu F, Li S, Hua D, Jiang R, Li S, Wu Y, Yang L, Zhu B, Hua F, Luo A, Yang C. Contribution of skeletal muscular glycine to rapid antidepressant effects of ketamine in an inflammation-induced mouse model of depression. Psychopharmacology (Berl) 2019; 236:3513-3523. [PMID: 31321459 DOI: 10.1007/s00213-019-05319-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/30/2019] [Indexed: 01/09/2023]
Abstract
RATIONALE Basic and clinical studies have reported rapid and long-lasting antidepressant effects of ketamine. Although previous studies have proposed several mechanisms underlying the antidepressant effects of ketamine, these mechanisms have not been completely elucidated. OBJECTIVES The present study evaluated the effects of systemically administered ketamine treatment in a lipopolysaccharide (LPS)-induced mouse model of depression. METHODS Non-targeted metabolomics, western blotting, and behavioral tests (locomotion, tail suspension, and forced swimming tests) were performed. RESULT Ketamine significantly attenuated the abnormally increased immobility time in a lipopolysaccharide (LPS)-induced mouse model of depression. Aminomalonic acid, glutaraldehyde, glycine, histidine, N-methyl-L-glutamic acid, and ribose levels in skeletal muscle were altered following ketamine administration. Furthermore, ketamine significantly decreased the LPS-induced increase in glycine receptor A1 (GlyA1) levels. However, the glycine receptor antagonist strychnine did not elicit any pharmacological effects on ketamine-induced alterations in behaviors or muscular GlyA1 levels. Exogenous glycine and L-serine significantly improved depression-like symptoms in LPS-induced mice. CONCLUSIONS Our findings suggest that skeletal muscular glycine contributes to the antidepressant effects of ketamine in inflammation. Effective strategies for improving skeletal muscular glycine levels may be a novel approach to depression treatment.
Collapse
Affiliation(s)
- Niannian Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Fan Yu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dongyu Hua
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Riyue Jiang
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yeshun Wu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
31
|
Kato T, Duman RS. Rapastinel, a novel glutamatergic agent with ketamine-like antidepressant actions: Convergent mechanisms. Pharmacol Biochem Behav 2019; 188:172827. [PMID: 31733218 DOI: 10.1016/j.pbb.2019.172827] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
Conventional antidepressant medications, which act on monoaminergic systems, have significant limitations, including a time lag of weeks to months and low rates of therapeutic efficacy. Recently, clinical findings demonstrate that ketamine, a dissociative anesthetic that blocks N-methyl-d-aspartate (NMDA) receptor channel activity, causes rapid (within hours) and long-lasting (7 to 10 days) antidepressant effects. Rapastinel is a novel glutamatergic compound that acts as an NMDAR postive allosteric modulator and produces rapid antidepressant actions in depressed patients and in preclinical rodent models. In addition, rapastinel has no ketamine-like side effect such as cognitive impairment and psychotomimetic symptoms. Despite recent negative clinical trials, it remains possible that rapastinel could prove effective as an alternative rapid agent with reduced side effects. In this review, we discuss the pharmacological profile of rapastinel and the molecular and cellular mechanisms underlying the rapid and sustained antidepressant actions of this novel agent.
Collapse
Affiliation(s)
- Taro Kato
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520, United States of America; Pharmacology Research Unit, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan; Department of Neurosciences, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520, United States of America
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520, United States of America; Department of Neurosciences, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520, United States of America.
| |
Collapse
|
32
|
Esketamine and rapastinel, but not imipramine, have antidepressant-like effect in a treatment-resistant animal model of depression. Acta Neuropsychiatr 2019; 31:258-265. [PMID: 31230597 DOI: 10.1017/neu.2019.25] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Treatment-resistance to antidepressants is a major problem in the pharmacotherapy of major depressive disorder (MDD). Unfortunately, only a few animal models are suitable for studying treatment-resistant depression, among them repeated treatment with Adrenocorticotropic hormone (ACTH) appears to be useful to mimic treatment-resistance to monoaminergic antidepressants. Therefore, the present work aimed to investigate the effectiveness of s-ketamine and rapastinel (formerly GLYX13), modulators of the glutamatergic N-methyl-D-aspartate receptor in ACTH-treated animals. METHODS Naïve male Sprague Dawley rats were subjected to repeated subcutaneous injections with ACTH (100 µg/0.1 ml/rat/day) for 14 days and drug treatment on the test day (open field and forced swim test) with imipramine, s-ketamine or rapastinel. In addition, assessment of plasma levels of corticosterone and ACTH was carried out. RESULTS We found that rats repeatedly treated with ACTH for 14 days responded to single injections with s-ketamine (15 mg/kg) and rapastinel (10 mg/kg), but failed to respond to imipramine (15 mg/kg). In the plasma, the levels of corticosterone and ACTH were increased after 14 days of daily treatment with ACTH, independently of the treatment. CONCLUSION The present data confirm development of a resistance to treatment following chronic ACTH administration. In addition, the study confirms the possible effectiveness of s-ketamine and rapastinel as treatment options in treatment-resistant depression. Moreover, it highlights the importance of the glutamatergic system in the neurobiology of depression. Further studies are necessary to evaluate how repeated treatment with ACTH leads to a depressed condition resistant to monoaminergic antidepressants.
Collapse
|
33
|
Abstract
The structure of neuronal circuits that subserve cognitive functions in the brain is shaped and refined throughout development and into adulthood. Evidence from human and animal studies suggests that the cellular and synaptic substrates of these circuits are atypical in neuropsychiatric disorders, indicating that altered structural plasticity may be an important part of the disease biology. Advances in genetics have redefined our understanding of neuropsychiatric disorders and have revealed a spectrum of risk factors that impact pathways known to influence structural plasticity. In this Review, we discuss the importance of recent genetic findings on the different mechanisms of structural plasticity and propose that these converge on shared pathways that can be targeted with novel therapeutics.
Collapse
|
34
|
The glycine site of NMDA receptors: A target for cognitive enhancement in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:387-404. [PMID: 30738126 DOI: 10.1016/j.pnpbp.2019.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
Abstract
Cognitive dysfunction is a principal determinant of functional impairment in major depressive disorder (MDD) and often persists during periods of euthymia. Abnormalities in the glutamate system, particularly in N-methyl-d-aspartate receptors (NMDARs) activity, have been shown to contribute to both mood and cognitive symptoms in MDD. The current narrative review aims to evaluate the potential pro-cognitive effects of targeting the glycine site of NMDARs in the treatment of psychiatric disorders, with a special focus on how these results may apply to MDD. Literature databases were searched from inception to May 2018 for relevant pre-clinical and clinical studies evaluating antidepressant and pro-cognitive effects of NMDAR glycine site modulators in both MDD and non-MDD samples. Six glycine site modulators with pro-cognitive and antidepressant properties were identified: d-serine (co-agonist), d-cycloserine (partial agonist), d-alanine (co-agonist), glycine (agonist), sarcosine (co-agonist) and rapastinel (partial agonist). Preclinical animal studies demonstrated improved neuroplasticity and pro-cognitive effects with these agents. Numerous proof-of-concept clinical trials demonstrated pro-cognitive and antidepressant effects trans-diagnostically (e.g., in healthy participants, MDD, schizophrenia, anxiety disorders, major neurocognitive disorders). The generalizability of these clinical studies was limited by the small sample sizes and the paucity of studies directly evaluating cognitive effects in MDD samples, as most clinical trials were in non-MDD samples. Taken together, preliminary results suggest that the glycine site of NMDARs is a promising target to ameliorate symptoms of depression and cognitive dysfunction. Additional rigorously designed clinical studies are required to determine the cognitive effects of these agents in MDD.
Collapse
|
35
|
Kadriu B, Musazzi L, Henter ID, Graves M, Popoli M, Zarate CA. Glutamatergic Neurotransmission: Pathway to Developing Novel Rapid-Acting Antidepressant Treatments. Int J Neuropsychopharmacol 2019; 22:119-135. [PMID: 30445512 PMCID: PMC6368372 DOI: 10.1093/ijnp/pyy094] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/26/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
The underlying neurobiological basis of major depressive disorder remains elusive due to the severity, complexity, and heterogeneity of the disorder. While the traditional monoaminergic hypothesis has largely fallen short in its ability to provide a complete picture of major depressive disorder, emerging preclinical and clinical findings suggest that dysfunctional glutamatergic neurotransmission may underlie the pathophysiology of both major depressive disorder and bipolar depression. In particular, recent studies showing that a single intravenous infusion of the glutamatergic modulator ketamine elicits fast-acting, robust, and relatively sustained antidepressant, antisuicidal, and antianhedonic effects in individuals with treatment-resistant depression have prompted tremendous interest in understanding the mechanisms responsible for ketamine's clinical efficacy. These results, coupled with new evidence of the mechanistic processes underlying ketamine's effects, have led to inventive ways of investigating, repurposing, and expanding research into novel glutamate-based therapeutic targets with superior antidepressant effects but devoid of dissociative side effects. Ketamine's targets include noncompetitive N-methyl-D-aspartate receptor inhibition, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid throughput potentiation coupled with downstream signaling changes, and N-methyl-D-aspartate receptor targets localized on gamma-aminobutyric acid-ergic interneurons. Here, we review ketamine and other potentially novel glutamate-based treatments for treatment-resistant depression, including N-methyl-D-aspartate receptor antagonists, glycine binding site ligands, metabotropic glutamate receptor modulators, and other glutamatergic modulators. Both the putative mechanisms of action of these agents and clinically relevant studies are described.
Collapse
Affiliation(s)
- Bashkim Kadriu
- Section on the Neurobiology and Treatment of Mood Disorders, Intramural Research Program, National Institute of Mental Health, Bethesda, MD
| | - Laura Musazzi
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics – Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milan, Italy
| | - Ioline D Henter
- Section on the Neurobiology and Treatment of Mood Disorders, Intramural Research Program, National Institute of Mental Health, Bethesda, MD
| | - Morgan Graves
- Section on the Neurobiology and Treatment of Mood Disorders, Intramural Research Program, National Institute of Mental Health, Bethesda, MD
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics – Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milan, Italy
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, Intramural Research Program, National Institute of Mental Health, Bethesda, MD
| |
Collapse
|
36
|
Abstract
For decades, symptoms of depression have been treated primarily with medications that directly target the monoaminergic brain systems, which typically take weeks to exert measurable effects and months to exert remission of symptoms. Low, subanesthetic doses of ( R,S)-ketamine (ketamine) result in the rapid improvement of core depressive symptoms, including mood, anhedonia, and suicidal ideation, occurring within hours following a single administration, with relief from symptoms typically lasting up to a week. The discovery of these actions of ketamine has resulted in a reconceptualization of how depression could be more effectively treated in the future. In this review, we discuss clinical data pertaining to ketamine and other rapid-acting antidepressant drugs, as well as the current state of pharmacological knowledge regarding their mechanism of action. Additionally, we discuss the neurobiological circuits that are engaged by this drug class and that may be targeted by a future generation of medications, for example, hydroxynorketamine; metabotropic glutamate receptor 2/3 antagonists; and N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and γ-aminobutyric acid receptor modulators.
Collapse
Affiliation(s)
- Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
- Departments of Pharmacology and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
37
|
Witkin JM, Martin AE, Golani LK, Xu NZ, Smith JL. Rapid-acting antidepressants. ADVANCES IN PHARMACOLOGY 2019; 86:47-96. [DOI: 10.1016/bs.apha.2019.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Ragguett RM, Rong C, Kratiuk K, McIntyre RS. Rapastinel - an investigational NMDA-R modulator for major depressive disorder: evidence to date. Expert Opin Investig Drugs 2018; 28:113-119. [PMID: 30585524 DOI: 10.1080/13543784.2019.1559295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Major depressive disorder (MDD) is a debilitating disorder with increasing prevalence globally. Despite the development of novel treatments for MDD, many patients present with treatment resistant depression (TRD), identified by treatment non-response following one or more adequate trials of an antidepressant. Rapastinel may prove to be a viable treatment for TRD; it has the potential to produce a rapid antidepressant response without serious adverse events and improve functional symptoms. Areas covered: We review the efficacy of rapastinel via completed and on-going clinical trials. The online databases Pubmed, clinicaltrials.gov and clinicaltrialsregister.eu were searched for rapastinel (GLYX-13) treatment in subjects with MDD. Nine clinical trials were identified. Expert opinion: Rapastinel is a novel and potentially transformative treatment for individuals with TRD. There is a limited number of clinical studies so far, but this compound has the potential to provide rapid, reliable and robust antidepressant effects without psychotomimetic and other unwanted side effects. Alternative formulations such as the oral formulation, provide the opportunity for rapastinel to be administered less frequently, i.e. once weekly. Furthermore, the beneficial effects on measures of cognition and suicidality so far, represent a tremendous advantage.
Collapse
Affiliation(s)
- Renee-Marie Ragguett
- a Mood Disorders Psychopharmacology Unit , University Health Network , Toronto , Canada
| | - Carola Rong
- a Mood Disorders Psychopharmacology Unit , University Health Network , Toronto , Canada.,d Department of Pharmacology , University of Toronto , Toronto , Canada
| | - Kevin Kratiuk
- b Medical Faculty , Poznan University of Medical Sciences , Poznan , Poland
| | - Roger S McIntyre
- a Mood Disorders Psychopharmacology Unit , University Health Network , Toronto , Canada.,c Department of Psychiatry , University of Toronto , Toronto , Canada.,d Department of Pharmacology , University of Toronto , Toronto , Canada
| |
Collapse
|
39
|
Abstract
OBJECTIVE Although monoaminergic-targeted drugs have prompted great advances in the development of treatments for depression, the need for new options persists, since these drugs still have a delayed clinical effect and most patients do not respond properly to them. Recently, the observation of the antidepressant effects of ketamine brought on a new wave of studies regarding the comprehension of the neurobiology of depression and the development of new and more effective antidepressant drugs. METHODS Thus, in this paper, we present a historical review of the development of monoaminergic antidepressant drugs and the role of ketamine as the introductory agent of a new era in the research of the neurobiology of depression. RESULTS Firstly, we review how the pharmacological treatment for major depression started, and we point out the main drugs discovered, the researchers involved, and how the studies developed have contributed to the understanding of the neurobiology of depression. Secondly, the major problems regarding the clinical efficacy and acceptance of these drugs are discussed, and the introduction of the glutamatergic system as a target for antidepressant drugs is presented. Finally, we review how ketamine revealed itself as an exciting option towards obtaining pharmacological agents to treat depression, through the understanding of biological markers.DiscussionKetamine contributed to confirm that different targets of the glutamatergic system and neurotrophic pathways are strictly related to the neurobiology of depression. There are several antidepressant drugs based on ketamine's mechanism of action already in the pipeline, and glutamatergic-targeted antidepressants may be on the market in the near future.
Collapse
|
40
|
Kato T, Fogaça MV, Deyama S, Li XY, Fukumoto K, Duman RS. BDNF release and signaling are required for the antidepressant actions of GLYX-13. Mol Psychiatry 2018; 23:2007-2017. [PMID: 29203848 PMCID: PMC5988860 DOI: 10.1038/mp.2017.220] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/25/2017] [Accepted: 09/18/2017] [Indexed: 01/23/2023]
Abstract
Conventional antidepressant medications, which act on monoaminergic systems, display significant limitations, including a time lag of weeks to months and low rates of therapeutic efficacy. GLYX-13 is a novel glutamatergic compound that acts as an N-methyl-D-aspartate (NMDA) modulator with glycine-like partial agonist properties; like the NMDA receptor antagonist ketamine GLYX-13 produces rapid antidepressant actions in depressed patients and in preclinical rodent models. However, the mechanisms underlying the antidepressant actions of GLYX-13 have not been characterized. Here we use a combination of neutralizing antibody (nAb), mutant mouse and pharmacological approaches to test the role of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TrkB) signaling in the actions of GLYX-13. The results demonstrate that the antidepressant effects of GLYX-13 are blocked by intra-medial prefrontal cortex (intra-mPFC) infusion of an anti-BDNF nAb or in mice with a knock-in of the BDNF Val66Met allele, which blocks the processing and activity-dependent release of BDNF. We also demonstrate that pharmacological inhibitors of BDNF-TrkB signaling or of L-type voltage-dependent Ca2+ channels (VDCCs) block the antidepressant behavioral actions of GLYX-13. Finally, we examined the role of the Rho GTPase proteins by injecting a selective inhibitor into the mPFC and found that activation of Rac1 but not RhoA is involved in the antidepressant effects of GLYX-13. Together, these findings indicate that enhanced release of BDNF through exocytosis caused by activation of VDCCs and subsequent TrkB-Rac1 signaling is required for the rapid and sustained antidepressant effects of GLYX-13.
Collapse
Affiliation(s)
- T Kato
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Drug Development Research Laboratories, Sumitomo Dainippon Pharma, New Haven, CT, USA
| | - M V Fogaça
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - S Deyama
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - X-Y Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - K Fukumoto
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - R S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
41
|
Ghoreishi-Haack N, Priebe JM, Aguado JD, Colechio EM, Burgdorf JS, Bowers MS, Cearley CN, Khan MA, Moskal JR. NYX-2925 Is a Novel N-Methyl-d-Aspartate Receptor Modulator that Induces Rapid and Long-Lasting Analgesia in Rat Models of Neuropathic Pain. J Pharmacol Exp Ther 2018; 366:485-497. [PMID: 29986951 DOI: 10.1124/jpet.118.249409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/03/2018] [Indexed: 01/04/2025] Open
Abstract
NYX-2925 [(2S,3R)-3-hydroxy-2-((R)-5-isobutyryl-1-oxo-2,5-diazaspiro[3.4]octan-2-yl)butanamide] is a novel N-methyl-d-aspartate (NMDA) receptor modulator that is currently being investigated in phase 2 clinical studies for the treatment of painful diabetic peripheral neuropathy and fibromyalgia. Previous studies demonstrated that NYX-2925 is a member of a novel class of NMDA receptor-specific modulators that affect synaptic plasticity processes associated with learning and memory. Studies here examined NYX-2925 administration in rat peripheral chronic constriction nerve injury (CCI) and streptozotocin-induced diabetic mechanical hypersensitivity. Additionally, NYX-2925 was examined in formalin-induced persistent pain model and the tail flick test of acute nociception. Oral administration of NYX-2925 resulted in rapid and long-lasting analgesia in both of the neuropathic pain models and formalin-induced persistent pain, but was ineffective in the tail flick model. The analgesic effects of NYX-2925 were blocked by the systemic administration of NMDA receptor antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid. Microinjection of NYX-2925 into the medial prefrontal cortex of CCI rats resulted in analgesic effects similar to those observed following systemic administration, whereas intrathecal administration of NYX-2925 was ineffective. In CCI animals, NYX-2925 administration reversed deficits seen in a rat model of rough-and-tumble play. Thus, it appears that NYX-2925 may have therapeutic potential for the treatment of neuropathic pain, and the data presented here support the idea that NYX-2925 may act centrally to ameliorate pain and modulate negative affective states associated with chronic neuropathic pain.
Collapse
Affiliation(s)
- Nayereh Ghoreishi-Haack
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Jessica M Priebe
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Jacqueline D Aguado
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Elizabeth M Colechio
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Jeffrey S Burgdorf
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - M Scott Bowers
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Cassia N Cearley
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - M Amin Khan
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Joseph R Moskal
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| |
Collapse
|
42
|
Chaki S. Beyond Ketamine: New Approaches to the Development of Safer Antidepressants. Curr Neuropharmacol 2018; 15:963-976. [PMID: 28228087 PMCID: PMC5652016 DOI: 10.2174/1570159x15666170221101054] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/08/2017] [Accepted: 02/15/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Ketamine has been reported to exert rapid and sustained antidepressant effects in patients with depression, including patients with treatment-resistant depression. However, ketamine has several drawbacks such as psychotomimetic/dissociative symptoms, abuse potential and neurotoxicity, all of which prevent its routine use in daily clinical practice. Methods: Therefore, development of novel agents with fewer safety and usage concerns for the treatment of depression has been actively investigated. From this standpoint, searching for active substances (stereoisomers and metabolites) and agents acting on the N-methyl-D-aspartate (NMDA) receptor have recently gained much attention. Results: The first approach includes stereoisomers of ketamine, (R)-ketamine and (S)-ketamine. Although (S)-ketamine has been considered as the active stereoisomer of racemic ketamine, recently, (R)-ketamine has been demonstrated to exert even more prolonged antidepressant effects in animal models than (S)-ketamine. Moreover, ketamine is rapidly metabolized into several metabolites, and some metabolites are speculated as being active substances exerting antidepressant effects. Of such metabolites, one in particular, namely, (2R,6R)-hydroxynorketamine, has been reported to be responsible for the antidepressant effects of ketamine. The second approach includes agents acting on the NMDA receptor, such as glycine site modulators and GluN2B subunit-selective antagonists. These agents have been tested in patients with treatment-resistant depression, and have been found to exhibit rapid antidepressant effects like ketamine. Conclusion: The above approaches may be useful to overcome the drawbacks of ketamine. Elucidation of the mechanisms of action of ketamine may pave the way for the development of antidepressant that are safer, but as potent and rapidly acting as ketamine.
Collapse
Affiliation(s)
- Shigeyuki Chaki
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530. Japan
| |
Collapse
|
43
|
Scale-Up Synthesis and Identification of GLYX-13, a NMDAR Glycine-Site Partial Agonist for the Treatment of Major Depressive Disorder. Molecules 2018; 23:molecules23050996. [PMID: 29695090 PMCID: PMC6102568 DOI: 10.3390/molecules23050996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/11/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
GLYX-13, a NMDAR glycine-site partial agonist, was discovered as a promising antidepressant with rapidly acting effects but no ketamine-like side effects. However, the reported synthetic process route had deficiencies of low yield and the use of unfriendly reagents. Here, we report a scaled-up synthesis of GLYX-13 with an overall yield of 30% on the hectogram scale with a column chromatography-free strategy, where the coupling and deprotection reaction conditions were systematically optimized. Meanwhile, the absolute configuration of precursor compound of GLYX-13 was identified by X-ray single crystal diffraction. Finally, the activity of GLYX-13 was verified in the cortical neurons of mice through whole-cell voltage-clamp technique.
Collapse
|
44
|
Abstract
Clinical studies have demonstrated that a single sub-anesthetic dose of the dissociative anesthetic ketamine induces rapid and sustained antidepressant actions. Although this finding has been met with enthusiasm, ketamine's widespread use is limited by its abuse potential and dissociative properties. Recent preclinical research has focused on unraveling the molecular mechanisms underlying the antidepressant actions of ketamine in an effort to develop novel pharmacotherapies, which will mimic ketamine's antidepressant actions but lack its undesirable effects. Here we review hypotheses for the mechanism of action of ketamine as an antidepressant, including synaptic or GluN2B-selective extra-synaptic N-methyl-D-aspartate receptor (NMDAR) inhibition, inhibition of NMDARs localized on GABAergic interneurons, inhibition of NMDAR-dependent burst firing of lateral habenula neurons, and the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor activation. We also discuss links between ketamine's antidepressant actions and downstream mechanisms regulating synaptic plasticity, including brain-derived neurotrophic factor (BDNF), eukaryotic elongation factor 2 (eEF2), mechanistic target of rapamycin (mTOR) and glycogen synthase kinase-3 (GSK-3). Mechanisms that do not involve direct inhibition of the NMDAR, including a role for ketamine's (R)-ketamine enantiomer and hydroxynorketamine (HNK) metabolites, specifically (2R,6R)-HNK, are also discussed. Proposed mechanisms of ketamine's action are not mutually exclusive and may act in a complementary manner to exert acute changes in synaptic plasticity, leading to sustained strengthening of excitatory synapses, which are necessary for antidepressant behavioral actions. Understanding the molecular mechanisms underpinning ketamine's antidepressant actions will be invaluable for the identification of targets, which will drive the development of novel, effective, next-generation pharmacotherapies for the treatment of depression.
Collapse
|
45
|
Abstract
Traditional pharmacological treatments for depression have a delayed therapeutic onset, ranging from several weeks to months, and there is a high percentage of individuals who never respond to treatment. In contrast, ketamine produces rapid-onset antidepressant, anti-suicidal, and anti-anhedonic actions following a single administration to patients with depression. Proposed mechanisms of the antidepressant action of ketamine include N-methyl-D-aspartate receptor (NMDAR) modulation, gamma aminobutyric acid (GABA)-ergic interneuron disinhibition, and direct actions of its hydroxynorketamine (HNK) metabolites. Downstream actions include activation of the mechanistic target of rapamycin (mTOR), deactivation of glycogen synthase kinase-3 and eukaryotic elongation factor 2 (eEF2), enhanced brain-derived neurotrophic factor (BDNF) signaling, and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs). These putative mechanisms of ketamine action are not mutually exclusive and may complement each other to induce potentiation of excitatory synapses in affective-regulating brain circuits, which results in amelioration of depression symptoms. We review these proposed mechanisms of ketamine action in the context of how such mechanisms are informing the development of novel putative rapid-acting antidepressant drugs. Such drugs that have undergone pre-clinical, and in some cases clinical, testing include the muscarinic acetylcholine receptor antagonist scopolamine, GluN2B-NMDAR antagonists (i.e., CP-101,606, MK-0657), (2R,6R)-HNK, NMDAR glycine site modulators (i.e., 4-chlorokynurenine, pro-drug of the glycineB NMDAR antagonist 7-chlorokynurenic acid), NMDAR agonists [i.e., GLYX-13 (rapastinel)], metabotropic glutamate receptor 2/3 (mGluR2/3) antagonists, GABAA receptor modulators, and drugs acting on various serotonin receptor subtypes. These ongoing studies suggest that the future acute treatment of depression will typically occur within hours, rather than months, of treatment initiation.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 934F MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, St. BRB 5-007, 655 W. Baltimore St., Baltimore, MD, 21201, USA, Baltimore, MD, 21201, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 936 MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA
| |
Collapse
|
46
|
Song C, Liu BP, Zhang YP, Peng Z, Wang J, Collier AD, Echevarria DJ, Savelieva KV, Lawrence RF, Rex CS, Meshalkina DA, Kalueff AV. Modeling consequences of prolonged strong unpredictable stress in zebrafish: Complex effects on behavior and physiology. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:384-394. [PMID: 28847526 DOI: 10.1016/j.pnpbp.2017.08.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
Abstract
Chronic stress is the major pathogenetic factor of human anxiety and depression. Zebrafish (Danio rerio) have become a novel popular model species for neuroscience research and CNS drug discovery. The utility of zebrafish for mimicking human affective disorders is also rapidly growing. Here, we present a new zebrafish model of clinically relevant, prolonged unpredictable strong chronic stress (PUCS). The 5-week PUCS induced overt anxiety-like and motor retardation-like behaviors in adult zebrafish, also elevating whole-body cortisol and proinflammatory cytokines - interleukins IL-1β and IL-6. PUCS also elevated whole-body levels of the anti-inflammatory cytokine IL-10 and increased the density of dendritic spines in zebrafish telencephalic neurons. Chronic treatment of fish with an antidepressant fluoxetine (0.1mg/L for 8days) normalized their behavioral and endocrine phenotypes, as well as corrected stress-elevated IL-1β and IL-6 levels, similar to clinical and rodent data. The CNS expression of the bdnf gene, the two genes of its receptors (trkB, p75), and the gfap gene of glia biomarker, the glial fibrillary acidic protein, was unaltered in all three groups. However, PUCS elevated whole-body BDNF levels and the telencephalic dendritic spine density (which were corrected by fluoxetine), thereby somewhat differing from the effects of chronic stress in rodents. Together, these findings support zebrafish as a useful in-vivo model of chronic stress, also calling for further cross-species studies of both shared/overlapping and distinct neurobiological responses to chronic stress.
Collapse
Affiliation(s)
- Cai Song
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China; Graduate Institute of Neural and Cognitive Science, China Medical University and Hospital, Taichung 00001, Taiwan.
| | - Bai-Ping Liu
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Yong-Ping Zhang
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Zhilan Peng
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - JiaJia Wang
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Adam D Collier
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA
| | - David J Echevarria
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Katerina V Savelieva
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA
| | - Robert F Lawrence
- Afraxis, Inc. 6605 Nancy Ridge Rd. Suite 224, San Diego, CA 92121, USA
| | - Christopher S Rex
- Afraxis, Inc. 6605 Nancy Ridge Rd. Suite 224, San Diego, CA 92121, USA
| | - Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 3960002, Russia
| | - Allan V Kalueff
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China; ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 3960002, Russia; Ural Federal University, Ekaterinburg 620002, Russia.
| |
Collapse
|
47
|
Donello JE, Banerjee P, Li YX, Guo YX, Yoshitake T, Zhang XL, Miry O, Kehr J, Stanton PK, Gross AL, Burgdorf JS, Kroes RA, Moskal JR. Positive N-Methyl-D-Aspartate Receptor Modulation by Rapastinel Promotes Rapid and Sustained Antidepressant-Like Effects. Int J Neuropsychopharmacol 2018; 22:247-259. [PMID: 30544218 PMCID: PMC6403082 DOI: 10.1093/ijnp/pyy101] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Modulation of glutamatergic synaptic transmission by N-methyl-D-aspartate receptors can produce rapid and sustained antidepressant effects. Rapastinel (GLYX-13), initially described as a N-methyl-D-aspartate receptor partial glycine site agonist, exhibits rapid antidepressant effect in rodents without the accompanying dissociative effects of N-methyl-D-aspartate receptor antagonists. METHODS The relationship between rapastinel's in vitro N-methyl-D-aspartate receptor pharmacology and antidepressant efficacy was determined by brain microdialysis and subsequent pharmacological characterization of therapeutic rapastinel concentrations in N-methyl-D-aspartate receptor-specific radioligand displacement, calcium mobilization, and medial prefrontal cortex electrophysiology assays. RESULTS Brain rapastinel concentrations of 30 to 100 nM were associated with its antidepressant-like efficacy and enhancement of N-methyl-D-aspartate receptor-dependent neuronal intracellular calcium mobilization. Modulation of N-methyl-D-aspartate receptors by rapastinel was independent of D-serine concentrations, and glycine site antagonists did not block rapastinel's effect. In rat medial prefrontal cortex slices, 100 nM rapastinel increased N-methyl-D-aspartate receptor-mediated excitatory postsynaptic currents and enhanced the magnitude of long-term potentiation without any effect on miniature EPSCs or paired-pulse facilitation responses, indicating postsynaptic action of rapastinel. A critical amino acid within the NR2 subunit was identified as necessary for rapastinel's modulatory effect. CONCLUSION Rapastinel brain concentrations associated with antidepressant-like activity directly enhance medial prefrontal cortex N-methyl-D-aspartate receptor activity and N-methyl-D-aspartate receptor-mediated synaptic plasticity in vitro. At therapeutic concentrations, rapastinel directly enhances N-methyl-D-aspartate receptor activity through a novel site independent of the glycine coagonist site. While both rapastinel and ketamine physically target N-methyl-D-aspartate receptors, the 2 molecules have opposing actions on N-methyl-D-aspartate receptors. Modest positive modulation of N-methyl-D-aspartate receptors by rapastinel represents a novel pharmacological approach to promote well-tolerated, rapid, and sustained improvements in mood disorders.
Collapse
Affiliation(s)
- John E Donello
- Allergan, Plc, Irvine, California,Correspondence: John Donello, PhD, 2525 Dupont Dr., Irvine, CA 92612.
| | | | | | | | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xiao-Lei Zhang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Omid Miry
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden,Pronexus Analytical AB, Bromma, Sweden
| | - Patric K Stanton
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | | | - Jeffery S Burgdorf
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, Illinois,Aptinyx, Inc., Evanston, Illinois
| | - Roger A Kroes
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, Illinois,Aptinyx, Inc., Evanston, Illinois
| | - Joseph R Moskal
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, Illinois,Aptinyx, Inc., Evanston, Illinois
| |
Collapse
|
48
|
Khan MA, Houck DR, Gross AL, Zhang XL, Cearley C, Madsen TM, Kroes RA, Stanton PK, Burgdorf J, Moskal JR. NYX-2925 Is a Novel NMDA Receptor-Specific Spirocyclic-β-Lactam That Modulates Synaptic Plasticity Processes Associated with Learning and Memory. Int J Neuropsychopharmacol 2017; 21:242-254. [PMID: 29099938 PMCID: PMC5838819 DOI: 10.1093/ijnp/pyx096] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/17/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors are one member of a family of ionotropic glutamate receptors that play a pivotal role in synaptic plasticity processes associated with learning and have become attractive therapeutic targets for diseases such as depression, anxiety, schizophrenia, and neuropathic pain. NYX-2925 ((2S, 3R)-3-hydroxy-2-((R)-5-isobutyryl-1-oxo-2,5-diazaspiro[3.4]octan-2-yl)butanamide) is one member of a spiro-β-lactam-based chemical platform that mimics some of the dipyrrolidine structural features of rapastinel (formerly GLYX-13: threonine-proline-proline-threonine) and is distinct from known N-methyl-D-aspartate receptor agonists or antagonists such as D-cycloserine, ketamine, MK-801, kynurenic acid, or ifenprodil. METHODS The in vitro and in vivo pharmacological properties of NYX-2925 were examined. RESULTS NYX-2925 has a low potential for "off-target" activity, as it did not exhibit any significant affinity for a large panel of neuroactive receptors, including hERG receptors. NYX-2925 increased MK-801 binding to human N-methyl-D-aspartate receptor NR2A-D subtypes expressed in HEK cells and enhanced N-methyl-D-aspartate receptor current and long-term potentiation (LTP) in rat hippocampal slices (100-500 nM). Single dose ex vivo studies showed increased metaplasticity in a hippocampal LTP paradigm and structural plasticity 24 hours after administration (1 mg/kg p.o.). Significant learning enhancement in both novel object recognition and positive emotional learning paradigms were observed (0.01-1 mg/kg p.o.), and these effects were blocked by the N-methyl-D-aspartate receptor antagonist CPP. NYX-2925 does not show any addictive or sedative/ataxic side effects and has a therapeutic index of >1000. NYX-2925 (1 mg/kg p.o.) has a cerebrospinal fluid half-life of 1.2 hours with a Cmax of 44 nM at 1 hour. CONCLUSIONS NYX-2925, like rapastinel, activates an NMDA receptor-mediated synaptic plasticity process and may have therapeutic potential for a variety of NMDA receptor-mediated central nervous system disorders.
Collapse
Affiliation(s)
| | | | | | - Xiao-lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York
| | | | | | - Roger A Kroes
- Aptinyx Inc., Evanston, Ilinois,Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Ilinois
| | - Patric K Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York
| | - Jeffrey Burgdorf
- Aptinyx Inc., Evanston, Ilinois,Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Ilinois
| | - Joseph R Moskal
- Aptinyx Inc., Evanston, Ilinois,Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Ilinois,Correspondence: Joseph Moskal, PhD, Falk Center for Molecular Therapeutics, Northwestern University Department of Biomedical Engineering, 1801 Maple Ave, Suite 4300, Evanston, IL, 60201 ()
| |
Collapse
|
49
|
Kalejaiye O, Getachew B, Ferguson CL, Taylor RE, Tizabi Y. Alcohol-Induced Increases in Inflammatory Cytokines Are Attenuated by Nicotine in Region-Selective Manner in Male Rats. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2017; 6:236036. [PMID: 29416901 PMCID: PMC5798246 DOI: 10.4303/jdar/236036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Heavy use of alcohol is commonly associated with heavy smoking (nicotine intake). Although many factors, including mood effects of these two drugs may contribute to their co-use, the exact neurobiological underpinnings are far from clear. It is well known that chronic alcohol exposure induces neuroinflammation that may precipitate depressive-like behavior, which is considered an important factor in alcohol relapse. Nicotine, on the other hand, possesses anti-inflammatory and antidepressant effects. PURPOSE In this study, we sought to determine which proinflammatory markers may be associated with the depressogenic effects of chronic alcohol and whether nicotine pretreatment may normalize these changes. STUDY DESIGN For this purpose, we treated adult male Wistar rats with alcohol (1.0 g/kg, IP), nicotine (0.3 mg/kg, IP) or their combination once daily for 14 days. Two prominent proinflammatory cytokines (IL-1β and TNF-α) in two primary brain regions, namely the hippocampus and frontal cortex that are intimately involved in mood regulation, were evaluated. RESULTS Chronic alcohol resulted in increases in both cytokines in both regions as determined by Western blot. Nicotine completely blocked alcohol-induced effects in the hippocampus, but not in the frontal cortex. These data suggest that nicotine may mitigate the inflammatory effects of alcohol in brain-selective region. Hence, the previously observed depressogenic effects of alcohol and the antidepressant effects of nicotine may at least be partially mediated through manipulations of proinflammatory cytokines in the hippocampus. CONCLUSION These findings suggest possible therapeutic potential of anti-inflammatory cytokines in combating alcohol-induced depression and/or relapse.
Collapse
Affiliation(s)
- Olubukola Kalejaiye
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Bruk Getachew
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Clifford L Ferguson
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Robert E Taylor
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
50
|
Boukezzi S, El Khoury-Malhame M, Auzias G, Reynaud E, Rousseau PF, Richard E, Zendjidjian X, Roques J, Castelli N, Correard N, Guyon V, Gellato C, Samuelian JC, Cancel A, Comte M, Latinus M, Guedj E, Khalfa S. Grey matter density changes of structures involved in Posttraumatic Stress Disorder (PTSD) after recovery following Eye Movement Desensitization and Reprocessing (EMDR) therapy. Psychiatry Res Neuroimaging 2017; 266:146-152. [PMID: 28667881 DOI: 10.1016/j.pscychresns.2017.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/16/2017] [Accepted: 06/18/2017] [Indexed: 12/21/2022]
Abstract
Recovery of stress-induced structural alterations in Posttraumatic Stress Disorder (PTSD) remains largely unexplored. This study aimed to determine whether symptoms improvement is associated with grey matter (GM) density changes of brain structures involved in PTSD. Two groups of PTSD patients were involved in this study. The first group was treated with Eye Movement Desensitization and Reprocessing (EMDR) therapy and recovered from their symptoms (recovery group) (n = 11); Patients were scanned prior to therapy (T1), one week (T2) and five months after the end of therapy (T3). The second group included patients which followed a supportive therapy and remained symptomatic (wait-list group) (n = 7). They were scanned at three time-steps mimicking the same inter-scan intervals. Voxel-based morphometry (VBM) was used to characterize GM density evolution. GM density values showed a significant group-by-time interaction effect between T1 and T3 in prefrontal cortex areas. These interaction effects were driven by a GM density increase in the recovery group with respect to the wait-list group. Symptoms removal goes hand-in-hand with GM density enhancement of structures involved in emotional regulation.
Collapse
Affiliation(s)
- Sarah Boukezzi
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France.
| | | | - Guillaume Auzias
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France; Laboratoire des Sciences de l'Information et des Systèmes, UMR 7296, Aix-Marseille Université & CNRS, Marseille, France
| | - Emmanuelle Reynaud
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France
| | - Pierre-François Rousseau
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France
| | - Emmanuel Richard
- Assistance Publique des Hôpitaux de Marseille (APHM), Conception, CUMP, Marseille, France
| | - Xavier Zendjidjian
- Assistance Publique des Hôpitaux de Marseille (APHM), Conception, CUMP, Marseille, France
| | - Jacques Roques
- Centre de Traitement des Traumatismes Psychiques de Montpellier, Montpellier, France
| | | | - Nadia Correard
- Assistance Publique des Hôpitaux de Marseille (APHM), Sainte Marguerite, Pôle de psychiatrie, Marseille, France
| | - Valérie Guyon
- Assistance Publique des Hôpitaux de Marseille (APHM), Conception, CUMP, Marseille, France
| | - Caroline Gellato
- Assistance Publique des Hôpitaux de Marseille (APHM), Sainte Marguerite, Pôle de psychiatrie, Marseille, France
| | - Jean-Claude Samuelian
- Assistance Publique des Hôpitaux de Marseille (APHM), Conception, CUMP, Marseille, France
| | - Aida Cancel
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France; Centre Hospitalier Universitaire de Saint-Etienne, Pôle de Psychiatrie, Saint-Etienne, France
| | - Magali Comte
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France
| | - Marianne Latinus
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France
| | - Eric Guedj
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France; Assistance Publiques des Hôpitaux de Marseille (APHM), Timone, Service Central de Biophysique et Médecine Nucléaire, Marseille, France; Centre Européen de Recherche en Imagerie Médicale (CERIMED), Marseille, France
| | - Stéphanie Khalfa
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France
| |
Collapse
|