1
|
Yagi H, Yamada R, Saito T, Honda R, Nakano R, Inutsuka K, Tateo S, Kusano H, Nishimura K, Yanaka S, Tojima T, Nakano A, Furukawa JI, Yagi-Utsumi M, Adachi S, Kato K. Molecular tag for promoting N-glycan maturation in the cargo receptor-mediated secretion pathway. iScience 2024; 27:111457. [PMID: 39717080 PMCID: PMC11664129 DOI: 10.1016/j.isci.2024.111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
MCFD2 and ERGIC-53 form a cargo receptor complex that plays a crucial role in transporting specific glycoproteins, including blood coagulation factor VIII, from the endoplasmic reticulum to the Golgi apparatus. We have demonstrated that MCFD2 recognizes a 10-amino-acid sequence in factor VIII, thereby facilitating its efficient transport. Moreover, the secretion of biopharmaceutical recombinant glycoproteins, such as erythropoietin, can be enhanced by tagging them with this sequence, which we have termed the "passport sequence" (PS). Here, we found that the PS promotes the galactosylation and sialylation of N-glycans on glycoproteins. Furthermore, we discovered that glycoproteins tagged with the PS follow a unique route in the Golgi, where they encounter NUCB1. NUCB1 also recognizes the PS and mediates its interaction with the galactosylation enzyme B4GALT1. These findings offer a promising strategy for controlling the glycosylation of recombinant glycoproteins of biopharmaceutical interest.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki 444-8787, Japan
| | - Rino Yamada
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Taiki Saito
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Rena Honda
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
| | - Rio Nakano
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Kengo Inutsuka
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Seigo Tateo
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Hideo Kusano
- Department of Proteomics, National Cancer Center Research Institute, Tokyo 104-0045 Japan
| | - Kumiko Nishimura
- Department of Proteomics, National Cancer Center Research Institute, Tokyo 104-0045 Japan
| | - Saeko Yanaka
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
| | - Takuro Tojima
- RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Jun-ichi Furukawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
| | - Maho Yagi-Utsumi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
| | - Shungo Adachi
- Department of Proteomics, National Cancer Center Research Institute, Tokyo 104-0045 Japan
| | - Koichi Kato
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
| |
Collapse
|
2
|
Sundarrajan L, Mustapha UF, Unniappan S. Stress induces nucleobindin-1 mRNA and nesfatin-1-like peptide stimulates cortisol secretion in goldfish. DISCOVER ANIMALS 2024; 1:32. [PMID: 39545036 PMCID: PMC11562699 DOI: 10.1007/s44338-024-00031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
Stress is a state of disrupted homeostasis triggered by physical or psychological stimuli that elicit adaptive responses at the molecular and cellular levels. In fish, the hypothalamus-pituitary-interrenal (HPI) axis mediates stress responses. Nesfatin-1 and a nesfatin-1-like peptide (NLP), derived from nucleobindin-1 (NUCB1), have been implicated in stress hormone regulation in mammals. This study investigated the cell-specific expression of NUCB1/NLP in HPI tissues and its effects on stress response in goldfish (Carassius auratus). NUCB1 mRNA is abundant in the hypothalamus, pituitary, and several other peripheral tissues of goldfish. NUCB1/NLP-like immunoreactivity was found in the brain and pituitary, co-localized with corticotropin-releasing factor receptor 1 (CRF-R1) in the hypothalamus, and with adrenocorticotrophic hormone (ACTH) in the pituitary. In vivo netting and restraint stress increased nucb1 and crf-r1 mRNAs in the brain and acth mRNA in the pituitary, as determined by RT-qPCR. Intraperitoneal injection of NLP increased cortisol in circulation, crf-r1 mRNA in the brain and acth mRNA in the pituitary. These findings suggest that NUCB1/NLP is a new player in mediating the endocrine stress response of goldfish through the HPI axis.
Collapse
Affiliation(s)
- Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4 Canada
| | - Umar Farouk Mustapha
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4 Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4 Canada
| |
Collapse
|
3
|
Nasri A, Kowaluk M, Widenmaier SB, Unniappan S. Nesfatin-1 and nesfatin-1-like peptide attenuate hepatocyte lipid accumulation and nucleobindin-1 disruption modulates lipid metabolic pathways. Commun Biol 2024; 7:623. [PMID: 38802487 PMCID: PMC11130297 DOI: 10.1038/s42003-024-06314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Nesfatin-1 (NESF-1) has been shown to modulate lipid metabolism. We have identified a nesfatin-1-like-peptide (NLP) processed from a related precursor nucleobindin 1 (NUCB1). Here we determined if NLP, like NESF-1, regulates lipid accumulation in vitro, and tested if the disruption of nucb1 gene affects hepatic lipid metabolism genes in mice. Hepatocytes (HepG2/C3A cells) express NLP and NESF-1 and both peptides significantly reduced lipogenic enzyme mRNAs and enhanced beta-oxidation enzyme mRNAs. Lipid contents in oleic acid induced HepG2/C3A cells were attenuated by NESF-1 and NLP. The inhibitory effect on cellular lipid content was blocked by compound C, an inhibitor of AMPK. The disruption of nucb1 gene affected lipid metabolism-related enzyme mRNAs, endogenous nucb2 mRNA and AMPK phosphorylation. The lipid-lowering effects identified here highlights the potential of nucleobindins and peptides processed from them to address lipid disorders, and its possible benefits in metabolic disease management.
Collapse
Affiliation(s)
- Atefeh Nasri
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Saskatchewan, Canada
| | - Mateh Kowaluk
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Saskatchewan, Canada
| | - Scott B Widenmaier
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Saskatchewan, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Saskatchewan, Canada.
| |
Collapse
|
4
|
Nasri A, Sands J, Unniappan S. Suppressive action of nesfatin-1 and nesfatin-1-like peptide on cortisol synthesis in human adrenal cortex cells. Sci Rep 2024; 14:3985. [PMID: 38368491 PMCID: PMC10874440 DOI: 10.1038/s41598-024-54758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/16/2024] [Indexed: 02/19/2024] Open
Abstract
Nucleobindin-derived peptides, nesfatin-1 [NESF-1] and nesfatin-1-like-peptide [NLP] have diverse roles in endocrine and metabolic regulation. While both peptides showed a stimulatory effect on the synthesis of proopiomelanocortin (POMC), the adrenocorticotropic hormone (ACTH) precursor in mouse corticotrophs, whether NESF-1 and NLP have any direct effect on glucocorticoid [GC] synthesis in the adrenal cortex remains unknown. The main aim of this study was to determine if NESF-1 and/or NLP act directly on adrenal cortex cells to regulate cortisol synthesis in vitro. Whether NLP injection affects stress-hormone gene expression in the adrenal gland and pituitary in vivo in mice was also assessed. In addition, cortisol synthetic pathway in Nucb1 knockout mice was studied. Human adrenal cortical [H295R] cells showed immunoreactivity for both NUCB1/NLP and NUCB2/NESF-1. NLP and NESF-1 decreased the abundance of steroidogenic enzyme mRNAs, and cortisol synthesis and release through the AC/PKA/CREB pathway in H295R cells. Similarly, intraperitoneal injection of NLP in mice decreased the expression of enzymes involved in glucocorticoid (GC) synthesis in the adrenal gland while increasing the expression of Pomc, Pcsk1 and Crhr1 in the pituitary. Moreover, the melanocortin 2 receptor (Mc2r) mRNA level was enhanced in the adrenal gland samples of NLP injected mice. However, the global genetic disruption in Nucb1 did not affect most steroidogenic enzyme mRNAs, and Pomc, Pcsk2 and Crhr1 mRNAs in mice adrenal gland and pituitary gland, respectively. Collectively, these data provide the first evidence for a direct inhibition of cortisol synthesis and secretion by NLP and NESF-1. NUCB peptides might still elicit a net stimulatory effect on GC synthesis and secretion through their positive effects on ACTH-MC2R pathway in the pituitary.
Collapse
Affiliation(s)
- Atefeh Nasri
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Jade Sands
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
5
|
Cappelletti C, Henriksen SP, Geut H, Rozemuller AJM, van de Berg WDJ, Pihlstrøm L, Toft M. Transcriptomic profiling of Parkinson's disease brains reveals disease stage specific gene expression changes. Acta Neuropathol 2023; 146:227-244. [PMID: 37347276 PMCID: PMC10329075 DOI: 10.1007/s00401-023-02597-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Parkinson´s disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Aggravation of symptoms is mirrored by accumulation of protein aggregates mainly composed by alpha-synuclein in different brain regions, called Lewy bodies (LB). Previous studies have identified several molecular mechanisms as autophagy and inflammation playing a role in PD pathogenesis. Increased insights into mechanisms involved in early disease stages and driving the progression of the LB pathology are required for the development of disease-modifying strategies. Here, we aimed to elucidate disease stage-specific transcriptomic changes in brain tissue of well-characterized PD and control donors. We collected frontal cortex samples from 84 donors and sequenced both the coding and non-coding RNAs. We categorized our samples into groups based on their degree of LB pathology aiming to recapitulate a central aspect of disease progression. Using an analytical pipeline that corrected for sex, age at death, RNA quality, cell composition and unknown sources of variation, we found major disease stage-specific transcriptomic changes. Gene expression changes were most pronounced in donors at the disease stage when microscopic LB changes first occur in the sampled brain region. Additionally, we identified disease stage-specific enrichment of brain specific pathways and immune mechanisms. On the contrary, we showed that mitochondrial mechanisms are enriched throughout the disease course. Our data-driven approach also suggests a role for several poorly characterized lncRNAs in disease development and progression of PD. Finally, by combining genetic and epigenetic information, we highlighted two genes (MAP4K4 and PHYHIP) as candidate genes for future functional studies. Together our results indicate that transcriptomic dysregulation and associated functional changes are highly disease stage-specific, which has major implications for the study of neurodegenerative disorders.
Collapse
Affiliation(s)
- Chiara Cappelletti
- Department of Mechanical, Electronics and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet-Oslo Metropolitan University, Oslo, Norway
- Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Hanneke Geut
- Amsterdam UMC, Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
- Netherlands Brain Bank, Netherlands Institute of Neurosciences, Amsterdam, Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Mikhaylina A, Svoeglazova A, Stolboushkina E, Tishchenko S, Kostareva O. The RNA-Binding and RNA-Melting Activities of the Multifunctional Protein Nucleobindin 1. Int J Mol Sci 2023; 24:ijms24076193. [PMID: 37047165 PMCID: PMC10093973 DOI: 10.3390/ijms24076193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Nucleobindin 1 (NUCB1) is a ubiquitous multidomain protein that belongs to the EF-hand Ca2+-binding superfamily. NUCB1 interacts with Galphai3 protein, cyclooxygenase, amyloid precursor protein, and lipids. It is involved in stress response and human diseases. In addition, this protein is a transcription factor that binds to the DNA E-box motif. Using surface plasmon resonance and molecular beacon approaches, we first showed the RNA binding and RNA melting activities of NUCB1. We suggest that NUCB1 could induce local changes in structured RNAs via binding to the GGAUAU loop sequence. Our results demonstrate the importance of the multidomain structure of NUCB1 for its RNA-chaperone activity in vitro.
Collapse
|
7
|
Bruijstens AL, Stingl C, Güzel C, Stoop MP, Wong YYM, van Pelt ED, Banwell BL, Bar-Or A, Luider TM, Neuteboom RF, Dutch Pediatric MS and ADEM Study Group; Canadian Pediatric Demyelinating Disease Network. Neurodegeneration and humoral response proteins in cerebrospinal fluid associate with pediatric-onset multiple sclerosis and not monophasic demyelinating syndromes in childhood. Mult Scler 2023; 29:52-62. [PMID: 36154753 PMCID: PMC9896265 DOI: 10.1177/13524585221125369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pediatric-onset multiple sclerosis (POMS) represents the earliest stage of disease pathogenesis. Investigating the cerebrospinal fluid (CSF) proteome in POMS may provide novel insights into early MS processes. OBJECTIVE To analyze CSF obtained from children at time of initial central nervous system (CNS) acquired demyelinating syndrome (ADS), to compare CSF proteome of those subsequently ascertained as having POMS versus monophasic acquired demyelinating syndrome (mADS). METHODS Patients were selected from two prospective pediatric ADS studies. Liquid chromatography-mass spectrometry (LC-MS) was performed in a Dutch discovery cohort (POMS n = 28; mADS n = 39). Parallel reaction monitoring-mass spectrometry (PRM-MS) was performed on selected proteins more abundant in POMS in a combined Dutch and Canadian validation cohort (POMS n = 48; mADS n = 106). RESULTS Discovery identified 5580 peptides belonging to 576 proteins; 58 proteins were differentially abundant with ⩾2 peptides between POMS and mADS, of which 28 more abundant in POMS. Fourteen had increased abundance in POMS with ⩾8 unique peptides. Five selected proteins were all confirmed within validation. Adjusted for age, 2 out of 5 proteins remained more abundant in POMS, that is, Carboxypeptidase E (CPE) and Semaphorin-7A (SEMA7A). CONCLUSION This exploratory study identified several CSF proteins associated with POMS and not mADS, potentially reflecting neurodegeneration, compensatory neuroprotection, and humoral response in POMS. The proteins associated with POMS highly correlated with age at CSF sampling.
Collapse
Affiliation(s)
- Arlette L Bruijstens
- AL Bruijstens Department of Neurology, Erasmus University Medical Center, Room Ee-2230, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Christoph Stingl
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Coşkun Güzel
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel P Stoop
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yu Yi M Wong
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E Daniëlle van Pelt
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
8
|
Kaczocha M, Haj-Dahmane S. Mechanisms of endocannabinoid transport in the brain. Br J Pharmacol 2022; 179:4300-4310. [PMID: 33786823 PMCID: PMC8481389 DOI: 10.1111/bph.15469] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide are among the best studied lipid messengers in the brain. By activating cannabinoid receptors in the CNS, endocannabinoids tune synaptic function, thereby influencing a variety of physiological and behavioural processes. Extensive research conducted over the last few decades has considerably enhanced our understanding of the molecular mechanisms and physiological functions of the endocannabinoid system. It is now well-established that endocannabinoids are synthesized by postsynaptic neurons and serve as retrograde messengers that suppress neurotransmitter release at central synapses. While the detailed mechanisms by which endocannabinoids gate synaptic function and behavioural processes are relatively well characterized, the mechanisms governing endocannabinoid transport at central synapses remain ill defined. Recently, several studies have begun to unravel the mechanisms governing intracellular and intercellular endocannabinoid transport. In this review, we will focus on new advances in the mechanisms of intracellular and synaptic endocannabinoid transport in the CNS. LINKED ARTICLES: This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.
Collapse
Affiliation(s)
- Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
- Neuroscience Program, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
9
|
Multi-Omics Approach to Elucidate Cerebrospinal Fluid Changes in Dogs with Intervertebral Disc Herniation. Int J Mol Sci 2021; 22:ijms222111678. [PMID: 34769107 PMCID: PMC8583948 DOI: 10.3390/ijms222111678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Herniation of the intervertebral disc (IVDH) is the most common cause of neurological and intervertebral disc degeneration-related diseases. Since the disc starts to degenerate before it can be observed by currently available diagnostic methods, there is an urgent need for novel diagnostic approaches. To identify molecular networks and pathways which may play important roles in intervertebral disc herniation, as well as to reveal the potential features which could be useful for monitoring disease progression and prognosis, multi-omics profiling, including high-resolution liquid chromatography-mass spectrometry (LC-MS)-based metabolomics and tandem mass tag (TMT)-based proteomics was performed. Cerebrospinal fluid of nine dogs with IVDH and six healthy controls were used for the analyses, and an additional five IVDH samples were used for proteomic data validation. Furthermore, multi-omics data were integrated to decipher a complex interaction between individual omics layers, leading to an improved prediction model. Together with metabolic pathways related to amino acids and lipid metabolism and coagulation cascades, our integromics prediction model identified the key features in IVDH, namely the proteins follistatin Like 1 (FSTL1), secretogranin V (SCG5), nucleobindin 1 (NUCB1), calcitonin re-ceptor-stimulating peptide 2 precursor (CRSP2) and the metabolites N-acetyl-D-glucosamine and adenine, involved in neuropathic pain, myelination, and neurotransmission and inflammatory response, respectively. Their clinical application is to be further investigated. The utilization of a novel integrative interdisciplinary approach may provide new opportunities to apply innovative diagnostic and monitoring methods as well as improve treatment strategies and personalized care for patients with degenerative spinal disorders.
Collapse
|
10
|
Li HJ, Goff A, Rudzinskas SA, Jung Y, Dubey N, Hoffman J, Hipolito D, Mazzu M, Rubinow DR, Schmidt PJ, Goldman D. Altered estradiol-dependent cellular Ca 2+ homeostasis and endoplasmic reticulum stress response in Premenstrual Dysphoric Disorder. Mol Psychiatry 2021; 26:6963-6974. [PMID: 34035477 PMCID: PMC8613306 DOI: 10.1038/s41380-021-01144-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 02/04/2023]
Abstract
Premenstrual Dysphoric Disorder (PMDD) is characterized by debilitating mood symptoms in the luteal phase of the menstrual cycle. Prior studies of affected women have implicated a differential response to ovarian steroids. However, the molecular basis of these patients' differential response to hormone remains poorly understood. We performed transcriptomic analyses of lymphoblastoid cell lines (LCLs) derived from women with PMDD and asymptomatic controls cultured under untreated (steroid-free), estradiol-treated (E2), and progesterone-treated (P4) conditions. Weighted gene correlation network analysis (WGCNA) of transcriptomes identified four gene modules with significant diagnosis x hormone interactions, including one enriched for neuronal functions. Next, in a gene-level analysis comparing transcriptional response to hormone across diagnoses, a generalized linear model identified 1522 genes differentially responsive to E2 (E2-DRGs). Among the top 10 E2-DRGs was a physically interacting network (NUCB1, DST, GCC2, GOLGB1) involved in endoplasmic reticulum (ER)-Golgi function. qRT-PCR validation reproduced a diagnosis x E2 interaction (F(1,24)=7.01, p = 0.014) for NUCB1, a regulator of cellular Ca2+ and ER stress. Finally, we used a thapsigargin (Tg) challenge assay to test whether E2 induces differences in Ca2+ homeostasis and ER stress response in PMDD. PMDD LCLs had a 1.36-fold decrease in Tg-induced XBP1 splicing response compared to controls, and a 1.62-fold decreased response (p = 0.005), with a diagnosis x treatment interaction (F(3,33)=3.51, p = 0.026) in the E2-exposed condition. Altered hormone-dependent in cellular Ca2+ dynamics and ER stress may contribute to the pathophysiology of PMDD.
Collapse
Affiliation(s)
- Howard J. Li
- grid.47100.320000000419368710Dept. of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT USA ,grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - Allison Goff
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Sarah A. Rudzinskas
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - Yonwoo Jung
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Neelima Dubey
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - Jessica Hoffman
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - Dion Hipolito
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Maria Mazzu
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - David R. Rubinow
- grid.410711.20000 0001 1034 1720Dept. of Psychiatry, University of North Carolina, Chapel Hill, NC USA
| | - Peter J. Schmidt
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - David Goldman
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| |
Collapse
|
11
|
An Exploratory Pilot Study with Plasma Protein Signatures Associated with Response of Patients with Depression to Antidepressant Treatment for 10 Weeks. Biomedicines 2020; 8:biomedicines8110455. [PMID: 33126421 PMCID: PMC7692261 DOI: 10.3390/biomedicines8110455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of global disability with a chronic and recurrent course. Recognition of biological markers that could predict and monitor response to drug treatment could personalize clinical decision-making, minimize unnecessary drug exposure, and achieve better outcomes. Four longitudinal plasma samples were collected from each of ten patients with MDD treated with antidepressants for 10 weeks. Plasma proteins were analyzed qualitatively and quantitatively with a nanoflow LC−MS/MS technique. Of 1153 proteins identified in the 40 longitudinal plasma samples, 37 proteins were significantly associated with response/time and clustered into six according to time and response by the linear mixed model. Among them, three early-drug response markers (PHOX2B, SH3BGRL3, and YWHAE) detectable within one week were verified by liquid chromatography-multiple reaction monitoring/mass spectrometry (LC-MRM/MS) in the well-controlled 24 patients. In addition, 11 proteins correlated significantly with two or more psychiatric measurement indices. This pilot study might be useful in finding protein marker candidates that can monitor response to antidepressant treatment during follow-up visits within 10 weeks after the baseline visit.
Collapse
|
12
|
Nesfatin-1 and nesfatin-1-like peptide suppress growth hormone synthesis via the AC/PKA/CREB pathway in mammalian somatotrophs. Sci Rep 2020; 10:16686. [PMID: 33028951 PMCID: PMC7541516 DOI: 10.1038/s41598-020-73840-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Nesfatin-1 (NESF) and NESF-like peptide (NLP), encoded in nucleobindin 2 and 1 (NUCB2 and NUCB1), respectively, are orphan ligands and metabolic factors. We hypothesized that NESF and NLP suppress growth hormone (GH) synthesis, and aimed to determine whether mammalian somatotrophs are a source and site of action of these peptides. Using immortalized rat somatotrophs (GH3 cells), NUCB expression was determined by qPCR, immunofluorescence and Western blot. NESF and NLP binding to GH3 cells was tested using fluorescence imaging. Both time- and concentration-dependent studies were performed to test whether NESF and NLP affect GH. Moreover, the ability of these peptides to modulate the effects of ghrelin, and cell-signaling pathways were studied. GH3 cells express NUCB mRNAs and protein. Labeled NESF and NLP bind to the surface of GH3 cells, and incubation with either NESF or NLP decreased GH mRNA and protein expression, downregulated pit-1 mRNA, and blocked the GH stimulatory effects of ghrelin. Pre-incubation with either of these peptides reduced CREB phosphorylation by an AC-activator, but not when PKA was directly activated by a cAMP analog. Our results indicate that rat somatotrophs are a source of NUCBs, and that NESF and NLP downregulate GH synthesis through the AC/PKA/CREB signaling pathway.
Collapse
|
13
|
Pacheco-Fernandez N, Pakdel M, Blank B, Sanchez-Gonzalez I, Weber K, Tran ML, Hecht TKH, Gautsch R, Beck G, Perez F, Hausser A, Linder S, von Blume J. Nucleobindin-1 regulates ECM degradation by promoting intra-Golgi trafficking of MMPs. J Cell Biol 2020; 219:e201907058. [PMID: 32479594 PMCID: PMC7401813 DOI: 10.1083/jcb.201907058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/29/2019] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) degrade several ECM components and are crucial modulators of cell invasion and tissue organization. Although much has been reported about their function in remodeling ECM in health and disease, their trafficking across the Golgi apparatus remains poorly understood. Here we report that the cis-Golgi protein nucleobindin-1 (NUCB1) is critical for MMP2 and MT1-MMP trafficking along the Golgi apparatus. This process is Ca2+-dependent and is required for invasive MDA-MB-231 cell migration as well as for gelatin degradation in primary human macrophages. Our findings emphasize the importance of NUCB1 as an essential component of MMP transport and its overall impact on ECM remodeling.
Collapse
Affiliation(s)
| | | | - Birgit Blank
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | | | - Kathrin Weber
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg, Hamburg, Germany
| | - Mai Ly Tran
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Tobias Karl-Heinz Hecht
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Renate Gautsch
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gisela Beck
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Franck Perez
- Institute Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg, Hamburg, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
14
|
Yuan D, Zhang X, Wang B, Tang T, Lei L, Deng X, Zhou C, Li Z. Effects of feeding status on nucb1 and nucb2A mRNA expression in the hypothalamus of Schizothorax davidi. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1139-1154. [PMID: 32130563 DOI: 10.1007/s10695-020-00780-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
NUCB1 and NUCB2, two novel nucleobindins, have attracted extensive attention for their role in the appetite regulation in mammals. However, little is known about the appetite regulation of NUCB1 and NUCB2 in fish species. Therefore, we investigated the role of these peptides in the regulation of feeding in Schizothorax davidi (S. davidi). In this study, full-length cDNA sequences of nucb1 and nucb2A of S. davidi were obtained for the first time. Additionally, the tissue distribution and the effects of different energy status on nucb1 and nucb2A mRNAs abundance were assessed, showing that nucb1 and nucb2A are widely distributed in 18 detected tissues, with the highest expression in the cerebellum. The abundances of nucb1 and nucb2A increased in the hypothalamus at 1 h and 3 h post-feeding. Furthermore, fasting and re-feeding experiments showed that the expressions of nucb1 and nucb2A in hypothalamus significantly decreased after fasting for 7 days, and returned to the control level after re-feeding for 3 or 5 days. In conclusion, the present study suggests that both NUCB1 and NUCB2A are involved in the short-term and long-term appetite regulation, as an anorexigenic factor, in S. davidi. These results can provide a basis for further investigation into the appetite regulatory role of NUCB family in teleost.
Collapse
Affiliation(s)
- Dengyue Yuan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, Shandong, China
| | - Bin Wang
- The Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tao Tang
- The Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Luo Lei
- The Department of Aquaculture, College of Animal Science, Southwest University, Chongqing, China
| | - Xingxing Deng
- The Department of Aquaculture, College of Animal Science, Southwest University, Chongqing, China
| | - Chaowei Zhou
- The Department of Aquaculture, College of Animal Science, Southwest University, Chongqing, China
| | - Zhiqiong Li
- The Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Case L, Broberger C. Neurotensin Broadly Recruits Inhibition via White Matter Neurons in the Mouse Cerebral Cortex: Synaptic Mechanisms for Decorrelation. Cereb Cortex 2019; 28:2711-2724. [PMID: 28981614 DOI: 10.1093/cercor/bhx149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Indexed: 12/30/2022] Open
Abstract
The neuropeptide, neurotensin (NT), inhibits UP state generation in the cerebral cortex and temporally restricts the response to thalamic input, likely by a generalized increase in inhibition. To investigate the cellular and circuit substrate(s) for how a neuropeptide can shift the balance between cortical excitation and inhibition, we performed whole-cell recordings on slice preparations from mice expressing enhanced green fluorescent protein under control of the promoter for the homeobox gene, lhx6 (lhx6-EGFP mice). These mice identify the 2 largest classes of cortical interneurons; FS and low-threshold-spiking inhibitory neurons. In the presence of NT, both types of lhx6-EGFP neurons were excited through a direct, Na+-dependent depolarization, and through an increase in synaptic excitation. Paired recordings identified cortical white matter (WM) neurons as a source of this excitatory input, which was strengthened in the presence of NT. NT-driven increased synaptic input caused a functional decorrelation of gap junction transmission between lhx6-EGFP neuron pairs. Finally, the synaptic transmission between pyramidal cells and lhx6-EGFP neurons was modulated by addition of NT in favor of stronger inhibition and weaker excitation. These findings demonstrate the existence and functional consequences of an intracortical WM neuron projection, and suggest mechanisms underlying NT-induced promotion of wakefulness.
Collapse
Affiliation(s)
- Lovisa Case
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
16
|
Leung AKW, Ramesh N, Vogel C, Unniappan S. Nucleobindins and encoded peptides: From cell signaling to physiology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:91-133. [PMID: 31036300 DOI: 10.1016/bs.apcsb.2019.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nucleobindins (NUCBs) are DNA and calcium binding, secreted proteins with various signaling functions. Two NUCBs, nucleobindin-1 (NUCB1) and nucleobindin-2 (NUCB2), were discovered during the 1990s. These two peptides are shown to have diverse functions, including the regulation of inflammation and bone formation, among others. In 2006, Oh-I and colleagues discovered that three peptides encoded within the NUCB2 could be processed by prohormone convertases. These peptides were named nesfatin-1, 2 and 3, mainly due to the satiety and fat influencing properties of nesfatin-1. However, it was found that nesfatin-2 and -3 have no such effects. Nesfatin-1, especially its mid-segment, is very highly conserved across vertebrates. Although the receptor(s) that mediate nesfatin-1 effects are currently unknown, it is now considered an endogenous peptide with multiple functions, affecting central and peripheral tissues to regulate metabolism, reproduction, endocrine and other functions. We recently identified a nesfatin-1-like peptide (NLP) encoded within the NUCB1. Like nesfatin-1, NLP suppressed feed intake in mice and fish, and stimulated insulin secretion from pancreatic beta cells. There is considerable evidence available to indicate that nucleobindins and its encoded peptides are multifunctional regulators of cell biology and whole animal physiology. This review aims to briefly discuss the structure, distribution, functions and mechanism of action nucleobindins and encoded peptides.
Collapse
Affiliation(s)
- Adelaine Kwun-Wai Leung
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Naresh Ramesh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Christine Vogel
- Department of Biology, New York University, New York, NY, United States
| | - Suraj Unniappan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada.
| |
Collapse
|
17
|
A neural network for intermale aggression to establish social hierarchy. Nat Neurosci 2018; 21:834-842. [DOI: 10.1038/s41593-018-0153-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/05/2018] [Indexed: 11/08/2022]
|
18
|
Case L, Lyons DJ, Broberger C. Desynchronization of the Rat Cortical Network and Excitation of White Matter Neurons by Neurotensin. Cereb Cortex 2017; 27:2671-2685. [PMID: 27095826 DOI: 10.1093/cercor/bhw100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cortical network activity correlates with vigilance state: Deep sleep is characterized by slow, synchronized oscillations, whereas desynchronized, stochastic discharge is typical of the waking state. Neuropeptides, such as orexin and substance P but also neurotensin (NT), promote arousal. Relatively little is known about if NT can directly affect the cortical network, and if so, through which mechanisms and cellular targets. Here, we addressed these issues using rat in vitro cortex preparations. Following NT application specifically to deeper layers, slow oscillation activity was attenuated with a significant reduction in UP state frequency. The cortical response to thalamic stimulation exhibited enhanced temporal precision in the presence of NT, consistent with the transition in vivo from sleep to wakefulness. These changes were associated with a relative shift toward inhibition in the excitation/inhibition balance. Whole-cell recordings from layer 6 revealed presynaptically driven NT-induced inhibition of pyramidal neurons and excitation of fast-spiking interneurons. Deeper in the cortex, neurons within the white matter (WM) were strongly depolarized by NT application. The colocalization of NT and tyrosine hydroxylase immunoreactivities in deep layer fibers throughout the cortical mantle indicates mediation via dopaminergic systems. These data suggest a cortical mechanism for NT-induced wakefulness and support a role for WM neurons in state control.
Collapse
Affiliation(s)
- Lovisa Case
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David J Lyons
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Current address: Rowett Institute of Nutrition and Health, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
| | | |
Collapse
|
19
|
Nerve regeneration by human corneal stromal keratocytes and stromal fibroblasts. Sci Rep 2017; 7:45396. [PMID: 28349952 PMCID: PMC5369053 DOI: 10.1038/srep45396] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/23/2017] [Indexed: 01/12/2023] Open
Abstract
Laser refractive surgeries reshape corneal stroma to correct refractive errors, but unavoidably affect corneal nerves. Slow nerve regeneration and atypical neurite morphology cause desensitization and neuro-epitheliopathy. Following injury, surviving corneal stromal keratocytes (CSKs) are activated to stromal fibroblasts (SFs). How these two different cell types influence nerve regeneration is elusive. Our study evaluated the neuro-regulatory effects of human SFs versus CSKs derived from the same corneal stroma using an in vitro chick dorsal root ganglion model. The neurite growth was assessed by a validated concentric circle intersection count method. Serum-free conditioned media (CM) from SFs promoted neurite growth dose-dependently, compared to that from CSKs. We detected neurotrophic and pro-inflammatory factors (interleukin-8, interleukin-15, monocyte chemoattractant protein-1, eotaxin, RANTES) in SFCM by Bio-Plex Human Cytokine assay. More than 130 proteins in SFCM and 49 in CSKCM were identified by nanoLC-MS/MS. Proteins uniquely present in SFCM had reported neuro-regulatory activities and were predicted to regulate neurogenesis, focal adhesion and wound healing. Conclusively, this was the first study showing a physiological relationship between nerve growth and the metabolically active SFs versus quiescent CSKs from the same cornea source. The dose-dependent effect on neurite growth indicated that nerve regeneration could be influenced by SF density.
Collapse
|