1
|
Guan MQ, Yu L, Gu H, Fu Q, Liu MM, Li K, Yang XR, Framroze B, Guo JH, Wei JJ, Li YL. Protein hydrolysate from Atlantic salmon (Salmo salar) improves aging-associated neuroinflammation and cognitive decline in rats by reshaping the gut microbiota and Th17/Treg balance. Int J Biol Macromol 2025; 306:141270. [PMID: 39984106 DOI: 10.1016/j.ijbiomac.2025.141270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
As the global population ages, cognitive decline in older adults has gained significant attention in public health, underscoring the urgent need for effective intervention strategies. This study investigates the impact of salmon protein hydrolysate (SPH) on gut microbiota and cognitive decline in aged rats. Over 8 weeks, aged Sprague-Dawley rats were treated with SPH, resulting in significant enhancements in cognitive function as evidenced by operant-based attentional set-shifting and Morris water maze tasks. SPH modulated microglial activation in the hippocampus, reducing M1 polarization and promoting M2 polarization. RT-PCR analysis indicated a decrease in pro-inflammatory cytokines and an increase in anti-inflammatory cytokines, suggesting a reduction in neuroinflammation. Additionally, 16S rRNA gene sequencing revealed that SPH transformed gut microbiota, increasing Bacteroidetes and decreasing Proteobacteria. The bacterial genera Prevotella, Bacteroidetes and Ruminococcus showed notable increases. Furthermore, SPH intervention can also increase the concentrations of certain short-chain fatty acids (SCFAs) in aged rats. Additionally, SPH also restored the Th17/Treg balance and decreased peripheral inflammation. This study offers compelling evidence for SPH as a functional food that may mitigate cognitive decline due to aging.
Collapse
Affiliation(s)
- Mei-Qi Guan
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China
| | - Lian Yu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hong Gu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qiang Fu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Miao-Miao Liu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ke Li
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiao-Rong Yang
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Bomi Framroze
- R&D Department, Hofseth Biocare ASA, Aalesund, Norway
| | - Jun-Hong Guo
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jing-Jing Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China.
| | - Yan-Li Li
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
2
|
Horovitz DJ, Askins LA, Regnier GM, McQuail JA. Age-related synaptic signatures of brain and cognitive reserve in the rat hippocampus and parahippocampal regions. Neurobiol Aging 2025; 148:80-97. [PMID: 39954409 DOI: 10.1016/j.neurobiolaging.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Age-related cognitive decline varies widely among individuals, with some showing resilience despite older age. This study examines synaptic markers of glutamatergic and GABAergic neurotransmission in the hippocampus and cortex of older rats with differing cognitive abilities, aiming to uncover mechanisms that contribute to cognitive resilience. We observed significant age-related reductions in vesicular glutamate transporter VGluT1, particularly in the stratum oriens (SO), radiatum (SR), and lacunosum-moleculare (SLM) of the dorsal CA3 and SLM of the dorsal CA1. Furthermore, loss of VGluT1 in the dorsal CA3-SLM correlated with severity of memory impairment. Higher levels of the vesicular GABA transporter (VGAT) were associated with better spatial learning in older rats, across several synaptic zones of the dorsal hippocampus, including the outer molecular layer of the dentate gyrus (DG), and the SO, SR, SLM, and pyramidal cell layers of both CA3 and CA1. This suggests that enhanced inhibitory neurotransmission specific to the dorsal aspect of the hippocampus may protect against age-related cognitive decline. While the dorsal hippocampus showed consistent age- and memory-related changes, markers in the ventral hippocampus remained largely intact. In the perirhinal cortex, VGluT1 declined with no changes in VGAT, while both markers remained unchanged in other cortical regions, including the lateral entorhinal, retrosplenial, and posterior parietal cortices. These findings highlight region-specific patterns of synaptic aging as potential markers of brain and cognitive reserve.
Collapse
Affiliation(s)
- David J Horovitz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Laura A Askins
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Grace M Regnier
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Joseph A McQuail
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
3
|
Hernandez CM, McCuiston MA, Davis K, Halls Y, Carcamo Dal Zotto JP, Jackson NL, Dobrunz LE, King PH, McMahon LL. In a circuit necessary for cognition and emotional affect, Alzheimer's-like pathology associates with neuroinflammation, cognitive and motivational deficits in the young adult TgF344-AD rat. Brain Behav Immun Health 2024; 39:100798. [PMID: 39022628 PMCID: PMC11253229 DOI: 10.1016/j.bbih.2024.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
In addition to extracellular amyloid plaques, intracellular neurofibrillary tau tangles, and inflammation, cognitive and emotional affect perturbations are characteristic of Alzheimer's disease (AD). The cognitive and emotional domains impaired by AD include several forms of decision making (such as intertemporal choice), blunted motivation (increased apathy), and impaired executive function (such as working memory and cognitive flexibility). However, the interaction between these domains of the mind and their supporting neurobiological substrates at prodromal stages of AD, or whether these interactions can be predictive of AD severity (individual variability), remain unclear. In this study, we employed a battery of cognitive and emotional tests in the young adult (5-7 mo) transgenic Fisher-344 AD (TgF344-AD; TgAD) rat model of AD. We also assessed whether markers of inflammation or AD-like pathology in the prelimbic cortex (PrL) of the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), or nucleus accumbens (NAc), all structures that directly support the aforementioned behaviors, were predictive of behavioral deficits. We found TgAD rats displayed maladaptive decision making, greater apathy, and impaired working memory that was indeed predicted by AD-like pathology in the relevant brain structures, even at an early age. Moreover, we report that the BLA is an early epicenter of inflammation, and notably, AD-like pathology in the PrL, BLA, and NAc was predictive of BLA inflammation. These results suggest that operant-based battery testing may be sensitive enough to determine pathology trajectories, including neuroinflammation, from early stages of AD.
Collapse
Affiliation(s)
- Caesar M. Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
| | - Macy A. McCuiston
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristian Davis
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yolanda Halls
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Juan Pablo Carcamo Dal Zotto
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nateka L. Jackson
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
- Department of Neuroscience, Medical University of South Carolina, USA
| | - Lynn E. Dobrunz
- Department of Neurobiology, The University of Alabama at Birmingham, USA
| | - Peter H. King
- Department of Neurology, The University of Alabama at Birmingham, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Lori L. McMahon
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
- Department of Neuroscience, Medical University of South Carolina, USA
| |
Collapse
|
4
|
Küry S, Stanton JE, van Woerden G, Hsieh TC, Rosenfelt C, Scott-Boyer MP, Most V, Wang T, Papendorf JJ, de Konink C, Deb W, Vignard V, Studencka-Turski M, Besnard T, Hajdukowicz AM, Thiel F, Möller S, Florenceau L, Cuinat S, Marsac S, Wentzensen I, Tuttle A, Forster C, Striesow J, Golnik R, Ortiz D, Jenkins L, Rosenfeld JA, Ziegler A, Houdayer C, Bonneau D, Torti E, Begtrup A, Monaghan KG, Mullegama SV, Volker-Touw CMLN, van Gassen KLI, Oegema R, de Pagter M, Steindl K, Rauch A, Ivanovski I, McDonald K, Boothe E, Dauber A, Baker J, Fabie NAV, Bernier RA, Turner TN, Srivastava S, Dies KA, Swanson L, Costin C, Jobling RK, Pappas J, Rabin R, Niyazov D, Tsai ACH, Kovak K, Beck DB, Malicdan M, Adams DR, Wolfe L, Ganetzky RD, Muraresku C, Babikyan D, Sedláček Z, Hančárová M, Timberlake AT, Al Saif H, Nestler B, King K, Hajianpour MJ, Costain G, Prendergast D, Li C, Geneviève D, Vitobello A, Sorlin A, Philippe C, Harel T, Toker O, Sabir A, Lim D, Hamilton M, Bryson L, Cleary E, Weber S, Hoffman TL, Cueto-González AM, Tizzano EF, Gómez-Andrés D, Codina-Solà M, Ververi A, Pavlidou E, Lambropoulos A, Garganis K, Rio M, Levy J, Jurgensmeyer S, et alKüry S, Stanton JE, van Woerden G, Hsieh TC, Rosenfelt C, Scott-Boyer MP, Most V, Wang T, Papendorf JJ, de Konink C, Deb W, Vignard V, Studencka-Turski M, Besnard T, Hajdukowicz AM, Thiel F, Möller S, Florenceau L, Cuinat S, Marsac S, Wentzensen I, Tuttle A, Forster C, Striesow J, Golnik R, Ortiz D, Jenkins L, Rosenfeld JA, Ziegler A, Houdayer C, Bonneau D, Torti E, Begtrup A, Monaghan KG, Mullegama SV, Volker-Touw CMLN, van Gassen KLI, Oegema R, de Pagter M, Steindl K, Rauch A, Ivanovski I, McDonald K, Boothe E, Dauber A, Baker J, Fabie NAV, Bernier RA, Turner TN, Srivastava S, Dies KA, Swanson L, Costin C, Jobling RK, Pappas J, Rabin R, Niyazov D, Tsai ACH, Kovak K, Beck DB, Malicdan M, Adams DR, Wolfe L, Ganetzky RD, Muraresku C, Babikyan D, Sedláček Z, Hančárová M, Timberlake AT, Al Saif H, Nestler B, King K, Hajianpour MJ, Costain G, Prendergast D, Li C, Geneviève D, Vitobello A, Sorlin A, Philippe C, Harel T, Toker O, Sabir A, Lim D, Hamilton M, Bryson L, Cleary E, Weber S, Hoffman TL, Cueto-González AM, Tizzano EF, Gómez-Andrés D, Codina-Solà M, Ververi A, Pavlidou E, Lambropoulos A, Garganis K, Rio M, Levy J, Jurgensmeyer S, McRae AM, Lessard MK, D'Agostino MD, De Bie I, Wegler M, Jamra RA, Kamphausen SB, Bothe V, Busch LM, Völker U, Hammer E, Wende K, Cogné B, Isidor B, Meiler J, Bosc-Rosati A, Marcoux J, Bousquet MP, Poschmann J, Laumonnier F, Hildebrand PW, Eichler EE, McWalter K, Krawitz PM, Droit A, Elgersma Y, Grabrucker AM, Bolduc FV, Bézieau S, Ebstein F, Krüger E. Unveiling the crucial neuronal role of the proteasomal ATPase subunit gene PSMC5 in neurodevelopmental proteasomopathies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.13.24301174. [PMID: 38293138 PMCID: PMC10827246 DOI: 10.1101/2024.01.13.24301174] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Neurodevelopmental proteasomopathies represent a distinctive category of neurodevelopmental disorders (NDD) characterized by genetic variations within the 26S proteasome, a protein complex governing eukaryotic cellular protein homeostasis. In our comprehensive study, we identified 23 unique variants in PSMC5 , which encodes the AAA-ATPase proteasome subunit PSMC5/Rpt6, causing syndromic NDD in 38 unrelated individuals. Overexpression of PSMC5 variants altered human hippocampal neuron morphology, while PSMC5 knockdown led to impaired reversal learning in flies and loss of excitatory synapses in rat hippocampal neurons. PSMC5 loss-of-function resulted in abnormal protein aggregation, profoundly impacting innate immune signaling, mitophagy rates, and lipid metabolism in affected individuals. Importantly, targeting key components of the integrated stress response, such as PKR and GCN2 kinases, ameliorated immune dysregulations in cells from affected individuals. These findings significantly advance our understanding of the molecular mechanisms underlying neurodevelopmental proteasomopathies, provide links to research in neurodegenerative diseases, and open up potential therapeutic avenues.
Collapse
|
5
|
Weber MA, Kerr G, Thangavel R, Conlon MM, Gumusoglu SB, Gupta K, Abdelmotilib HA, Halhouli O, Zhang Q, Geerling JC, Narayanan NS, Aldridge GM. Alpha-Synuclein Pre-Formed Fibrils Injected into Prefrontal Cortex Primarily Spread to Cortical and Subcortical Structures. JOURNAL OF PARKINSON'S DISEASE 2024; 14:81-94. [PMID: 38189765 PMCID: PMC10836574 DOI: 10.3233/jpd-230129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are characterized by diffuse spread of alpha-synuclein (α-syn) throughout the brain. Patients with PDD and DLB have a neuropsychological pattern of deficits that include executive dysfunction, such as abnormalities in planning, timing, working memory, and behavioral flexibility. The prefrontal cortex (PFC) plays a major role in normal executive function and often develops α-syn aggregates in DLB and PDD. OBJECTIVE To investigate the long-term behavioral and cognitive consequences of α-syn pathology in the cortex and characterize pathological spread of α-syn. METHODS We injected human α-syn pre-formed fibrils into the PFC of wild-type male mice. We then assessed the behavioral and cognitive effects between 12- and 21-months post-injection and characterized the spread of pathological α-syn in cortical, subcortical, and brainstem regions. RESULTS We report that PFC PFFs: 1) induced α-syn aggregation in multiple cortical and subcortical regions with sparse aggregation in midbrain and brainstem nuclei; 2) did not affect interval timing or spatial learning acquisition but did mildly alter behavioral flexibility as measured by intraday reversal learning; and 3) increased open field exploration. CONCLUSIONS This model of cortical-dominant pathology aids in our understanding of how local α-syn aggregation might impact some symptoms in PDD and DLB.
Collapse
Affiliation(s)
- Matthew A. Weber
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Gemma Kerr
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ramasamy Thangavel
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mackenzie M. Conlon
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Serena B. Gumusoglu
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Kalpana Gupta
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hisham A. Abdelmotilib
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Oday Halhouli
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Qiang Zhang
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joel C. Geerling
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Nandakumar S. Narayanan
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Georgina M. Aldridge
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Li Q, Wang L, Tang C, Wang X, Yu Z, Ping X, Ding M, Zheng L. Adipose Tissue Exosome circ_sxc Mediates the Modulatory of Adiposomes on Brain Aging by Inhibiting Brain dme-miR-87-3p. Mol Neurobiol 2024; 61:224-238. [PMID: 37597108 DOI: 10.1007/s12035-023-03516-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 08/21/2023]
Abstract
Aging of the brain usually leads to the decline of neurological processes and is a major risk factor for various neurodegenerative diseases, including sleep disturbances and cognitive decline. Adipose tissue exosomes, as adipocyte-derived vesicles, may mediate the regulatory processes of adipose tissue on other organs, including the brain; however, the regulatory mechanisms remain unclear. We analyzed the sleep-wake behavior of young (10 days) and old (40 days) Drosophila and found that older Drosophila showed increased sleep fragmentation, which is similar to mammalian aging characteristics. To investigate the cross-tissue regulatory mechanisms of adiposity on brain aging, we extracted 10-day and 40-day Drosophila adipose tissue exosomes and identified circRNAs with age-dependent expression differences by RNA-seq and differential analysis. Furthermore, by combining data from 3 datasets of the GEO database (GSE130158, GSE24992, and GSE184559), circ_sxc that was significantly downregulated with age was finally screened out. Moreover, dme-miR-87-3p, a conserved target of circ_sxc, accumulates in the brain with age and exhibits inhibitory effects in predicted binding relationships with neuroreceptor ligand genes. In summary, the current study showed that the Drosophila brain could obtain circ_sxc by uptake of adipose tissue exosomes which crossed the blood-brain barrier. And circ_sxc suppressed brain miR-87-3p expression through sponge adsorption, which in turn regulated the expression of neurological receptor ligand proteins (5-HT1B, GABA-B-R1, Rdl, Rh7, qvr, NaCP60E) and ensured brain neuronal synaptic signaling normal function of synaptic signaling. However, with aging, this regulatory mechanism is dysregulated by the downregulation of the adipose exosome circ_sxc, which contributes to the brain exhibiting sleep disturbances and other "aging" features.
Collapse
Affiliation(s)
- Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Lingxiao Wang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoya Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Zhengwen Yu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xu Ping
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Meng Ding
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Weber MA, Kerr G, Thangavel R, Conlon MM, Abdelmotilib HA, Halhouli O, Zhang Q, Geerling JC, Narayanan NS, Aldridge GM. Alpha-synuclein pre-formed fibrils injected into prefrontal cortex primarily spread to cortical and subcortical structures and lead to isolated behavioral symptoms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526365. [PMID: 36778400 PMCID: PMC9915664 DOI: 10.1101/2023.01.31.526365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are characterized by diffuse spread of alpha-synuclein (α-syn) throughout the brain. Patients with PDD and DLB have a neuropsychological pattern of deficits that include executive dysfunction, such as abnormalities in planning, timing, working memory, and behavioral flexibility. The prefrontal cortex (PFC) plays a major role in normal executive function and often develops α-syn aggregates in DLB and PDD. To investigate the consequences of α-syn pathology in the cortex, we injected human α-syn pre-formed fibrils into the PFC of wildtype mice. We report that PFC PFFs: 1) induced α-syn aggregation in multiple cortical and subcortical regions with sparse aggregation in midbrain and brainstem nuclei; 2) did not affect interval timing or spatial learning acquisition but did mildly alter behavioral flexibility as measured by intraday reversal learning; 3) increased open field exploration; and 4) did not affect susceptibility to an inflammatory challenge. This model of cortical-dominant pathology aids in our understanding of how local α-syn aggregation might impact some symptoms in PDD and DLB.
Collapse
Affiliation(s)
- Matthew A. Weber
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Gemma Kerr
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Ramasamy Thangavel
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Mackenzie M. Conlon
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City
| | | | - Oday Halhouli
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Qiang Zhang
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Joel C. Geerling
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | | | - Georgina M. Aldridge
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| |
Collapse
|
8
|
Orsini CA, Pyon WS, Dragone RJ, Faraji M, Wheeler AR, Pompilus M, Febo M, Bizon JL, Setlow B. Age-Related Changes in Risky Decision Making and Associated Neural Circuitry in a Rat Model. eNeuro 2023; 10:ENEURO.0385-22.2022. [PMID: 36596593 PMCID: PMC9840382 DOI: 10.1523/eneuro.0385-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Altered decision making at advanced ages can have a significant impact on an individual's quality of life and the ability to maintain personal independence. Relative to young adults, older adults make less impulsive and less risky choices; although these changes in decision making could be considered beneficial, they can also lead to choices with potentially negative consequences (e.g., avoidance of medical procedures). Rodent models of decision making have been invaluable for dissecting cognitive and neurobiological mechanisms that contribute to age-related changes in decision making, but they have predominantly used costs related to timing or probability of reward delivery and have not considered other equally important costs, such as the risk of adverse consequences. The current study therefore used a rat model of decision making involving risk of explicit punishment to examine age-related changes in this form of choice behavior in male rats, and to identify potential cognitive and neurobiological mechanisms that contribute to these changes. Relative to young rats, aged rats displayed greater risk aversion, which was not attributable to reduced motivation for food, changes in shock sensitivity, or impaired cognitive flexibility. Functional MRI analyses revealed that, overall, functional connectivity was greater in aged rats compared with young rats, particularly among brain regions implicated in risky decision making such as basolateral amygdala, orbitofrontal cortex, and ventral tegmental area. Collectively, these findings are consistent with greater risk aversion found in older humans, and reveal age-related changes in brain connectivity.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
| | - Wonn S Pyon
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Richard J Dragone
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
| | - Mojdeh Faraji
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
| | - Alexa-Rae Wheeler
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
9
|
Rose TR, Marron Fernandez de Velasco E, Mitten EH, Wickman K. GIRK channel activity in prelimbic pyramidal neurons regulates the extinction of cocaine conditioned place preference in male mice. Addict Biol 2023; 28:e13256. [PMID: 36577727 PMCID: PMC10078116 DOI: 10.1111/adb.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
Abstract
Drug-induced neuroadaptations in the prefrontal cortex (PFC) have been implicated in drug-associated memories that motivate continued drug use. Chronic cocaine exposure increases pyramidal neuron excitability in the prelimbic subregion of the PFC (PL), an adaptation that has been attributed in part to a suppression of inhibitory signalling mediated by the GABAB receptor (GABAB R) and G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels. Although reduced GIRK channel activity in PL pyramidal neurons enhances the motor-stimulatory effect of cocaine in mice, the impact on cocaine reward and associated memories remains unclear. Here, we employed Cre- and CRISPR/Cas9-based viral manipulation strategies to evaluate the impact of GIRK channel or GABAB R ablation in PL pyramidal neurons on cocaine-induced conditioned place preference (CPP) and extinction. Neither ablation of GIRK channels nor GABAB R impacted the acquisition of cocaine CPP. GIRK channel ablation in PL pyramidal neurons, however, impaired extinction of cocaine CPP in male but not female mice. Since ablation of GIRK channels but not GABAB R increased PL pyramidal neuron excitability, we used a chemogenetic approach to determine if acute excitation of PL pyramidal neurons impaired the expression of extinction in male mice. While acute chemogenetic excitation of PL pyramidal neurons induced locomotor hyperactivity, it did not impair the extinction of cocaine CPP. Lastly, we found that persistent enhancement of GIRK channel activity in PL pyramidal neurons accelerated the extinction of cocaine CPP. Collectively, our findings show that the strength of GIRK channel activity in PL pyramidal neurons bi-directionally regulates cocaine CPP extinction in male mice.
Collapse
Affiliation(s)
- Timothy R Rose
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Eric H Mitten
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Tomm RJ, Seib DR, Kachkovski GV, Schweitzer HR, Tobiansky DJ, Floresco SB, Soma KK. Androgen synthesis inhibition increases behavioural flexibility and mPFC tyrosine hydroxylase in gonadectomized male rats. J Neuroendocrinol 2022; 34:e13128. [PMID: 35583989 DOI: 10.1111/jne.13128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
Abstract
Behavioural flexibility is essential to adapt to a changing environment and depends on the medial prefrontal cortex (mPFC). Testosterone administration decreases behavioural flexibility. It is well known that testosterone is produced in the gonads, but testosterone is also produced in the brain, including the mPFC and other nodes of the mesocorticolimbic system. It is unclear how testosterone produced in the brain versus the gonads influences behavioural flexibility. Here, in adult male rats, we assessed the effects of the androgen synthesis inhibitor abiraterone acetate (ABI) and long-term gonadectomy (GDX) on behavioural flexibility in two paradigms. In Experiment 1, ABI but not GDX reduced the number of errors to criterion and perseverative errors in a strategy set-shifting task. In Experiment 2, with a separate cohort of rats, ABI but not GDX reduced perseverative errors in a reversal learning task. In Experiment 1, we also examined tyrosine hydroxylase immunoreactivity (TH-ir), and ABI but not GDX increased TH-ir in the mPFC. Our findings suggest that neurally-produced androgens modulate behavioural flexibility via modification of dopamine signalling in the mesocorticolimbic system. These results indicate that neurosteroids regulate executive functions and that ABI treatment for prostate cancer might affect cognition.
Collapse
Affiliation(s)
- Ryan J Tomm
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Désirée R Seib
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - George V Kachkovski
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Helen R Schweitzer
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Daniel J Tobiansky
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Kiran K Soma
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Hernandez CM, Hernandez AR, Hoffman JM, King PH, McMahon LL, Buford TW, Carter C, Bizon JL, Burke SN. A Neuroscience Primer for Integrating Geroscience With the Neurobiology of Aging. J Gerontol A Biol Sci Med Sci 2022; 77:e19-e33. [PMID: 34623396 PMCID: PMC8751809 DOI: 10.1093/gerona/glab301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroscience has a rich history of studies focusing on neurobiology of aging. However, much of the aging studies in neuroscience occur outside of the gerosciences. The goal of this primer is 2-fold: first, to briefly highlight some of the history of aging neurobiology and second, to introduce to geroscientists the broad spectrum of methodological approaches neuroscientists use to study the neurobiology of aging. This primer is accompanied by a corresponding geroscience primer, as well as a perspective on the current challenges and triumphs of the current divide across these 2 fields. This series of manuscripts is intended to foster enhanced collaborations between neuroscientists and geroscientists with the intent of strengthening the field of cognitive aging through inclusion of parameters from both areas of expertise.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abigail R Hernandez
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica M Hoffman
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter H King
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Lori L McMahon
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Integrative Center for Aging Research, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas W Buford
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Integrative Center for Aging Research, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Christy Carter
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Bizon
- Department of Neuroscience, Center for Cognitive Aging and Memory, and the McKnight Brain Institute, The University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Sara N Burke
- Department of Neuroscience, Center for Cognitive Aging and Memory, and the McKnight Brain Institute, The University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
12
|
Cammarata C, De Rosa ED. Interaction of cholinergic disruption and age on cognitive flexibility in rats. Exp Brain Res 2022; 240:2989-2997. [PMID: 36198843 PMCID: PMC9587929 DOI: 10.1007/s00221-022-06472-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/25/2022] [Indexed: 01/24/2023]
Abstract
Healthy aging is associated with a functional reduction of the basal forebrain (BF) system that supplies the neurochemical acetylcholine (ACh) to the cortex, and concomitant challenges to cognition. It remains unclear how aging and ACh loss interact to shape cognition in the aging brain. We used a proactive interference (PI) odor discrimination task, shown to depend on the BF in young adults, wherein rats acquired new associations that conflicted with past learning or associations that did not conflict. This manipulation allowed independent assessment of encoding alone vs. encoding in the face of interference. Adult (9.8 ± 1.3 months) or aged male Long-Evans rats (20.7 ± 0.5 months) completed the PI task with systemic administration of a muscarinic cholinergic antagonist, scopolamine, or a pharmacological control. Aged rats were less able to resolve PI than adult rats. Moreover, while scopolamine reduced efficient PI resolution in adult rats, this cholinergic antagonism had no additional effect on aged rat performance, counter to our expectation that scopolamine would further increase perseveration in the aged group. Scopolamine did not impair encoding of non-interfering associations regardless of age. These data suggest that natural aging changes the effect of cholinergic pharmacology on encoding efficiency when past learning interferes.
Collapse
Affiliation(s)
- Celine Cammarata
- Department of Psychology, Cornell University, Ithaca, NY 14853 USA ,Human Neuroscience Institute, Cornell University, Ithaca, NY 14853 USA ,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Eve D. De Rosa
- Department of Psychology, Cornell University, Ithaca, NY 14853 USA ,Human Neuroscience Institute, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
13
|
Smith SM, Zequeira S, Ravi M, Johnson SA, Hampton AM, Ross AM, Pyon W, Maurer AP, Bizon JL, Burke SN. Age-related impairments on the touchscreen paired associates learning (PAL) task in male rats. Neurobiol Aging 2022; 109:176-191. [PMID: 34749169 PMCID: PMC9351724 DOI: 10.1016/j.neurobiolaging.2021.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023]
Abstract
Discovery research in rodent models of cognitive aging is instrumental for identifying mechanisms of behavioral decline in old age that can be therapeutically targeted. Clinically relevant behavioral paradigms, however, have not been widely employed in aged rats. The current study aimed to bridge this translational gap by testing cognition in a cross-species touchscreen-based platform known as paired-associates learning (PAL) and then utilizing a trial-by-trial behavioral analysis approach. This study found age-related deficits in PAL task acquisition in male rats. Furthermore, trial-by-trial analyses and testing rats on a novel interference version of PAL suggested that age-related impairments were not due to differences in vulnerability to an irrelevant distractor, motivation, or to forgetting. Rather, impairment appeared to arise from vulnerability to accumulating, proactive interference, with aged animals performing worse than younger rats in later trial blocks within a single testing session. The detailed behavioral analysis employed in this study provides new insights into the etiology of age-associated cognitive deficits.
Collapse
Affiliation(s)
- Samantha M Smith
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sabrina Zequeira
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Meena Ravi
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sarah A Johnson
- Department of Neuroscience and Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Andriena M Hampton
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Aleyna M Ross
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Wonn Pyon
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jennifer L Bizon
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sara N Burke
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Institute on Aging, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Jiménez-Balado J, Eich TS. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer's disease. Semin Cell Dev Biol 2021; 116:146-159. [PMID: 33573856 PMCID: PMC8292162 DOI: 10.1016/j.semcdb.2021.01.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
In this review, we focus on the potential role of the γ-aminobutyric acidergic (GABAergic) system in age-related episodic memory impairments in humans, with a particular focus on Alzheimer's disease (AD). Well-established animal models have shown that GABA plays a central role in regulating and synchronizing neuronal signaling in the hippocampus, a brain area critical for episodic memory that undergoes early and significant morphologic and functional changes in the course of AD. Neuroimaging research in humans has documented hyperactivity in the hippocampus and losses of resting state functional connectivity in the Default Mode Network, a network that itself prominently includes the hippocampus-presaging episodic memory decline in individuals at-risk for AD. Apolipoprotein ε4, the highest genetic risk factor for AD, is associated with GABAergic dysfunction in animal models, and episodic memory impairments in humans. In combination, these findings suggest that GABA may be the linchpin in a complex system of factors that eventually leads to the principal clinical hallmark of AD: episodic memory loss. Here, we will review the current state of literature supporting this hypothesis. First, we will focus on the molecular and cellular basis of the GABAergic system and its role in memory and cognition. Next, we report the evidence of GABA dysregulations in AD and normal aging, both in animal models and human studies. Finally, we outline a model of GABAergic dysfunction based on the results of functional neuroimaging studies in humans, which have shown hippocampal hyperactivity to episodic memory tasks concurrent with and even preceding AD diagnosis, along with factors that may modulate this association.
Collapse
Affiliation(s)
- Joan Jiménez-Balado
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Teal S Eich
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
15
|
Altidor LKP, Bruner MM, Deslauriers JF, Garman TS, Ramirez S, Dirr EW, Olczak KP, Maurer AP, Lamb DG, Otto KJ, Burke SN, Bumanglag AV, Setlow B, Bizon JL. Acute vagus nerve stimulation enhances reversal learning in rats. Neurobiol Learn Mem 2021; 184:107498. [PMID: 34332068 DOI: 10.1016/j.nlm.2021.107498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/24/2021] [Indexed: 01/19/2023]
Abstract
Cognitive flexibility is a prefrontal cortex-dependent neurocognitive process that enables behavioral adaptation in response to changes in environmental contingencies. Electrical vagus nerve stimulation (VNS) enhances several forms of learning and neuroplasticity, but its effects on cognitive flexibility have not been evaluated. In the current study, a within-subjects design was used to assess the effects of VNS on performance in a novel visual discrimination reversal learning task conducted in touchscreen operant chambers. The task design enabled simultaneous assessment of acute VNS both on reversal learning and on recall of a well-learned discrimination problem. Acute VNS delivered in conjunction with stimuli presentation during reversal learning reliably enhanced learning of new reward contingencies. Enhancement was not observed, however, if VNS was delivered during the session but was not coincident with presentation of to-be-learned stimuli. In addition, whereas VNS delivered at 30 HZ enhanced performance, the same enhancement was not observed using 10 or 50 Hz. Together, these data show that acute VNS facilitates reversal learning and indicate that the timing and frequency of the VNS are critical for these enhancing effects. In separate rats, administration of the norepinephrine reuptake inhibitor atomoxetine also enhanced reversal learning in the same task, consistent with a noradrenergic mechanism through which VNS enhances cognitive flexibility.
Collapse
Affiliation(s)
| | - Matthew M Bruner
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Tyler S Garman
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Saúl Ramirez
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Elliott W Dirr
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kaitlynn P Olczak
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA; Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
| | - Damon G Lamb
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA; Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
| | - Kevin J Otto
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Argyle V Bumanglag
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA.
| |
Collapse
|
16
|
McQuail JA, Beas BS, Kelly KB, Hernandez CM, Bizon JL, Frazier CJ. Attenuated NMDAR signaling on fast-spiking interneurons in prefrontal cortex contributes to age-related decline of cognitive flexibility. Neuropharmacology 2021; 197:108720. [PMID: 34273386 DOI: 10.1016/j.neuropharm.2021.108720] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/01/2023]
Abstract
Ionotropic glutamate receptors of the NMDA and AMPA subtypes transduce excitatory signaling on neurons in the prefrontal cortex (PFC) in support of cognitive flexibility. Cognitive flexibility is reliably observed to decline at advanced ages, coinciding with changes in PFC glutamate receptor expression and neuronal physiology. However, the relationship between age-related impairment of cognitive flexibility and changes to excitatory signaling on distinct classes of PFC neurons is not known. In this study, one cohort of young adult (4 months) and aged (20 months) male F344 rats were characterized for cognitive flexibility on an operant set-shifting task. Expression of the essential NMDAR subunit, NR1, was correlated with individual differences in set-shifting abilities such that lower NR1 in the aged PFC was associated with worse set-shifting. In contrast, lower expression of two AMPAR subunits, GluR1 and GluR2, was not associated with set-shift abilities in aging. As NMDARs are expressed by both pyramidal cells and fast-spiking interneurons (FSI) in PFC, whole-cell patch clamp recordings were performed in a second cohort of age-matched rats to compare age-associated changes on these neuronal subtypes. Evoked excitatory postsynaptic currents were generated using a bipolar stimulator while AMPAR vs. NMDAR-mediated components were isolated using pharmacological tools. The results revealed a clear increase in AMPA/NMDA ratio in FSIs that was not present in pyramidal neurons. Together, these data indicate that loss of NMDARs on interneurons in PFC contributes to age-related impairment of cognitive flexibility.
Collapse
Affiliation(s)
- Joseph A McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA.
| | - B Sofia Beas
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Kyle B Kelly
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, 32610, USA
| | - Caesar M Hernandez
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Charles J Frazier
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, 32610, USA.
| |
Collapse
|
17
|
Hernandez CM, Orsini CA, Blaes SL, Bizon JL, Febo M, Bruijnzeel AW, Setlow B. Effects of repeated adolescent exposure to cannabis smoke on cognitive outcomes in adulthood. J Psychopharmacol 2021; 35:848-863. [PMID: 33295231 PMCID: PMC8187454 DOI: 10.1177/0269881120965931] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cannabis (marijuana) is the most widely used illicit drug in the USA, and consumption among adolescents is rising. Some animal studies show that adolescent exposure to delta 9-tetrahydrocannabinol or synthetic cannabinoid receptor 1 agonists causes alterations in affect and cognition that can persist into adulthood. It is less clear, however, whether similar alterations result from exposure to cannabis via smoke inhalation, which remains the most frequent route of administration in humans. AIMS To begin to address these questions, a rat model was used to determine how cannabis smoke exposure during adolescence affects behavioral and cognitive outcomes in adulthood. METHODS Adolescent male Long-Evans rats were assigned to clean air, placebo smoke, or cannabis smoke groups. Clean air or smoke exposure sessions were conducted daily during adolescence (from P29-P49 days of age ) for a total of 21 days, and behavioral testing began on P70. RESULTS Compared to clean air and placebo smoke conditions, cannabis smoke significantly attenuated the normal developmental increase in body weight, but had no effects on several measures of either affect/motivation (open field activity, elevated plus maze, instrumental responding under a progressive ratio schedule of reinforcement) or cognition (set shifting, reversal learning, intertemporal choice). Surprisingly, however, in comparison to clean air controls rats exposed to either cannabis or placebo smoke in adolescence exhibited enhanced performance on a delayed response working memory task. CONCLUSIONS These findings are consistent with a growing body of evidence for limited long-term adverse cognitive and affective consequences of adolescent exposure to relatively low levels of cannabinoids.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, USA,Department of Psychiatry, University of Florida, Gainesville, USA,Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, USA
| | - Caitlin A Orsini
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA,Department of Psychology, The University of Texas at Austin, Austin, USA
| | - Shelby L Blaes
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| |
Collapse
|
18
|
Jobson DD, Hase Y, Clarkson AN, Kalaria RN. The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain Commun 2021; 3:fcab125. [PMID: 34222873 PMCID: PMC8249104 DOI: 10.1093/braincomms/fcab125] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 01/18/2023] Open
Abstract
Humans require a plethora of higher cognitive skills to perform executive functions, such as reasoning, planning, language and social interactions, which are regulated predominantly by the prefrontal cortex. The prefrontal cortex comprises the lateral, medial and orbitofrontal regions. In higher primates, the lateral prefrontal cortex is further separated into the respective dorsal and ventral subregions. However, all these regions have variably been implicated in several fronto-subcortical circuits. Dysfunction of these circuits has been highlighted in vascular and other neurocognitive disorders. Recent advances suggest the medial prefrontal cortex plays an important regulatory role in numerous cognitive functions, including attention, inhibitory control, habit formation and working, spatial or long-term memory. The medial prefrontal cortex appears highly interconnected with subcortical regions (thalamus, amygdala and hippocampus) and exerts top-down executive control over various cognitive domains and stimuli. Much of our knowledge comes from rodent models using precise lesions and electrophysiology readouts from specific medial prefrontal cortex locations. Although, anatomical disparities of the rodent medial prefrontal cortex compared to the primate homologue are apparent, current rodent models have effectively implicated the medial prefrontal cortex as a neural substrate of cognitive decline within ageing and dementia. Human brain connectivity-based neuroimaging has demonstrated that large-scale medial prefrontal cortex networks, such as the default mode network, are equally important for cognition. However, there is little consensus on how medial prefrontal cortex functional connectivity specifically changes during brain pathological states. In context with previous work in rodents and non-human primates, we attempt to convey a consensus on the current understanding of the role of predominantly the medial prefrontal cortex and its functional connectivity measured by resting-state functional MRI in ageing associated disorders, including prodromal dementia states, Alzheimer's disease, post-ischaemic stroke, Parkinsonism and frontotemporal dementia. Previous cross-sectional studies suggest that medial prefrontal cortex functional connectivity abnormalities are consistently found in the default mode network across both ageing and neurocognitive disorders such as Alzheimer's disease and vascular cognitive impairment. Distinct disease-specific patterns of medial prefrontal cortex functional connectivity alterations within specific large-scale networks appear to consistently feature in the default mode network, whilst detrimental connectivity alterations are associated with cognitive impairments independently from structural pathological aberrations, such as grey matter atrophy. These disease-specific patterns of medial prefrontal cortex functional connectivity also precede structural pathological changes and may be driven by ageing-related vascular mechanisms. The default mode network supports utility as a potential biomarker and therapeutic target for dementia-associated conditions. Yet, these associations still require validation in longitudinal studies using larger sample sizes.
Collapse
Affiliation(s)
- Dan D Jobson
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| | - Yoshiki Hase
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre
and Brain Research New Zealand, University of Otago, Dunedin 9054,
New Zealand
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
19
|
Carlson ES, Hunker AC, Sandberg SG, Locke TM, Geller JM, Schindler AG, Thomas SA, Darvas M, Phillips PEM, Zweifel LS. Catecholaminergic Innervation of the Lateral Nucleus of the Cerebellum Modulates Cognitive Behaviors. J Neurosci 2021; 41:3512-3530. [PMID: 33536201 PMCID: PMC8051686 DOI: 10.1523/jneurosci.2406-20.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 11/21/2022] Open
Abstract
The cerebellum processes neural signals related to rewarding and aversive stimuli, suggesting that the cerebellum supports nonmotor functions in cognitive and emotional domains. Catecholamines are a class of neuromodulatory neurotransmitters well known for encoding such salient stimuli. Catecholaminergic modulation of classical cerebellar functions have been demonstrated. However, a role for cerebellar catecholamines in modulating cerebellar nonmotor functions is unknown. Using biochemical methods in male mice, we comprehensively mapped TH+ fibers throughout the entire cerebellum and known precerebellar nuclei. Using electrochemical (fast scan cyclic voltammetry), and viral/genetic methods to selectively delete Th in fibers innervating the lateral cerebellar nucleus (LCN), we interrogated sources and functional roles of catecholamines innervating the LCN, which is known for its role in supporting cognition. The LCN has the most TH+ fibers in cerebellum, as well as the most change in rostrocaudal expression among the cerebellar nuclei. Norepinephrine is the major catecholamine measured in LCN. Distinct catecholaminergic projections to LCN arise only from locus coeruleus, and a subset of Purkinje cells that are positive for staining of TH. LC stimulation was sufficient to produce catecholamine release in LCN. Deletion of Th in fibers innervating LCN (LCN-Th-cKO) resulted in impaired sensorimotor integration, associative fear learning, response inhibition, and working memory in LCN-Th-cKO mice. Strikingly, selective inhibition of excitatory LCN output neurons with inhibitory designer receptor exclusively activated by designer drugs led to facilitation of learning on the same working memory task impaired in LCN-Th-cKO mice. Collectively, these data demonstrate a role for LCN catecholamines in cognitive behaviors.SIGNIFICANCE STATEMENT Here, we report on interrogating sources and functional roles of catecholamines innervating the lateral nucleus of the cerebellum (LCN). We map and quantify expression of TH, the rate-limiting enzyme in catecholamine synthesis, in the entire cerebellar system, including several precerebellar nuclei. We used cyclic voltammetry and pharmacology to demonstrate sufficiency of LC stimulation to produce catecholamine release in LCN. We used advanced viral techniques to map and selectively KO catecholaminergic neurotransmission to the LCN, and characterized significant cognitive deficits related to this manipulation. Finally, we show that inhibition of excitatory LCN neurons with designer receptor exclusively activated by designer drugs, designed to mimic Gi-coupled catecholamine GPCR signaling, results in facilitation of a working memory task impaired in LCN-specific TH KO mice.
Collapse
Affiliation(s)
- Erik S Carlson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, Washington 98108
| | - Avery C Hunker
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Stefan G Sandberg
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195
| | - Timothy M Locke
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Julianne M Geller
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, Washington 98108
| | - Abigail G Schindler
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, Washington 98108
| | - Steven A Thomas
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Martin Darvas
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Paul E M Phillips
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
20
|
Wang LJ, Mu LL, Ren ZX, Tang HJ, Wei YD, Wang WJ, Song PP, Zhu L, Ling Q, Gao H, Zhang L, Song X, Wei HF, Chang LX, Wei T, Wang YJ, Zhao W, Wang Y, Liu LY, Zhou YD, Zhou RD, Xu HS, Jiao DL. Predictive Role of Executive Function in the Efficacy of Intermittent Theta Burst Transcranial Magnetic Stimulation Modalities for Treating Methamphetamine Use Disorder-A Randomized Clinical Trial. Front Psychiatry 2021; 12:774192. [PMID: 34925101 PMCID: PMC8674464 DOI: 10.3389/fpsyt.2021.774192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Repetitive transcranial magnetic stimulation (rTMS) has therapeutic effects on craving in methamphetamine (METH) use disorder (MUD). The chronic abuse of METH causes impairments in executive function, and improving executive function reduces relapse and improves treatment outcomes for drug use disorder. The purpose of this study was to determine whether executive function helped predict patients' responses to rTMS treatment. Methods: This study employed intermittent theta burst stimulation (iTBS) rTMS modalities and observed their therapeutic effects on executive function and craving in MUD patients. MUD patients from an isolated Drug Rehabilitation Institute in China were chosen and randomly allocated to the iTBS group and sham-stimulation group. All participants underwent the Behavior Rating Inventory of Executive Function - Adult Version Scale (BRIEF-A) and Visual Analog Scales (VAS) measurements. Sixty-five healthy adults matched to the general condition of MUD patients were also recruited as healthy controls. Findings: Patients with MUD had significantly worse executive function. iTBS groups had better treatment effects on the MUD group than the sham-stimulation group. Further Spearman rank correlation and stepwise multivariate regression analysis revealed that reduction rates of the total score of the BRIEF-A and subscale scores of the inhibition factor and working memory factor in the iTBS group positively correlated with improvements in craving. ROC curve analysis showed that working memory (AUC = 87.4%; 95% CI = 0.220, 0.631) and GEC (AUC = 0.761%; 95% CI = 0.209, 0.659) had predictive power to iTBS therapeutic efficacy. The cutoff values are 13.393 and 59.804, respectively. Conclusions: The iTBS rTMS had a better therapeutic effect on the executive function of patients with MUD, and the improved executive function had the potential to become a predictor for the efficacy of iTBS modality for MUD treatment. Clinical Trial Registration: ClinicalTrials.gov, identifier: ChiCTR2100046954.
Collapse
Affiliation(s)
- Li-Jin Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Lin-Lin Mu
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Zi-Xuan Ren
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Hua-Jun Tang
- Compulsory Isolated Drug Rehabilitation Center, Bengbu, China
| | - Ya-Dong Wei
- Compulsory Isolated Drug Rehabilitation Center, Bengbu, China
| | - Wen-Juan Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Pei-Pei Song
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Lin Zhu
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Qiang Ling
- Compulsory Isolated Drug Rehabilitation Center, Bengbu, China
| | - He Gao
- Compulsory Isolated Drug Rehabilitation Center, Bengbu, China
| | - Lei Zhang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Xun Song
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Hua-Feng Wei
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Lei-Xin Chang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Tao Wei
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Yu-Jing Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Wei Zhao
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Yan Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Lu-Ying Liu
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Yi-Ding Zhou
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Rui-Dong Zhou
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Hua-Shan Xu
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Dong-Liang Jiao
- School of Mental Health, Bengbu Medical College, Bengbu, China
| |
Collapse
|
21
|
Hernandez AR, Truckenbrod LM, Barrett ME, Lubke KN, Clark BJ, Burke SN. Age-Related Alterations in Prelimbic Cortical Neuron Arc Expression Vary by Behavioral State and Cortical Layer. Front Aging Neurosci 2020; 12:588297. [PMID: 33192482 PMCID: PMC7655965 DOI: 10.3389/fnagi.2020.588297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Prefrontal cortical and medial temporal lobe connectivity is critical for higher cognitive functions that decline in older adults. Likewise, these cortical areas are among the first to show anatomical, functional, and biochemical alterations in advanced age. The prelimbic subregion of the prefrontal cortex and the perirhinal cortex of the medial temporal lobe are densely reciprocally connected and well-characterized as undergoing age-related neurobiological changes that correlate with behavioral impairment. Despite this fact, it remains to be determined how changes within these brain regions manifest as alterations in their functional connectivity. In our previous work, we observed an increased probability of age-related dysfunction for perirhinal cortical neurons that projected to the prefrontal cortex in old rats compared to neurons that were not identified as projection neurons. The current study was designed to investigate the extent to which aged prelimbic cortical neurons also had altered patterns of Arc expression during behavior, and if this was more evident in those cells that had long-range projections to the perirhinal cortex. The expression patterns of the immediate-early gene Arc were quantified in behaviorally characterized rats that also received the retrograde tracer cholera toxin B (CTB) in the perirhinal cortex to identify projection neurons to this region. As in our previous work, the current study found that CTB+ cells were more active than those that did not have the tracer. Moreover, there were age-related reductions in prelimbic cortical neuron Arc expression that correlated with a reduced ability of aged rats to multitask. Unlike the perirhinal cortex, however, the age-related reduction in Arc expression was equally likely in CTB+ and CTB- negative cells. Thus, the selective vulnerability of neurons with long-range projections to dysfunction in old age may be a unique feature of the perirhinal cortex. Together, these observations identify a mechanism involving prelimbic-perirhinal cortical circuit disruption in cognitive aging.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Leah M. Truckenbrod
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Maya E. Barrett
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Katelyn N. Lubke
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Benjamin J. Clark
- Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Sara N. Burke
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States,*Correspondence: Sara N. Burke,
| |
Collapse
|
22
|
Locke TM, Fujita H, Hunker A, Johanson SS, Darvas M, du Lac S, Zweifel LS, Carlson ES. Purkinje Cell-Specific Knockout of Tyrosine Hydroxylase Impairs Cognitive Behaviors. Front Cell Neurosci 2020; 14:228. [PMID: 32848620 PMCID: PMC7403473 DOI: 10.3389/fncel.2020.00228] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/30/2020] [Indexed: 01/22/2023] Open
Abstract
Tyrosine hydroxylase (Th) expression has previously been reported in Purkinje cells (PCs) of rodents and humans, but its role in the regulation of behavior is not understood. Catecholamines are well known for facilitating cognitive behaviors and are expressed in many regions of the brain. Here, we investigated a possible role in cognitive behaviors of PC catecholamines, by mapping and testing functional roles of Th positive PCs in mice. Comprehensive mapping analyses revealed a distinct population of Th expressing PCs primarily in the posterior and lateral regions of the cerebellum (comprising about 18% of all PCs). To identify the role of PC catecholamines, we selectively knocked out Th in PCs using a conditional knockout approach, by crossing a Purkinje cell-selective Cre recombinase line, Pcp2-Cre, with a floxed tyrosine hydroxylase mouse line (Thlox/lox) to produce Pcp2-Cre;Thlox/lox mice. This manipulation resulted in approximately 50% reduction of Th protein expression in the cerebellar cortex and lateral cerebellar nucleus, but no reduction of Th in the locus coeruleus, which is known to innervate the cerebellum in mice. Pcp2-Cre;Thlox/lox mice showed impairments in behavioral flexibility, response inhibition, social recognition memory, and associative fear learning relative to littermate controls, but no deficits in gross motor, sensory, instrumental learning, or sensorimotor gating functions. Catecholamines derived from specific populations of PCs appear to support cognitive functions, and their spatial distribution in the cerebellum suggests that they may underlie patterns of activation seen in human studies on the cerebellar role in cognitive function.
Collapse
Affiliation(s)
- Timothy M. Locke
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Hirofumi Fujita
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Avery Hunker
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Shelby S. Johanson
- Geriatric Research, Education and Clinical Center, Veteran’s Affairs Medical Center, Puget Sound, Seattle, WA, United States
| | - Martin Darvas
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Sascha du Lac
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - Larry S. Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Erik S. Carlson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
- Geriatric Research, Education and Clinical Center, Veteran’s Affairs Medical Center, Puget Sound, Seattle, WA, United States
| |
Collapse
|
23
|
Hernandez A, Truckenbrod L, Federico Q, Campos K, Moon B, Ferekides N, Hoppe M, D’Agostino D, Burke S. Metabolic switching is impaired by aging and facilitated by ketosis independent of glycogen. Aging (Albany NY) 2020; 12:7963-7984. [PMID: 32369441 PMCID: PMC7244089 DOI: 10.18632/aging.103116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
Abstract
The ability to switch between glycolysis and ketosis promotes survival by enabling metabolism through fat oxidation during periods of fasting. Carbohydrate restriction or stress can also elicit metabolic switching. Keto-adapting from glycolysis is delayed in aged rats, but factors mediating this age-related impairment have not been identified. We measured metabolic switching between glycolysis and ketosis, as well as glycogen dynamics, in young and aged rats undergoing time-restricted feeding (TRF) with a standard diet or a low carbohydrate ketogenic diet (KD). TRF alone reversed markers of insulin-related metabolic deficits and accelerated metabolic switching in aged animals. A KD+TRF, however, provided additive benefits on these variables. Remarkably, the ability to keto-adapt was not related to glycogen levels and KD-fed rats showed an enhanced elevation in glucose following epinephrine administration. This study provides new insights into the mechanisms of keto-adaptation demonstrating the utility of dietary interventions to treat metabolic impairments across the lifespan.
Collapse
Affiliation(s)
- Abbi Hernandez
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Leah Truckenbrod
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Quinten Federico
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Keila Campos
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Brianna Moon
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Nedi Ferekides
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Meagan Hoppe
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Dominic D’Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Sara Burke
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Institute on Aging, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
24
|
Kwapis JL, Alaghband Y, Keiser AA, Dong TN, Michael CM, Rhee D, Shu G, Dang RT, Matheos DP, Wood MA. Aging mice show impaired memory updating in the novel OUL updating paradigm. Neuropsychopharmacology 2020; 45:337-346. [PMID: 31202213 PMCID: PMC6901557 DOI: 10.1038/s41386-019-0438-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 11/09/2022]
Abstract
Memories do not persist in a permanent, static state but instead must be dynamically modified in response to new information. Although new memory formation is typically studied in a laboratory setting, most real-world associations are modifications to existing memories, particularly in the aging, experienced brain. To date, the field has lacked a simple behavioral paradigm that can measure whether original and updated information is remembered in a single test session. To address this gap, we have developed a novel memory updating paradigm, called the Objects in Updated Locations (OUL) task that is capable of assessing memory updating in a non-stressful task that is appropriate for both young and old rodents. We first show that young mice successfully remember both the original memory and the updated information in OUL. Next, we demonstrate that intrahippocampal infusion of the protein synthesis inhibitor anisomycin disrupts both the updated information and the original memory at test, suggesting that memory updating in OUL engages the original memory. To verify this, we used the Arc CatFISH technique to show that the OUL update session reactivates a largely overlapping set of neurons as the original memory. Finally, using OUL, we show that memory updating is impaired in aging, 18-m.o. mice. Together, these results demonstrate that hippocampal memory updating is impaired with aging and establish that the OUL paradigm is an effective, sensitive method of assessing memory updating in rodents.
Collapse
Affiliation(s)
- Janine L Kwapis
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Biology, Center for Molecular Investigation of Neurological Disorders (CMIND), Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yasaman Alaghband
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA
| | - Ashley A Keiser
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA
| | - Tri N Dong
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA
| | - Christina M Michael
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA
| | - Diane Rhee
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA
| | - Guanhua Shu
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA
| | - Richard T Dang
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA
| | - Dina P Matheos
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
25
|
Colon-Perez LM, Turner SM, Lubke KN, Pompilus M, Febo M, Burke SN. Multiscale Imaging Reveals Aberrant Functional Connectome Organization and Elevated Dorsal Striatal Arc Expression in Advanced Age. eNeuro 2019; 6:ENEURO.0047-19.2019. [PMID: 31826916 PMCID: PMC6978920 DOI: 10.1523/eneuro.0047-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
The functional connectome reflects a network architecture enabling adaptive behavior that becomes vulnerable in advanced age. The cellular mechanisms that contribute to altered functional connectivity in old age, however, are not known. Here we used a multiscale imaging approach to link age-related changes in the functional connectome to altered expression of the activity-dependent immediate-early gene Arc as a function of training to multitask on a working memory (WM)/biconditional association task (BAT). Resting-state fMRI data were collected from young and aged rats longitudinally at three different timepoints during cognitive training. After imaging, rats performed the WM/BAT and were immediately sacrificed to examine expression levels of Arc during task performance. Aged behaviorally impaired, but not young, rats had a subnetwork of increased connectivity between the anterior cingulate cortex (ACC) and dorsal striatum (DS) that was correlated with the use of a suboptimal response-based strategy during cognitive testing. Moreover, while young rats had stable rich-club organization across three scanning sessions, the rich-club organization of old rats increased with cognitive training. In a control group of young and aged rats that were longitudinally scanned at similar time intervals, but without cognitive training, ACC-DS connectivity and rich-club organization did not change between scans in either age group. These findings suggest that aberrant large-scale functional connectivity in aged animals is associated with altered cellular activity patterns within individual brain regions.
Collapse
Affiliation(s)
- Luis M Colon-Perez
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Sean M Turner
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Katelyn N Lubke
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Marjory Pompilus
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Marcelo Febo
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Department of McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Department of McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
26
|
Stroke Induces a BDNF-Dependent Improvement in Cognitive Flexibility in Aged Mice. Neural Plast 2019; 2019:1460890. [PMID: 31191635 PMCID: PMC6525942 DOI: 10.1155/2019/1460890] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/10/2019] [Accepted: 04/04/2019] [Indexed: 11/17/2022] Open
Abstract
Stroke remains a leading cause of disability worldwide. Recently, we have established an animal model of stroke that results in delayed impairment in spatial memory, allowing us to better investigate cognitive deficits. Young and aged brains show different recovery profiles after stroke; therefore, we assessed aged-related differences in poststroke cognition. As neurotrophic support diminishes with age, we also investigated the involvement of brain-derived neurotrophic factor (BDNF) in these differences. Young (3-6 months old) and aged (16-21 months old) mice were trained in operant touchscreen chambers to complete a visual pairwise discrimination (VD) task. Stroke or sham surgery was induced using the photothrombotic model to induce a bilateral prefrontal cortex stroke. Five days poststroke, an additional cohort of aged stroke animals were treated with intracerebral hydrogels loaded with the BDNF decoy, TrkB-Fc. Following treatment, animals underwent the reversal and rereversal task to identify stroke-induced cognitive deficits at days 17 and 37 poststroke, respectively. Assessment of sham animals using Cox regression and log-rank analyses showed aged mice exhibit an increased impairment on VD reversal and rereversal learning compared to young controls. Stroke to young mice revealed no impairment on either task. In contrast, stroke to aged mice facilitated a significant improvement in reversal learning, which was dampened in the presence of the BDNF decoy, TrkB-Fc. In addition, aged stroke control animals required significantly less consecutive days and correction trials to master the reversal task, relative to aged shams, an effect dampened by TrkB-Fc. Our findings support age-related differences in recovery of cognitive function after stroke. Interestingly, aged stroke animals outperformed their sham counterparts, suggesting reopening of a critical window for recovery that is being mediated by BDNF.
Collapse
|
27
|
Pandya M, Palpagama TH, Turner C, Waldvogel HJ, Faull RL, Kwakowsky A. Sex- and age-related changes in GABA signaling components in the human cortex. Biol Sex Differ 2019; 10:5. [PMID: 30642393 PMCID: PMC6332906 DOI: 10.1186/s13293-018-0214-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/09/2018] [Indexed: 12/13/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the nervous system. Previous studies have shown fluctuations in expression levels of GABA signaling components-glutamic acid decarboxylase (GAD), GABA receptor (GABAR) subunit, and GABA transporter (GAT)-with increasing age and between sexes; however, this limited knowledge is highly based on animal models that produce inconsistent findings. This study is the first analysis of the age- and sex-specific changes of the GAD, GABAA/BR subunits, and GAT expression in the human primary sensory and motor cortices; superior (STG), middle (MTG), and inferior temporal gyrus (ITG); and cerebellum. Utilizing Western blotting, we found that the GABAergic system is relatively robust against sex and age-related differences in all brain regions examined. However, we observed several sex-dependent differences in GABAAR subunit expression in STG along with age-dependent GABAAR subunit and GAD level alteration. No significant age-related differences were found in α1, α2, α5, β3, and γ2 subunit expression in the STG. However, we found significantly higher GABAAR α3 subunit expression in the STG in young males compared to old males. We observed a significant sex-dependent difference in α1 subunit expression: males presenting significantly higher levels compared to women across all stages of life in STG. Older females showed significantly lower α2, α5, and β3 subunit expression compared to old males in the STG. These changes found in the STG might significantly influence GABAergic neurotransmission and lead to sex- and age-specific disease susceptibility and progression.
Collapse
Affiliation(s)
- Madhavi Pandya
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Burke SN, Foster TC. Animal models of cognitive aging and circuit-specific vulnerability. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:19-36. [PMID: 31753133 DOI: 10.1016/b978-0-12-804766-8.00002-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Medial temporal lobe and prefrontal cortical structures are particularly vulnerable to dysfunction in advanced age and neurodegenerative diseases. This review focuses on cognitive aging studies in animals to illustrate the important aspects of the animal model paradigm for investigation of age-related memory and executive function loss. Particular attention is paid to the discussion of the face, construct, and predictive validity of animal models for determining the possible mechanisms of regional vulnerability in aging and for identifying novel therapeutic strategies. Aging is associated with a host of regionally specific neurobiologic alterations. Thus, targeted interventions that restore normal activity in one brain region may exacerbate aberrant activity in another, hindering the restoration of function at the behavioral level. As such, interventions that target the optimization of "cognitive networks" rather than discrete brain regions may be more effective for improving functional outcomes in the elderly.
Collapse
Affiliation(s)
- Sara N Burke
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Thomas C Foster
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
29
|
Yegla B, Foster TC, Kumar A. Behavior Model for Assessing Decline in Executive Function During Aging and Neurodegenerative Diseases. Methods Mol Biol 2019; 2011:441-449. [PMID: 31273715 PMCID: PMC8223146 DOI: 10.1007/978-1-4939-9554-7_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Executive dysfunction is a characteristic of several psychiatric and neurodegenerative diseases. Interestingly, executive function, which is mediated by the prefrontal cortex (PFC), commonly declines during aging. The attentional set-shifting task (AST) is commonly and extensively used to assess executive function in rodents, primates, and humans. When properly employed, this task can behaviorally assess attention, response inhibition, and cognitive flexibility. The following section uses research on age-related decline in executive function to demonstrate the methods employed and highlight areas that can confound a study if not employed properly.
Collapse
Affiliation(s)
- Brittney Yegla
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Thomas C Foster
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ashok Kumar
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA,Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
30
|
Hernandez AR, Hernandez CM, Campos K, Truckenbrod L, Federico Q, Moon B, McQuail JA, Maurer AP, Bizon JL, Burke SN. A Ketogenic Diet Improves Cognition and Has Biochemical Effects in Prefrontal Cortex That Are Dissociable From Hippocampus. Front Aging Neurosci 2018; 10:391. [PMID: 30559660 PMCID: PMC6286979 DOI: 10.3389/fnagi.2018.00391] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022] Open
Abstract
Age-related cognitive decline has been linked to a diverse set of neurobiological mechanisms, including bidirectional changes in proteins critical for neuron function. Importantly, these alterations are not uniform across the brain. For example, the hippocampus (HPC) and prefrontal cortex (PFC) show distinct patterns of dysfunction in advanced age. Because higher cognitive functions require large–scale interactions across prefrontal cortical and hippocampal networks, selectively targeting an alteration within one region may not broadly restore function to improve cognition. One mechanism for decline that the PFC and HPC share, however, is a reduced ability to utilize glucose for energy metabolism. Although this suggests that therapeutic strategies bypassing the need for neuronal glycolysis may be beneficial for treating cognitive aging, this approach has not been empirically tested. Thus, the current study used a ketogenic diet (KD) as a global metabolic strategy for improving brain function in young and aged rats. After 12 weeks, rats were trained to perform a spatial alternation task through an asymmetrical maze, in which one arm was closed and the other was open. Both young and aged KD-fed rats showed resilience against the anxiogenic open arm, training to alternation criterion performance faster than control animals. Following alternation testing, rats were trained to perform a cognitive dual task that required working memory while simultaneously performing a bi-conditional association task (WM/BAT), which requires PFC–HPC interactions. All KD-fed rats also demonstrated improved performance on WM/BAT. At the completion of behavioral testing, tissue punches were collected from the PFC for biochemical analysis. KD-fed rats had biochemical alterations within PFC that were dissociable from previous results in the HPC. Specifically, MCT1 and MCT4, which transport ketone bodies, were significantly increased in KD-fed rats compared to controls. GLUT1, which transports glucose across the blood brain barrier, was decreased in KD-fed rats. Contrary to previous observations within the HPC, the vesicular glutamate transporter (VGLUT1) did not change with age or diet within the PFC. The vesicular GABA transporter (VGAT), however, was increased within PFC similar to HPC. These data suggest that KDs could be optimal for enhancing large-scale network function that is critical for higher cognition.
Collapse
Affiliation(s)
- Abbi R Hernandez
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Caesar M Hernandez
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Keila Campos
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Leah Truckenbrod
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Quinten Federico
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Brianna Moon
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Joseph A McQuail
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew P Maurer
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jennifer L Bizon
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sara N Burke
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Institute on Aging, University of Florida, Gainesville, FL, United States
| |
Collapse
|
31
|
Tomm RJ, Tse MT, Tobiansky DJ, Schweitzer HR, Soma KK, Floresco SB. Effects of aging on executive functioning and mesocorticolimbic dopamine markers in male Fischer 344 × brown Norway rats. Neurobiol Aging 2018; 72:134-146. [DOI: 10.1016/j.neurobiolaging.2018.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023]
|
32
|
Contributions of medial prefrontal cortex to decision making involving risk of punishment. Neuropharmacology 2018; 139:205-216. [PMID: 30009836 DOI: 10.1016/j.neuropharm.2018.07.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
The prefrontal cortex (PFC) plays an important role in several forms of cost-benefit decision making. Its contributions to decision making under risk of explicit punishment, however, are not well understood. A rat model was used to investigate the role of the medial PFC (mPFC) and its monoaminergic innervation in a Risky Decision-making Task (RDT), in which rats chose between a small, "safe" food reward and a large, "risky" food reward accompanied by varying probabilities of mild footshock punishment. Inactivation of mPFC increased choice of the large, risky reward when the punishment probability increased across the session ("ascending RDT"), but decreased choice of the large, risky reward when the punishment probability decreased across the session ("descending RDT"). In contrast, enhancement of monoamine availability via intra-mPFC amphetamine reduced choice of the large, risky reward only in the descending RDT. Systemic administration of amphetamine reduced choice of the large, risky reward in both the ascending and descending RDT; however, this reduction was not attenuated by concurrent mPFC inactivation, indicating that mPFC is not a critical locus of amphetamine's effects on risk taking. These findings suggest that mPFC plays an important role in adapting choice behavior in response to shifting risk contingencies, but not necessarily in risk-taking behavior per se.
Collapse
|
33
|
Hernandez AR, Reasor JE, Truckenbrod LM, Campos KT, Federico QP, Fertal KE, Lubke KN, Johnson SA, Clark BJ, Maurer AP, Burke SN. Dissociable effects of advanced age on prefrontal cortical and medial temporal lobe ensemble activity. Neurobiol Aging 2018; 70:217-232. [PMID: 30031931 PMCID: PMC6829909 DOI: 10.1016/j.neurobiolaging.2018.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022]
Abstract
The link between age-related cellular changes within brain regions and larger scale neuronal ensemble dynamics critical for cognition has not been fully elucidated. The present study measured neuron activity within medial prefrontal cortex (PFC), perirhinal cortex (PER), and hippocampal subregion CA1 of young and aged rats by labeling expression of the immediate-early gene Arc. The proportion of cells expressing Arc was quantified at baseline and after a behavior that requires these regions. In addition, PER and CA1 projection neurons to PFC were identified with retrograde labeling. Within CA1, no age-related differences in neuronal activity were observed in the entire neuron population or within CA1 pyramidal cells that project to PFC. Although behavior was comparable across age groups, behaviorally driven Arc expression was higher in the deep layers of both PER and PFC and lower in the superficial layers of these regions. Moreover, age-related changes in activity levels were most evident within PER cells that project to PFC. These data suggest that the PER-PFC circuit is particularly vulnerable in advanced age.
Collapse
Affiliation(s)
- Abbi R Hernandez
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Jordan E Reasor
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Leah M Truckenbrod
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Keila T Campos
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Quinten P Federico
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Kaeli E Fertal
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Katelyn N Lubke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Sarah A Johnson
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Andrew P Maurer
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL; Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Sara N Burke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL; Institute on Aging, University of Florida, Gainesville, FL.
| |
Collapse
|
34
|
Opie GM, Sidhu SK, Rogasch NC, Ridding MC, Semmler JG. Cortical inhibition assessed using paired-pulse TMS-EEG is increased in older adults. Brain Stimul 2018; 11:545-557. [DOI: 10.1016/j.brs.2017.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/14/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023] Open
|
35
|
Changes in GABAergic markers accompany degradation of neuronal function in the primary visual cortex of senescent rats. Sci Rep 2017; 7:14897. [PMID: 29097694 PMCID: PMC5668371 DOI: 10.1038/s41598-017-15006-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/19/2017] [Indexed: 11/14/2022] Open
Abstract
Numerous studies have reported age-dependent degradation of neuronal function in the visual cortex and have attributed this functional decline to weakened intracortical inhibition, especially GABAergic inhibition. However, whether this type of functional decline is linked to compromised GABAergic inhibition has not been fully confirmed. Here, we compared the neuronal response properties and markers of GABAergic inhibition in the primary visual cortex (V1) of young adult and senescent rats. Compared with those of young adult rats, old rats’ V1 neurons exhibited significantly increased visually evoked responses and spontaneous activity, a decreased signal-to-noise ratio and reduced response selectivity for the stimulus orientation and motion direction. Additionally, the ratio of GABA-positive neurons to total cortical neurons in old rats was significantly decreased compared with that in young rats. Expression of the key GABA-synthesizing enzyme GAD67 was significantly lower in old rats than in young rats, although GAD65 expression showed a marginal difference between the two age groups. Further, expression of an important GABAA receptor subunit, GABAAR α1, was significantly attenuated in old rats relative to young ones. These results demonstrate that ageing may result in decreased GABAergic inhibition in the visual cortex and that this decrease in GABAergic inhibition accompanies neuronal function degradation.
Collapse
|
36
|
Hernandez CM, Vetere LM, Orsini CA, McQuail JA, Maurer AP, Burke SN, Setlow B, Bizon JL. Decline of prefrontal cortical-mediated executive functions but attenuated delay discounting in aged Fischer 344 × brown Norway hybrid rats. Neurobiol Aging 2017; 60:141-152. [PMID: 28946018 DOI: 10.1016/j.neurobiolaging.2017.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 11/18/2022]
Abstract
Despite the fact that prefrontal cortex (PFC) function declines with age, aged individuals generally show an enhanced ability to delay gratification, as evident by less discounting of delayed rewards in intertemporal choice tasks. The present study was designed to evaluate relationships between 2 aspects of PFC-dependent cognition (working memory and cognitive flexibility) and intertemporal choice in young (6 months) and aged (24 months) Fischer 344 × brown Norway F1 hybrid rats. Rats were also evaluated for motivation to earn rewards using a progressive ratio task. As previously reported, aged rats showed attenuated discounting of delayed rewards, impaired working memory, and impaired cognitive flexibility compared with young. Among aged rats, greater choice of delayed reward was associated with preserved working memory, impaired cognitive flexibility, and less motivation to work for food. These relationships suggest that age-related changes in PFC and incentive motivation contribute to variance in intertemporal choice within the aged population. Cognitive impairments mediated by PFC are unlikely, however, to fully account for the enhanced ability to delay gratification that accompanies aging.
Collapse
Affiliation(s)
| | - Lauren M Vetere
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Caitlin A Orsini
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Joseph A McQuail
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
37
|
Lester AW, Moffat SD, Wiener JM, Barnes CA, Wolbers T. The Aging Navigational System. Neuron 2017; 95:1019-1035. [PMID: 28858613 PMCID: PMC5659315 DOI: 10.1016/j.neuron.2017.06.037] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022]
Abstract
The discovery of neuronal systems dedicated to computing spatial information, composed of functionally distinct cell types such as place and grid cells, combined with an extensive body of human-based behavioral and neuroimaging research has provided us with a detailed understanding of the brain's navigation circuit. In this review, we discuss emerging evidence from rodents, non-human primates, and humans that demonstrates how cognitive aging affects the navigational computations supported by these systems. Critically, we show 1) that navigational deficits cannot solely be explained by general deficits in learning and memory, 2) that there is no uniform decline across different navigational computations, and 3) that navigational deficits might be sensitive markers for impending pathological decline. Following an introduction to the mechanisms underlying spatial navigation and how they relate to general processes of learning and memory, the review discusses how aging affects the perception and integration of spatial information, the creation and storage of memory traces for spatial information, and the use of spatial information during navigational behavior. The closing section highlights the clinical potential of behavioral and neural markers of spatial navigation, with a particular emphasis on neurodegenerative disorders.
Collapse
Affiliation(s)
- Adam W Lester
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, USA; Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85721, USA
| | - Scott D Moffat
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Jan M Wiener
- Department of Psychology, Ageing and Dementia Institute, Bournemouth University, Poole BH12 5BB, UK
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, USA; Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85721, USA; Departments of Psychology, Neurology, and Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE), Aging and Cognition Research Group, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39118 Magdeburg, Germany.
| |
Collapse
|
38
|
Attenuated Activity across Multiple Cell Types and Reduced Monosynaptic Connectivity in the Aged Perirhinal Cortex. J Neurosci 2017; 37:8965-8974. [PMID: 28821661 DOI: 10.1523/jneurosci.0531-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/25/2017] [Accepted: 08/04/2017] [Indexed: 01/25/2023] Open
Abstract
The perirhinal cortex (PER), which is critical for associative memory and stimulus discrimination, has been described as a wall of inhibition between the neocortex and hippocampus. With advanced age, rats show deficits on PER-dependent behavioral tasks and fewer PER principal neurons are activated by stimuli, but the role of PER interneurons in these altered circuit properties in old age has not been characterized. In the present study, PER neurons were recorded while rats traversed a circular track bidirectionally in which the track was either empty or contained eight novel objects evenly spaced around the track. Putative interneurons were discriminated from principal cells based on the autocorrelogram, waveform parameters, and firing rate. While object modulation of interneuron firing was observed in both young and aged rats, PER interneurons recorded from old animals had lower firing rates compared with those from young animals. This difference could not be accounted for by differences in running speed, as the firing rates of PER interneurons did not show significant velocity modulation. Finally, in the aged rats, relative to young rats, there was a significant reduction in detected excitatory and inhibitory monosynaptic connections. Together these data suggest that with advanced age there may be reduced afferent drive from excitatory cells onto interneurons that may compromise the wall of inhibition between the hippocampus and cortex. This circuit dysfunction could erode the function of temporal lobe networks and ultimately contribute to cognitive aging.SIGNIFICANCE STATEMENT We report that lower firing rates observed in aged perirhinal cortical principal cells are associated with weaker interneuron activity and reduced monosynaptic coupling between excitatory and inhibitory cells. This is likely to affect feedforward inhibition from the perirhinal to the entorhinal cortex that gates the flow of information to the hippocampus. This is significant because cognitive dysfunction in normative and pathological aging has been linked to hyperexcitability in the aged CA3 subregion of the hippocampus in rats, monkeys, and humans. The reduced inhibition in the perirhinal cortex reported here could contribute to this circuit imbalance, and may be a key point to consider for therapeutic interventions aimed at restoring network function to optimize cognition.
Collapse
|
39
|
Johnson SA, Turner SM, Santacroce LA, Carty KN, Shafiq L, Bizon JL, Maurer AP, Burke SN. Rodent age-related impairments in discriminating perceptually similar objects parallel those observed in humans. Hippocampus 2017; 27:759-776. [PMID: 28342259 DOI: 10.1002/hipo.22729] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/13/2017] [Accepted: 03/14/2017] [Indexed: 01/24/2023]
Abstract
The ability to accurately remember distinct episodes is supported by high-level sensory discrimination. Performance on mnemonic similarity tasks, which test high-level discrimination, declines with advancing age in humans and these deficits have been linked to altered activity in hippocampal CA3 and dentate gyrus. Lesion studies in animal models, however, point to the perirhinal cortex as a brain region critical for sensory discriminations that serve memory. Reconciliation of the contributions of different regions within the cortical-hippocampal circuit requires the development of a discrimination paradigm comparable to the human mnemonic similarity task that can be used in rodents. In the present experiments, young and aged rats were cross-characterized on a spatial water maze task and two variants of an object discrimination task: one in which rats incrementally learned which object of a pair was rewarded and different pairs varied in their similarity (Experiment 1), and a second in which rats were tested on their ability to discriminate a learned target object from multiple lure objects with an increasing degree of feature overlap (Experiment 2). In Experiment 1, aged rats required more training than young to correctly discriminate between similar objects. Comparably, in Experiment 2, aged rats were impaired in discriminating a target object from lures when the pair shared more features. Discrimination deficits across experiments were correlated within individual aged rats, though, for the cohort tested, aged rats were not impaired overall in spatial learning and memory. This could suggest discrimination deficits emerging with age precede declines in spatial or episodic memory, an observation that has been made in humans. Findings of robust impairments in object discrimination abilities in the aged rats parallel results from human studies, supporting use of the developed tasks for mechanistic investigation of cortical-hippocampal circuit dysfunction in aging and disease.
Collapse
Affiliation(s)
- Sarah A Johnson
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Sean M Turner
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Lindsay A Santacroce
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Katelyn N Carty
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Leila Shafiq
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Jennifer L Bizon
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Andrew P Maurer
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL.,Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Sara N Burke
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL.,Institute on Aging, University of Florida, Gainesville, FL
| |
Collapse
|
40
|
Cognitive flexibility: Development, disease and treatment. Neuroscience 2016; 345:1-2. [PMID: 28034728 DOI: 10.1016/j.neuroscience.2016.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022]
|
41
|
Koebele SV, Bimonte-Nelson HA. The endocrine-brain-aging triad where many paths meet: female reproductive hormone changes at midlife and their influence on circuits important for learning and memory. Exp Gerontol 2016; 94:14-23. [PMID: 27979770 DOI: 10.1016/j.exger.2016.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023]
Abstract
Female mammals undergo natural fluctuations in sex steroid hormone levels throughout life. These fluctuations span from early development, to cyclic changes associated with the menstrual or estrous cycle and pregnancy, to marked hormone flux during perimenopause, and a final decline at reproductive senescence. While the transition to reproductive senescence is not yet fully understood, the vast majority of mammals experience this spontaneous, natural phenomenon with age, which has broad implications for long-lived species. Indeed, this post-reproductive life stage, and its transition, involves significant and enduring physiological changes, including considerably altered sex steroid hormone and gonadotropin profiles that impact multiple body systems, including the brain. The endocrine-brain-aging triad is especially noteworthy, as many paths meet and interact. Many of the brain regions affected by aging are also sensitive to changes in ovarian hormone levels, and aging and reproductive senescence are both associated with changes in memory performance. This review explores how menopause is related to cognitive aging, and discusses some of the key neural systems and molecular factors altered with age and reproductive hormone level changes, with an emphasis on brain regions important for learning and memory.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States.
| |
Collapse
|
42
|
Hernandez AR, Reasor JE, Truckenbrod LM, Lubke KN, Johnson SA, Bizon JL, Maurer AP, Burke SN. Medial prefrontal-perirhinal cortical communication is necessary for flexible response selection. Neurobiol Learn Mem 2016; 137:36-47. [PMID: 27815215 DOI: 10.1016/j.nlm.2016.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
The ability to use information from the physical world to update behavioral strategies is critical for survival across species. The prefrontal cortex (PFC) supports behavioral flexibility; however, exactly how this brain structure interacts with sensory association cortical areas to facilitate the adaptation of response selection remains unknown. Given the role of the perirhinal cortex (PER) in higher-order perception and associative memory, the current study evaluated whether PFC-PER circuits are critical for the ability to perform biconditional object discriminations when the rule for selecting the rewarded object shifted depending on the animal's spatial location in a 2-arm maze. Following acquisition to criterion performance on an object-place paired association task, pharmacological blockade of communication between the PFC and PER significantly disrupted performance. Specifically, the PFC-PER disconnection caused rats to regress to a response bias of selecting an object on a particular side regardless of its identity. Importantly, the PFC-PER disconnection did not interfere with the capacity to perform object-only or location-only discriminations, which do not require the animal to update a response rule across trials. These findings are consistent with a critical role for PFC-PER circuits in rule shifting and the effective updating of a response rule across spatial locations.
Collapse
Affiliation(s)
- Abbi R Hernandez
- McKnight Brain Institute, Department of Neuroscience, University of Florida, United States
| | - Jordan E Reasor
- McKnight Brain Institute, Department of Neuroscience, University of Florida, United States
| | - Leah M Truckenbrod
- McKnight Brain Institute, Department of Neuroscience, University of Florida, United States
| | - Katelyn N Lubke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, United States; Department of Biomedical Engineering, University of Florida, United States
| | - Sarah A Johnson
- McKnight Brain Institute, Department of Neuroscience, University of Florida, United States
| | - Jennifer L Bizon
- McKnight Brain Institute, Department of Neuroscience, University of Florida, United States
| | - Andrew P Maurer
- McKnight Brain Institute, Department of Neuroscience, University of Florida, United States; Department of Biomedical Engineering, University of Florida, United States
| | - Sara N Burke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, United States; Institute on Aging, University of Florida, United States
| |
Collapse
|
43
|
Beas BS, Setlow B, Bizon JL. Effects of acute administration of the GABA(B) receptor agonist baclofen on behavioral flexibility in rats. Psychopharmacology (Berl) 2016; 233:2787-97. [PMID: 27256354 PMCID: PMC4919234 DOI: 10.1007/s00213-016-4321-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
RATIONALE The ability to adjust response strategies when faced with changes in the environment is critical for normal adaptive behavior. Such behavioral flexibility is compromised by experimental disruption of cortical GABAergic signaling, as well as in conditions such as schizophrenia and normal aging that are characterized by cortical hyperexcitability. The current studies were designed to determine whether stimulation of GABAergic signaling using the GABA(B) receptor agonist baclofen can facilitate behavioral flexibility. METHODS Male Fischer 344 rats were trained in a set-shifting task in which they learned to discriminate between two response levers to obtain a food reward. Correct levers were signaled in accordance with two distinct response rules (rule 1: correct lever signaled by a cue light; rule 2: correct lever signaled by its left/right position). The order of rule presentation varied, but they were always presented sequentially, with the trials and errors to reach criterion performance on the second (set shift) rule providing the measure of behavioral flexibility. Experiments determined the effects of the GABA(B) receptor agonist baclofen (intraperitoneal, 0, 1.0, 2.5, and 4.0 mg/kg) administered acutely before the shift to the second rule. RESULTS Baclofen enhanced set-shifting performance. Control experiments demonstrated that this enhancement was not simply due to improved discrimination learning, nor was it due to impaired recall of the initial discrimination rule. CONCLUSIONS The results demonstrate that baclofen can facilitate behavioral flexibility, suggesting that GABA(B) receptor agonists may have utility for treating behavioral dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- B. Sofia Beas
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Barry Setlow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL,Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL
| | - Jennifer L. Bizon
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL,Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
44
|
Discrimination performance in aging is vulnerable to interference and dissociable from spatial memory. ACTA ACUST UNITED AC 2016; 23:339-48. [PMID: 27317194 PMCID: PMC4918781 DOI: 10.1101/lm.042069.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/10/2016] [Indexed: 12/14/2022]
Abstract
Hippocampal-dependent episodic memory and stimulus discrimination abilities are both compromised in the elderly. The reduced capacity to discriminate between similar stimuli likely contributes to multiple aspects of age-related cognitive impairment; however, the association of these behaviors within individuals has never been examined in an animal model. In the present study, young and aged F344×BN F1 hybrid rats were cross-characterized on the Morris water maze test of spatial memory and a dentate gyrus-dependent match-to-position test of spatial discrimination ability. Aged rats showed overall impairments relative to young in spatial learning and memory on the water maze task. Although young and aged learned to apply a match-to-position response strategy in performing easy spatial discriminations within a similar number of trials, a majority of aged rats were impaired relative to young in performing difficult spatial discriminations on subsequent tests. Moreover, all aged rats were susceptible to cumulative interference during spatial discrimination tests, such that error rate increased on later trials of test sessions. These data suggest that when faced with difficult discriminations, the aged rats were less able to distinguish current goal locations from those of previous trials. Increasing acetylcholine levels with donepezil did not improve aged rats' abilities to accurately perform difficult spatial discriminations or reduce their susceptibility to interference. Interestingly, better spatial memory abilities were not significantly associated with higher performance on difficult spatial discriminations. This observation, along with the finding that aged rats made more errors under conditions in which interference was high, suggests that match-to-position spatial discrimination performance may rely on extra-hippocampal structures such as the prefrontal cortex, in addition to the dentate gyrus.
Collapse
|
45
|
Carpenter HE, Kelly KB, Bizon JL, Frazier CJ. Age-related changes in tonic activation of presynaptic versus extrasynaptic γ-amniobutyric acid type B receptors in rat medial prefrontal cortex. Neurobiol Aging 2016; 45:88-97. [PMID: 27459929 DOI: 10.1016/j.neurobiolaging.2016.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/14/2016] [Accepted: 05/15/2016] [Indexed: 01/21/2023]
Abstract
The present study examined the effect of age on both glutamatergic and γ-aminobutyric acid mediated (GABAergic) signaling in the rodent medial prefrontal cortex (mPFC), with an emphasis on revealing novel changes contributing to increased inhibition in age. Whole-cell patch clamp recordings were obtained from layer 2/3 mPFC pyramidal neurons in acute cortical slices prepared from either young (4 months) or aged (20-24 months) male F344 rats. Results indicated that GABAB receptors on GABAergic, but not on glutamatergic, inputs to layer 2/3 pyramidal cells are tonically activated by ambient GABA in young animals and further demonstrated that this form of tonic inhibition is significantly attenuated in aged mPFC. Moreover, concurrent with loss of tonic presynaptic GABAB autoreceptor activation, layer 2/3 pyramidal cells in aged mPFC are subjected to increased tonic activation of extrasynaptic GABAA and GABAB receptors. These data demonstrate a shift in the site of GABAB receptor-mediated inhibitory tone in the aged mPFC that clearly promotes increased inhibition of pyramidal cells in aged animals, and that may plausibly contribute to impaired executive function.
Collapse
Affiliation(s)
- Haley E Carpenter
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kyle B Kelly
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jennifer L Bizon
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Charles J Frazier
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|