1
|
Paul SK, Saddam M, Tabassum N, Hasan M. Molecular dynamics simulation of wild and mutant proteasome subunit beta type 8 (PSMB8) protein: Implications for restoration of inflammation in experimental autoimmune encephalomyelitis pathogenesis. Heliyon 2025; 11:e41166. [PMID: 39802026 PMCID: PMC11719297 DOI: 10.1016/j.heliyon.2024.e41166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune and chronic disease in the brain and spinal cord. MS has inflammatory progression characterized by its hallmark inflammatory plaques. The histological and clinical characteristics of MS are shared by Experimental Autoimmune Encephalomyelitis (EAE). Genetic and environmental factors contribute to the development of MS. In EAE-MS disease, the level of proteasome subunit beta type-8 (PSMB8), encoded by the PSMB8 gene, is increased and regulates the inflammatory response in this disease. In humans, the Nakajo-Nishimura Syndrome is caused by a mutation in the gene PSMB8, a part of the immunoproteasome subunit. Therefore, special attention to wild and mutant (G210V) PSMB8 protein is imperative. In this study, we performed a 100 ns molecular dynamics (MD) simulation for wild-type PSMB8 and the mutant G210V. Then, we analyzed the fundamental and essential simulation results using another Google Colab system. The energy analysis ensures the structural deviation due to point mutation. The trajectory of the fundamental simulation (RMSD, RMSF, and Rg) describes that the G210V mutated protein is more flexible and less stable than the wild type. We observed the conformational changes due to mutation by analyzing the RMSD average linkage hierarchical clustering, total SASA, and SASA autocorrelation. The differences in the protein's overall motion and the atoms' precise location are identified by the principal component analysis, showing that the overall motion and location of the atoms are different. Our study provides valuable insights into the dynamics and structure of this protein, which can aid in further understanding its biological functions and potential implications for disease.
Collapse
Affiliation(s)
- Shamrat Kumar Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Saddam
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Nisat Tabassum
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Mahbub Hasan
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
2
|
Hasan M, Choi J, Akter H, Kang H, Ahn M, Lee S. Antibody-Conjugated Magnetic Nanoparticle Therapy for Inhibiting T-Cell Mediated Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307148. [PMID: 38161230 PMCID: PMC10953552 DOI: 10.1002/advs.202307148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Tolerance induction is critical for mitigating T cell-mediated inflammation. Treatments based on anti-CD3 monoclonal antibody (mAb) play a pivotal role in inducing such tolerance. Anti-CD3 mAb conjugated with dextran-coated magnetic nanoparticles (MNPs) may induce inflammatory tolerance is posited. MNPs conjugated with anti-CD3 mAb (Ab-MNPs) are characterized using transmission and scanning electron microscopy, and their distribution is assessed using a nanoparticle tracking analyzer. Compared to MNPs, 90% of Ab-MNPs increased in size from 54.7 ± 0.5 to 71.7 ± 2.7 nm. The in vitro and in vivo studies confirmed the therapeutic material as nontoxic and biocompatible. Mice are administered various dosages of Ab-MNPs before receiving concanavalin-A (ConA), an inflammation inducer. Preadministration of Ab-MNPs, as opposed to MNPs or anti-CD3 mAb alone, significantly reduced the serum levels of interferon-γ and interleukin-6 in ConA-treated mice. Additionally, the transdermal stamp patch as an effective delivery system for Ab-MNPs is validated. This study demonstrates the utility of the Ab-MNP complex in pathologies associated with T cell-mediated hyperinflammation, such as organ transplantation and COVID-19.
Collapse
Affiliation(s)
- Mahbub Hasan
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
- Department of Biochemistry and Molecular BiologyLife Science FacultyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganj8100Bangladesh
| | - Jong‐Gu Choi
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
| | - Hafeza Akter
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
| | - Hasung Kang
- Department of MedicineCollege of MedicineSeoul National UniversitySeoul08826South Korea
| | - Meejung Ahn
- Department of Animal ScienceCollege of Life ScienceSangji UniversityWonju26339South Korea
| | - Sang‐Suk Lee
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
| |
Collapse
|
3
|
Wang J, Wang L, Wu Q, Cai Y, Cui C, Yang M, Sun B, Mao L, Wang Y. Interleukin-4 Modulates Neuroinflammation by Inducing Phenotypic Transformation of Microglia Following Subarachnoid Hemorrhage. Inflammation 2024; 47:390-403. [PMID: 37898992 PMCID: PMC10799105 DOI: 10.1007/s10753-023-01917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
Neuroinflammation, a key pathological feature following subarachnoid hemorrhage (SAH), can be therapeutically targeted by inhibiting microglia M1 polarization and promoting phenotypic transformation to M2 microglia. Interleukin-4 (IL-4) is a pleiotropic cytokine known to its regulation of physiological functions of the central nervous system (CNS) and mediate neuroinflammatory processes. However, its specific role in neuroinflammation and microglia responses following SAH remains unexplored. In this investigation, we established both in vivo and in vitro SAH models and employed a comprehensive array of assessments, including ELISA, neurofunctional profiling, immunofluorescence staining, qRT-PCR, determination of phagocytic capacity, and RNA-Seq analyses. The findings demonstrate an elevated expression of IL-4 within cerebrospinal fluid (CSF) subsequent to SAH. Furthermore, exogenous administration of IL-4 ameliorates post-SAH neurofunctional deficits, attenuates cellular apoptosis, fosters M2 microglia phenotype conversion, and mitigates neuroinflammatory responses. The RNA-Seq analysis signifies that IL-4 governs the modulation of neuroinflammation in microglia within an in vitro SAH model through intricate cascades of signaling pathways, encompassing interactions between cytokines and cytokine receptors. These discoveries not only augment comprehension of the neuropathogenesis associated with post-SAH neuroinflammation but also present novel therapeutic targets for the management thereof.
Collapse
Affiliation(s)
- Jing Wang
- Medical College of Qingdao University, Qingdao, Shandong, 266021, China
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Lili Wang
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Qingjian Wu
- Department of Emergency, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province, 272011, China
| | - Yichen Cai
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Chengfu Cui
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong, China
| | - Ming Yang
- Department of Ultrasonic Diagnosis and Treatment, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Baoliang Sun
- Medical College of Qingdao University, Qingdao, Shandong, 266021, China.
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China.
| | - Leilei Mao
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China.
| | - Yuan Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
4
|
Gärtner Y, Bitar L, Zipp F, Vogelaar CF. Interleukin-4 as a therapeutic target. Pharmacol Ther 2023; 242:108348. [PMID: 36657567 DOI: 10.1016/j.pharmthera.2023.108348] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Interleukin-4 (IL-4) is a pleiotropic cytokine mainly known for its role in type 2 immunity. Therapies antagonizing or blocking IL-4 activity have been developed to counteract diseases such as atopic dermatitis and asthma. In contrast, other disorders experimentally benefit from IL-4-related effects and IL-4 recently demonstrated beneficial activity in experimental stroke, spinal cord injury and the animal model of multiple sclerosis. To exploit IL-4-related activity for therapeutic concepts, current experimental efforts include modifying the pathway without inducing type 2 immune response and targeting of the cytokine to specific tissues. Here, we review different activities of IL-4 as well as therapeutic strategies.
Collapse
Affiliation(s)
- Yvonne Gärtner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lynn Bitar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christina Francisca Vogelaar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Yousefi-Manesh H, Shirooie S, Noori T, Tavangar SM, Sheibani M, Chaboki A, Mohammadi S, Dehpour AR. Assessment of Sumatriptan on Sepsis-Induced Kidney injury in the Cecal Ligation and Puncture Mice Model. Drug Res (Stuttg) 2021; 72:156-162. [PMID: 34852366 DOI: 10.1055/a-1685-0482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sepsis is a severe systemic inflammatory response with high mortality rate resulting from different microorganisms. Cytokines activation is essential for the immune response, but in painful conditions like sepsis, cytokines act as a double-edged sword and dysregulate immune response which is life-threatening owing to multiple organ dysfunction. The abnormality in 5-HT function is involved in pathological conditions like irritable bowel syndrome, inflammation, myocardial ischemia, itch and renal injury. Sumatriptan, a 5-HT1B/1D agonist, has anti-inflammatory and anti-oxidative stress effects on animal models. This study was aimed to assess the effects of sumatriptan on kidney injury, the levels of pro-inflammatory cytokines and the percentage of survival in (CLP)-induced sepsis were examined.Cecal ligation and puncture (CLP) model was done on adult C57BL/6 male mice to induce Polymicrobial sepsis. Sumatriptan was injected intraperitoneally 1 h after the sepsis induction by CLP at doses of 0.1, 0.3, and 1 mg/kg in 3 treatment groups. To study the effect of sumatriptan on short-term survival, septic animals were detected 72 h after CLP. Serum levels of TNF-α, IL-1β, IL-6 and IL-10 were evaluated. To study sepsis-induced acute renal failure, kidney functional biomarkers and histopathological alterations were evaluated.Sumatriptan (0.3 mg/kg) administration significantly enhanced survival rate (P<0.01) compared to the CLP group. The beneficial effects of sumatriptan were related to a significant decrease in the pro-inflammatory cytokines and elevated level of IL-10. Sumatriptan presented protective effects on kidney biomarkers and histopathology assay.Anti-inflammatory effects of sumatriptan lead to decrease mortality rate and inflammatory cytokines in CLP induction sepsis in C57BL/6 mice.
Collapse
Affiliation(s)
- Hasan Yousefi-Manesh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Chaboki
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mohammadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Spiljar M, Steinbach K, Rigo D, Suárez-Zamorano N, Wagner I, Hadadi N, Vincenti I, Page N, Klimek B, Rochat MA, Kreutzfeldt M, Chevalier C, Stojanović O, Bejuy O, Colin D, Mack M, Cansever D, Greter M, Merkler D, Trajkovski M. Cold exposure protects from neuroinflammation through immunologic reprogramming. Cell Metab 2021; 33:2231-2246.e8. [PMID: 34687652 PMCID: PMC8570411 DOI: 10.1016/j.cmet.2021.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 07/24/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
Autoimmunity is energetically costly, but the impact of a metabolically active state on immunity and immune-mediated diseases is unclear. Ly6Chi monocytes are key effectors in CNS autoimmunity with an elusive role in priming naive autoreactive T cells. Here, we provide unbiased analysis of the immune changes in various compartments during cold exposure and show that this energetically costly stimulus markedly ameliorates active experimental autoimmune encephalomyelitis (EAE). Cold exposure decreases MHCII on monocytes at steady state and in various inflammatory mouse models and suppresses T cell priming and pathogenicity through the modulation of monocytes. Genetic or antibody-mediated monocyte depletion or adoptive transfer of Th1- or Th17-polarized cells for EAE abolishes the cold-induced effects on T cells or EAE, respectively. These findings provide a mechanistic link between environmental temperature and neuroinflammation and suggest competition between cold-induced metabolic adaptations and autoimmunity as energetic trade-off beneficial for the immune-mediated diseases.
Collapse
Affiliation(s)
- Martina Spiljar
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karin Steinbach
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Dorothée Rigo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Suárez-Zamorano
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Noushin Hadadi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Mary-Aude Rochat
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Claire Chevalier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ozren Stojanović
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olivia Bejuy
- CIBM Centre for BioMedical Imaging, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Didier Colin
- Small Animal Preclinical Imaging Platform, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Matthias Mack
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Dilay Cansever
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospitals, Geneva, Switzerland.
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
5-Hydroxytryptamine Modulates Maturation and Mitochondria Function of Human Oligodendrocyte Progenitor M03-13 Cells. Int J Mol Sci 2021; 22:ijms22052621. [PMID: 33807720 PMCID: PMC7962057 DOI: 10.3390/ijms22052621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/07/2023] Open
Abstract
Inside the adult CNS, oligodendrocyte progenitor cells (OPCS) are able to proliferate, migrate and differentiate into mature oligodendrocytes (OLs) which are responsible for the production of myelin sheet and energy supply for neurons. Moreover, in demyelinating diseases, OPCs are recruited to the lesion areas where they undergo differentiation and myelin synthesis. Serotonin (5-hydroxytryptamine, 5-HT) is involved in OLs’ development and myelination, but so far the molecular mechanisms involved or the effects of 5-HT on mitochondria function have not yet been well documented. Our data show that 5-HT inhibits migration and proliferation committing cells toward differentiation in an immortalized human oligodendrocyte precursor cell line, M03-13. Migration blockage is mediated by reactive oxygen species (ROS) generation since antioxidants, such as Vit C and Cu-Zn superoxide dismutase, prevent the inhibitory effects of 5-HT on cell migration. 5-HT inhibits OPC migration and proliferation and increases OL phenotypic markers myelin basic protein (MBP) and Olig-2 via protein kinase C (PKC) activation since the inhibitor of PKC, bis-indolyl-maleimide (BIM), counteracts 5-HT effects. NOX inhibitors as well, reverse the effects of 5-HT, indicating that 5-HT influences the maturation process of OPCs by NOX-dependent ROS production. Finally, 5-HT increases mitochondria function and antioxidant activity. The identification of the molecular mechanisms underlying the effects of 5-HT on maturation and energy metabolism of OPCs could pave the way for the development of new treatments for autoimmune demyelinating diseases such as Multiple Sclerosis where oligodendrocytes are the primary target of immune attack.
Collapse
|
8
|
Rahaman KA, Hasan M, Seo JE, Muresan AR, Song HJ, Min H, Son J, Lee J, Lee J, Kim B, Kwon OS. Severity of the autoimmune encephalomyelitis symptoms in mouse model by inhibition of LAT-1 transporters. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00468-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Lee G, Hasan M, Kwon OS, Jung BH. Identification of Altered Metabolic Pathways during Disease Progression in EAE Mice via Metabolomics and Lipidomics. Neuroscience 2019; 416:74-87. [DOI: 10.1016/j.neuroscience.2019.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
|
10
|
Kalmukova OO, Yurchenko AV, Kyryk VM, Nepomnyaschy VM, Savchuk OM, Dzerzhynsky ME. Effects of Melatonin Administration in Different Time Modes on Morphofunctional Indices of the Hypothalamic Serotonergic Neurons in Obese Rats. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Potter LA, Scholze DA, Biag HMB, Schneider A, Chen Y, Nguyen DV, Rajaratnam A, Rivera SM, Dwyer PS, Tassone F, Al Olaby RR, Choudhary NS, Salcedo-Arellano MJ, Hagerman RJ. A Randomized Controlled Trial of Sertraline in Young Children With Autism Spectrum Disorder. Front Psychiatry 2019; 10:810. [PMID: 31780970 PMCID: PMC6851992 DOI: 10.3389/fpsyt.2019.00810] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: Selective serotonin reuptake inhibitors like sertraline have been shown in observational studies and anecdotal reports to improve language development in young children with fragile X syndrome (FXS). A previous controlled trial of sertraline in young children with FXS found significant improvement in expressive language development as measured by the Mullen Scales of Early Learning (MSEL) among those with comorbid autism spectrum disorder (ASD) in post hoc analysis, prompting the authors to probe whether sertraline is also indicated in nonsyndromic ASD. Methods: The authors evaluated the efficacy of 6 months of treatment with low-dose sertraline in a randomized, double-blind, placebo-controlled trial in 58 children with ASD aged 24 to 72 months. Results: 179 subjects were screened for eligibility, and 58 were randomized to sertraline (32) or placebo (26). Eight subjects from the sertraline arm and five from the placebo arm discontinued. Intent-to-treat analysis showed no significant difference from placebo on the primary outcomes (MSEL expressive language raw score and age equivalent combined score) or secondary outcomes. Sertraline was well tolerated, with no difference in side effects between sertraline and placebo groups. No serious adverse events possibly related to study treatment occurred. Conclusion: This randomized controlled trial of sertraline treatment showed no benefit with respect to primary or secondary outcome measures. For the 6-month period, treatment in young children with ASD appears safe, although the long-term side effects of low-dose sertraline in early childhood are unknown. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02385799.
Collapse
Affiliation(s)
- Laura A Potter
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA, United States
| | - Danielle A Scholze
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Hazel Maridith B Biag
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA, United States
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA, United States.,Department of Pediatrics, UC Davis Health, Sacramento, CA, United States.,College of Psychology, California Northstate University, Elk Grove, CA, United States
| | - Yanjun Chen
- Institute for Clinical and Translational Science, University of California, Irvine, Irvine, CA, United States
| | - Danh V Nguyen
- Department of Medicine, University of California, Irvine School of Medicine, Orange, CA, United States
| | - Akash Rajaratnam
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Susan M Rivera
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, UC Davis Health, Sacramento, CA, United States
| | - Patrick S Dwyer
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA, United States.,Department of Biochemistry and Molecular Medicine, UC Davis Health, Sacramento, CA, United States
| | - Reem R Al Olaby
- College of Health Sciences, California Northstate University, Rancho Cordova, CA, United States
| | - Nimrah S Choudhary
- Department of Biochemistry and Molecular Medicine, UC Davis Health, Sacramento, CA, United States
| | - Maria J Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA, United States
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA, United States.,Department of Pediatrics, UC Davis Health, Sacramento, CA, United States
| |
Collapse
|
12
|
Akter H, Yoon JH, Yoo YS, Kang MJ. Validation of Neurotensin Receptor 1 as a Therapeutic Target for Gastric Cancer. Mol Cells 2018; 41:591-602. [PMID: 29794962 PMCID: PMC6030244 DOI: 10.14348/molcells.2018.0025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer is the fifth most common type of malignancy worldwide, and the survival rate of patients with advanced-stage gastric cancer is low, even after receiving chemotherapy. Here, we validated neurotensin receptor 1 (NTSR1) as a potential therapeutic target in gastric cancer. We compared NTSR1 expression levels in sixty different gastric cancer-tissue samples and cells, as well as in other cancer cells (lung, breast, pancreatic, and colon), by assessing NTSR1 expression via semi-quantitative real-time reverse transcription polymerase chain reaction, immunocytochemistry and western blot. Following neurotensin (NT) treatment, we analyzed the expression and activity of matrix metalloproteinase-9 (MMP-9) and further determined the effects on cell migration and invasion via wound-healing and transwell assays. Our results revealed that NTSR1 mRNA levels were higher in gastric cancer tissues than non-cancerous tissues. Both of NTSR1 mRNA levels and expression were higher in gastric cancer cell lines relative to levels observed in other cancer-cell lines. Moreover, NT treatment induced MMP-9 expression and activity in all cancer cell lines, which was significantly decreased following treatment with the NTSR1 antagonist SR48692 or small-interfering RNA targeting NTSR1. Furthermore, NT-mediated metastases was confirmed by observing epithelial-mesenchymal transition markers SNAIL and E-cadherin in gastric cancer cells. NT-mediated invasion and migration of gastric cancer cells were reduced by NTSR1 depletion through the Erk signaling. These findings strongly suggested that NTR1 constitutes a potential therapeutic target for the inhibition of gastric cancer invasion and metastasis.
Collapse
Affiliation(s)
- Hafeza Akter
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792,
Korea
- Department of Biological Chemistry, University of Science and Technology, Daejeon 34113,
Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591,
Korea
| | - Young Sook Yoo
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792,
Korea
| | - Min-Jung Kang
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792,
Korea
- Department of Biological Chemistry, University of Science and Technology, Daejeon 34113,
Korea
| |
Collapse
|
13
|
Vogelaar CF, Mandal S, Lerch S, Birkner K, Birkenstock J, Bühler U, Schnatz A, Raine CS, Bittner S, Vogt J, Kipnis J, Nitsch R, Zipp F. Fast direct neuronal signaling via the IL-4 receptor as therapeutic target in neuroinflammation. Sci Transl Med 2018; 10:eaao2304. [PMID: 29491183 PMCID: PMC12102061 DOI: 10.1126/scitranslmed.aao2304] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/11/2017] [Accepted: 01/26/2018] [Indexed: 11/14/2024]
Abstract
Ongoing axonal degeneration is thought to underlie disability in chronic neuroinflammation, such as multiple sclerosis (MS), especially during its progressive phase. Upon inflammatory attack, axons undergo pathological swelling, which can be reversible. Because we had evidence for beneficial effects of T helper 2 lymphocytes in experimental neurotrauma and discovered interleukin-4 receptor (IL-4R) expressed on axons in MS lesions, we aimed at unraveling the effects of IL-4 on neuroinflammatory axon injury. We demonstrate that intrathecal IL-4 treatment during the chronic phase of several experimental autoimmune encephalomyelitis models reversed disease progression without affecting inflammation. Amelioration of disability was abrogated upon neuronal deletion of IL-4R. We discovered direct neuronal signaling via the IRS1-PI3K-PKC pathway underlying cytoskeletal remodeling and axonal repair. Nasal IL-4 application, suitable for clinical translation, was equally effective in improving clinical outcome. Targeting neuronal IL-4 signaling may offer new therapeutic strategies to halt disability progression in MS and possibly also neurodegenerative conditions.
Collapse
Affiliation(s)
- Christina F Vogelaar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Shibajee Mandal
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Steffen Lerch
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Katharina Birkner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Jerome Birkenstock
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Ulrike Bühler
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Andrea Schnatz
- Institute for Microanatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Cedric S Raine
- Neuropathology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Johannes Vogt
- Institute for Microanatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Jonathan Kipnis
- Gutenberg Research Fellowship Group of Neuroimmunology, Focus Program Translational Neuroscience (FTN) and Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Robert Nitsch
- Institute for Translational Neuroscience, University Medical Center, Westfälische Wilhelms-University Münster, Albert-Schweitzer-Campus, 48149 Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
14
|
Hasan M, Seo JE, Rahaman KA, Min H, Kim KH, Park JH, Sung C, Son J, Kang MJ, Jung BH, Park WS, Kwon OS. Novel genes in brain tissues of EAE-induced normal and obese mice: Upregulation of metal ion-binding protein genes in obese-EAE mice. Neuroscience 2017; 343:322-336. [PMID: 27956064 DOI: 10.1016/j.neuroscience.2016.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory autoimmune disease of the central nervous system resulting from degeneration of the myelin sheath. This study is aimed to identify differentially expressed genes (DEGs) in the brain of EAE-induced normal diet (ND) mice and high-fat diet (HFD)-induced obese mice, and to identify novel genes responsible for elucidating the mechanism of the disease. Purified mRNA samples from the brain tissue were analyzed for gene microarray and validated by real-time RT-PCR. DEGs were identified if significant changes greater than 1.5-fold or less than 0.66-fold were observed (p<0.05). Pathway construction and functional categorization were performed using the Kyoto encyclopedia of genes and genomes pathways and gene ontology (GO) analysis. HFD-EAE mice showed more severe disease symptoms than ND-EAE mice. From GO study, fold changes of HFD-EAE to ND-EAE genes indicated that the genes were significantly associated to the pathways related with the immune response, antigen presentation, and complement activation. The genes related with metal ion-binding proteins were upregulated in HFD-EAE and ND-EAE mice. Upregulation of Cul9, Mast2, and C4b expression is significantly higher in HFD-EAE mice than ND-EAE mice. Cul9, Mast2, C4b, Psmb8, Ly86, and Ms4a6d were significantly upregulated in both ND- and HFD-EAE mice. Fcgr4, S3-12, Gca, and Zdhhc4 were upregulated only in ND-EAE, and Xlr4b was upregulated only in HFD-EAE mice. And significant upregulated genes of metal ion-binding proteins (Cul9 and Mast2) were observed in HFD-EAE mice.
Collapse
Affiliation(s)
- Mahbub Hasan
- Toxicology Lab., Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ji-Eun Seo
- Toxicology Lab., Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Khandoker Asiqur Rahaman
- Toxicology Lab., Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Hun Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ju-Hyung Park
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Changmin Sung
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Min-Jung Kang
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Byung Hwa Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Won Sang Park
- Department of Pathology, Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Oh-Seung Kwon
- Toxicology Lab., Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
15
|
Han JS, Rahaman KA, Seo JE, Hasan M, Lee KT, Min H, Lee KM, Park JH, Kim HJ, Kim KH, Son J, Lee J, Kwon OS. Human chorionic gonadotropin (hCG) sub-chronic administration mediated MMP-9 activities and cytokine association deteriorate experimental autoimmune encephalomyelitis (EAE) condition in mice model. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|