1
|
Zheng Y, Li J, Zhu H, Hu J, Sun Y, Xu G. Endocytosis, endoplasmic reticulum, actin cytoskeleton affected in tilapia liver under polystyrene microplastics and BDE 153 acute co-exposure. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110117. [PMID: 39725183 DOI: 10.1016/j.cbpc.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Studies showed that contaminants adhered to the surface of nano-polystyrene microplastics (NPs) have a toxicological effect. Juveniles tilapia were dispersed into four groups: the control group A, 75 nm NPs exposed group B, 5 ng·L-1 2,2',4,4',5,5'-hexabromodiphenyl ether group C (BDE153), and 5 ng·L-1 BDE153 + 75 nm MPs group D, and acutely exposed for 2, 4 and 8 days. The hepatic histopathological change, enzymatic activities, transcriptomics, and proteomics, have been performed in tilapia. The results showed that the enzymatic activities of anti-oxidative (ROS, SOD, EROD), energy (ATP), lipid metabolism (TC, TG, FAS, LPL, ACC), pro-inflammatory (TNFα, IL-1β) and apoptosis (caspase 3) significantly increased at 2 d in BDE153 and the combined group and together in BDE153 group at 8 d. Histological slice showed displaced nucleus by BDE153 exposure and vacuoles appeared in the combined groups. KEGG results revealed that pathways associated with endocytosis, protein processing in endoplasmic reticulum and regulation of actin cytoskeleton were significantly enriched. The selected genes associated with neurocentral development (ganab, diaph3/baiap2a/ddost decreased and increased), lipid metabolism (ldlrap1a decreased, stt3b increased), energy (agap2 decreased, uggt1 increased) were affected under co-exposure, and fibronectin significantly increased via proteome. Our study indicated that endocytosis, protein processing in endoplasmic reticulum, regulation of actin cytoskeleton were affected in tilapia liver under NPs and BDE153 co-exposure.
Collapse
Affiliation(s)
- Yao Zheng
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China.
| | - Jiajia Li
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Haojun Zhu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Jiawen Hu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Yi Sun
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China.
| |
Collapse
|
2
|
McCarroll MN, Sisko E, Gong JH, Teng J, Taylor J, Myers-Turnbull D, Young D, Burley G, Pierce LX, Hibbs RE, Kokel D, Sello JK. A Multimodal, In Vivo Approach for Assessing Structurally and Phenotypically Related Neuroactive Molecules. ACS Chem Neurosci 2024; 15:4171-4184. [PMID: 39287508 PMCID: PMC11587515 DOI: 10.1021/acschemneuro.4c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
A recently reported behavioral screen in larval zebrafish for phenocopiers of known anesthetics and associated drugs yielded an isoflavone. Related isoflavones have also been reported as GABAA potentiators. From this, we synthesized a small library of isoflavones and incorporated an in vivo phenotypic approach to perform structure-behavior relationship studies of the screening hit and related analogs via behavioral profiling, patch-clamp experiments, and whole brain imaging. This revealed that analogs effect a range of behavioral responses, including sedation with and without enhancing the acoustic startle response. Interestingly, a subset of compounds effect sedation and enhancement of motor responses to both acoustic and light stimuli. Patch clamp recordings of cells with a human GABAA receptor confirmed that behavior-modulating isoflavones modify the GABA signaling. To better understand these molecules' nuanced effects on behavior, we performed whole brain imaging to reveal that analogs differentially effect neuronal activity. These studies demonstrate a multimodal approach to assessing activities of neuroactives.
Collapse
Affiliation(s)
- Matthew N. McCarroll
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San Francisco, California 94158, United States
- Institute
for Neurodegenerative Diseases, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Elizabeth Sisko
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Jung Ho Gong
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jinfeng Teng
- Department
of Neurobiology, University of California, San Diego, California 92093, United States
| | - Jack Taylor
- Institute
for Neurodegenerative Diseases, University
of California, San Francisco, San
Francisco, California 94158, United States
- UCSF
Weill Institute for Neurosciences Memory and Aging Center, University of California, San Francisco, California 94158, United States
| | - Douglas Myers-Turnbull
- Institute
for Neurodegenerative Diseases, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Drew Young
- Institute
for Neurodegenerative Diseases, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Grant Burley
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Lain X. Pierce
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Ryan E. Hibbs
- Department
of Neurobiology, University of California, San Diego, California 92093, United States
| | - David Kokel
- Institute
for Neurodegenerative Diseases, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Jason K. Sello
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
3
|
Crowder CM, Forman SA. Systematized Serendipity: Fishing Expeditions for Anesthetic Drugs and Targets. Anesthesiology 2024; 141:997-1006. [PMID: 39240535 PMCID: PMC11461116 DOI: 10.1097/aln.0000000000005153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Most of science involves making observations, forming hypotheses, and testing those hypotheses, to form valid conclusions. However, a distinct, longstanding, and very productive scientific approach does not follow this paradigm; rather, it begins with a screen through a random collection of drugs or genetic variations for a particular effect or phenotype. Subsequently, the identity of the drug or gene is determined, and only then are hypotheses formed and the more standard scientific method employed. This alternative approach is called forward screening and includes methods such as genetic mutant screens, small molecule screens, metabolomics, proteomics, and transcriptomics. This review explains the rational for forward screening approaches and uses examples of screens for mutants with altered anesthetic sensitivities and for novel anesthetics to illustrate the methods and impact of the approach. Forward screening approaches are becoming even more powerful with advances in bioinformatics aided by artificial intelligence.
Collapse
Affiliation(s)
- C. Michael Crowder
- Department of Anesthesiology and Pain Medicine, Department of Genome Sciences, Mitochondrial and Metabolism Center, University of Washington, Seattle, WA 98109
| | - Stuart A. Forman
- Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts and Harvard Medical School, Boston Massachusetts
| |
Collapse
|
4
|
Moisan GJ, Kamath N, Apgar S, Schwehr M, Vedmurthy P, Conner O, Hayes K, Toro CP. Alternative Splicing and Nonsense-Mediated Decay of a Zebrafish GABA Receptor Subunit Transcript. Zebrafish 2024; 21:198-205. [PMID: 37751193 DOI: 10.1089/zeb.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The superfamily of Cys-loop ionotropic neurotransmitter receptors includes those that detect GABA, glutamate, glycine, and acetylcholine. There is ample evidence that many Cys-loop receptor subunit genes include alternatively spliced exons. In this study, we report a novel example of alternative splicing (AS): we show that the 68-bp exon 3 in the zebrafish gabrr2b gene-which codes for the ρ2b GABAAR subunit-is an alternative cassette exon. Skipping of gabrr2b exon 3 results in a downstream frame shift and a premature termination codon (PTC). We provide evidence in larval zebrafish that transcripts containing the PTC are subject to degradation through nonsense-mediated decay. We also compile reports of AS of homologous exons in other Cys-loop receptor genes in multiple species. Our data add to a large body of research demonstrating that exon 3 in Cys-loop receptor genes is a conserved site for AS, the effects of which can vary from novel splice-isoform generation to downregulation of gene expression through transcript degradation.
Collapse
Affiliation(s)
- Gaia J Moisan
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Nitika Kamath
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Shannon Apgar
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Megan Schwehr
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Pooja Vedmurthy
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Olivya Conner
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Kyler Hayes
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Cecilia Phillips Toro
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
- Biology Department, Linfield University, McMinnville, Oregon, USA
| |
Collapse
|
5
|
Gu J, Guo L, Chen C, Ji G, Wang L. Neurobehavioral toxic effects and mechanisms of 2-aminobenzothiazole exposure on zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169495. [PMID: 38142985 DOI: 10.1016/j.scitotenv.2023.169495] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
2-Aminobenzothiazole (NTH), a benzothiazole derivative, exhibits potent biochemical activities and plays a significant role in modern industry. Widespread and intensive utilization of NTH has led to its detection in aquatic environments, encompassing both groundwater and surface water. Despite its wide usage, the effect of NTH on developmental neurotoxicity in aquatic organisms remains uncharted. Therefore, the aim of this investigation was to create exposure models for short- and long-term studies in order to analyze the neurobehavioral toxic impact of NTH (0, 50, 500, and 5000 μg/L) on zebrafish, which includes motor function, anxiety, and memory performance, as well as to examine the mechanism of neurotoxicity. The results revealed a significant suppression of initial embryonic mobility by NTH. However, during short-term exposure experiments, it did not significantly impact the developmental neurobehavioral functions of zebrafish. In addition, significant effects on zebrafish were observed after long-term exposure to 50 and 500 μg/L NTH, mainly impacting locomotion, social behavior, anxiety, and cognitive functions. Moreover, NTH caused oxidative damage in adult zebrafish brain tissue, which was accompanied by abnormal expression of oxidative damage-related genes. Furthermore, the Real-Time PCR results indicated a significant suppression of genes related to exposure to NTH, specifically those in the GABA synthesis pathway (gabrg2, gad2, gad1b, and abat) and the 5-HT synthesis pathway (tph2, tph1b, pet1, and htr1aa). Taken together, this study demonstrates for the first time that chronic exposure to NTH decreases the expression of genes associated with the zebrafish GABA synthesis pathway and the 5-HT synthesis pathway. This suppression is accompanied by oxidative damage, ultimately resulting in neurobehavioral changes related to motor ability, anxiety, and memory performance.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Liguo Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Chen Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
6
|
Clevenger T, Paz J, Stafford A, Amos D, Hayes AW. An Evaluation of Zebrafish, an Emerging Model Analyzing the Effects of Toxicants on Cognitive and Neuromuscular Function. Int J Toxicol 2024; 43:46-62. [PMID: 37903286 DOI: 10.1177/10915818231207966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
An emerging alternative to conventional animal models in toxicology research is the zebrafish. Their accelerated development, regenerative capacity, transparent physical appearance, ability to be genetically manipulated, and ease of housing and care make them feasible and efficient experimental models. Nonetheless, their most esteemed asset is their 70% (+) genetic similarity with the human genome, which allows the model to be used in a variety of clinically relevant studies. With these attributes, we propose the zebrafish is an excellent model for analyzing cognitive and neuromuscular responses when exposed to toxicants. Neurocognition can be readily analyzed using visual discrimination, memory and learning, and social behavior testing. Neuromuscular function can be analyzed using techniques such as the startle response, assessment of activity level, and evaluation of critical swimming speed. Furthermore, selectively mutated zebrafish is another novel application of this species in behavioral and pharmacological studies, which can be exploited in toxicological studies. There is a critical need in biomedical research to discover ethical and cost-effective methods to develop new products, including drugs. Through mutagenesis, zebrafish models have become key in meeting this need by advancing the field in numerous areas of biomedical research.
Collapse
Affiliation(s)
| | - Jakob Paz
- Florida College, Temple Terrace, FL, USA
| | | | | | - A Wallace Hayes
- College of Public Health, University of South Florida, Temple Terrace, FL, USA
| |
Collapse
|
7
|
Geng Y, Zou H, Guo Y, Huang M, Wu Y, Hou L. Chronic exposure to cortisone induces thyroid endocrine disruption and retinal dysfunction in adult female zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167022. [PMID: 37709101 DOI: 10.1016/j.scitotenv.2023.167022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Cortisone has a large content in rivers because of its wide range of medical applications and elimination by organisms that naturally secrete it. As a steroid hormone, cortisone is recognized as a novel endocrine disruptor. Although ecotoxicological effects of the reproductive endocrine system have mainly been reported recently, thyroid endocrine in fish remains relatively less understood. Here, adult female zebrafish were exposed to cortisone at 0.0 (control), 3.2, 38.7, and 326.9 ng/L for 60 days. Evidence in this study came from fish behavior, hormone levels, gene expression, histological and morphological examinations. The results showed that THs (thyroid hormone) level disruption and pathohistological changes occurred in the thyroid gland, which may account for the gene expression changes in the hypothalamus-pituitary-thyroid gland axis. Specifically, more conversion of T4 (thyroxine) to T3 (triiodothyronine) led to an increased TSH (thyroid stimulating hormone) level in plasma. Severe thyroid tissue damage mainly occurred in the zebrafish exposed to 326.9 ng/L of cortisone. Meanwhile, consistent with the THs trend, the fish locomotion activity displayed more anxiety and excitement, the partial blockage of GABA (γ - aminobutyric acid) synthetic pathway genes might be the explanation of the underlying mechanism. Cortisone affected the gene expressions in the visual cycle and the circadian rhythm network also suggested interactions between thyroid endocrine disruption, retinal dysfunction, and abnormal behaviors of zebrafish. In summary, these findings suggest chronic exposure to cortisone induced various adverse effects in adult female zebrafish, which may help us better understand the risk of cortisone to fish in the wild.
Collapse
Affiliation(s)
- Yuxin Geng
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yanfang Guo
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Manlin Huang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yashi Wu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| |
Collapse
|
8
|
Patuel SJ, English C, Lopez-Scarim V, Konig I, Souders CL, Ivantsova E, Martyniuk CJ. The novel insecticide broflanilide dysregulates transcriptional networks associated with ion channels and induces hyperactivity in zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167072. [PMID: 37714344 DOI: 10.1016/j.scitotenv.2023.167072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Broflanilide is a novel insecticide that is classified as a non-competitive γ-aminobutyric acid (GABA) receptor antagonist. However, indiscriminate use can have negative effects on non-target species. The objective of this study was to determine the sub-lethal toxicity potential of broflanilide in early staged zebrafish. Embryos/larvae were assessed for multiple molecular and morphological endpoints following exposure to a range of concentrations of broflanilide. The insecticide did not affect hatch rate, the frequency of deformities, nor did it impact survival of zebrafish at exposure concentrations up to 500 μg/L over a 7-day period from hatch. There was also no effect on oxidative consumption rates in embryos, nor induction of reactive oxygen species in fish exposed up to 100 μg/L broflanilide. As oxidative stress was not prominent as a mechanism, we turned to RNA-seq to identify potential toxicity pathways. Gene networks related to neurotransmitter release and ion channels were altered in zebrafish, consistent with its mechanism of action of modulating GABA receptors, which regulate chloride channels. Noteworthy was that genes related to the circadian clock were induced by 1 μg/L broflanilide exposure. The locomotor activity of larval fish at 7 days was increased (i.e., hyperactivity) by broflanilide exposure based on a visual motor response test, corroborating expression data indicating neurotoxicity and motor dysfunction. This study improves the current understanding of the biological responses in fish to broflanilide exposure and contributes to risk assessment strategies for this novel pesticide.
Collapse
Affiliation(s)
- Sarah J Patuel
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Cole English
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Victoria Lopez-Scarim
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Isaac Konig
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Brazil
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Interdisciplinary Program in Biomedical Sciences, Neuroscience, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
9
|
Martínez-Burguete T, Peña-Marín ES, Llera-Herrera RA, Jiménez-Martínez LD, Martínez-García R, Alvarez-Villagomez CS, Alvarez-González CA. Identification and expression analysis of transcripts involved in taurine biosynthesis during early ontogeny of tropical gar Atractosteus tropicus. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111501. [PMID: 37562582 DOI: 10.1016/j.cbpa.2023.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
In fishes, the availability of taurine is regulated during ontogenetic development, where its endogenous synthesis capacity is species dependent. Thus, different pathways and involved enzymes have been described: pathway I (cysteine sulfinate-dependent pathway), cysteine dioxygenase type 1 (cdo1) and cysteine sulfinic acid decarboxylase (csad); pathway II (cysteic acid pathway), cdo1 and glutamic acid decarboxylase (gad); and pathway III (cysteamine pathway), 2-aminoethanethiol dioxygenase (ado); whereas taurine transporter (taut) is responsible for taurine entry into cells on the cell membrane and the mitochondria. This study determined if the tropical gar (Atractosteus tropicus), an ancient holostean fish model, has the molecular mechanism to synthesize taurine through the identification and analysis expression of transcripts coding for proteins involved in its biosynthesis and transportation, at different embryo-larvae stages and in different organs of juveniles (31 dah). We observed a fluctuating expression of all transcripts involved in the three pathways at all analyzed stages. All transcripts are expressed during the beginning of larval development; however, ado and taut show a peak expression at 9 dah, and all transcripts but csad decreased at 23 dah, when the organism ended the larval period. Furthermore, at 31 dah, we observed taut expression in all examined organs. The transcripts involved in pathways I and III are expressed differently across all organs, whereas pathway II was only observed in the brain, eye, and skin. The results suggested that taurine biosynthesis in tropical gar is regulated during its early development before first feeding, and the pathway might also be organ-type dependent.
Collapse
Affiliation(s)
- Talhia Martínez-Burguete
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, CP.86139 Villahermosa, Tabasco, Mexico.
| | - Emyr Saúl Peña-Marín
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California (UABC), Ensenada 21100, Baja California, Mexico.
| | - Raúl Antonio Llera-Herrera
- Instituto de Ciencias del Mar y Limnología - Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Joel Montes Camarena S/N, PO Box 811, Mazatlán, Sinaloa, Mexico.
| | - Luis Daniel Jiménez-Martínez
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Carretera Nacajuca-Jalpa de Méndez R7a Rivera Alta, C.P. 86200 Jalpa de Méndez, Tabasco, Mexico.
| | - Rafael Martínez-García
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, CP.86139 Villahermosa, Tabasco, Mexico.
| | - Carina Shianya Alvarez-Villagomez
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, CP.86139 Villahermosa, Tabasco, Mexico.
| | - Carlos Alfonso Alvarez-González
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, CP.86139 Villahermosa, Tabasco, Mexico.
| |
Collapse
|
10
|
Wei P, Han G, He M, Wang Y. Retinal Neurotransmitter Alteration in Response to Dopamine D2 Receptor Antagonist from Myopic Guinea Pigs. ACS Chem Neurosci 2023; 14:3357-3367. [PMID: 37647579 DOI: 10.1021/acschemneuro.3c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
This study aimed to investigate the changes in retinal neurotransmitters and the role of the dopamine D2 receptor (D2R) pathway in regulating the myopic refractive state. Tricolor guinea pigs were randomly divided into two groups: the normal control group (NC) and the form-deprivation myopia group (FDM). Animals in the FDM group had their right eye covered with a balloon for 4 weeks. These two groups were further divided into two subgroups based on intravitreal injection with D2R antagonist sulpiride once a week for 3 weeks (NC, NC-Sul, FDM, and FDM-Sul groups). Ultrahigh-performance liquid chromatography-tandem mass spectrometry was used to quantitatively detect the changes in 17 retinal neurotransmitters. Compared to the NC group, the concentrations of dopamine (DA) and γ-aminobutyric acid (GABA) decreased, while those of glutamate (Glu), 3-methoxytyramine (3-MT), and glycine increased, accompanied by an increase in myopic refraction and axial length (AL) in the FDM group. In the FDM-Sul group, glycine and DA levels were upregulated, whereas 3-MT and Glu levels were downregulated, accompanied by a decrease in myopic refraction and AL. The ratio of Glu to GABA (RGG) represents the balance between excitatory and inhibitory neurotransmitters. Notably, RGG changes occurred with corresponding AL changes, which increased in the FDM group and decreased in the FDM-Sul group. Decreased retinal DA concentration, with an increase in Glu, may be involved in the myopia progression. D2R antagonists might effectively slow myopia progression by increasing retinal DA, regulating Glu concentration to match GABA, and maintaining the balance between excitatory and inhibitory neurotransmitters.
Collapse
Affiliation(s)
- Pinghui Wei
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin 300020, PR China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Guoge Han
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin 300020, PR China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Meiqin He
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300192, PR China
| | - Yan Wang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin 300020, PR China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| |
Collapse
|
11
|
Widelski J, Kasica N, Maciąg M, Luca SV, Budzyńska B, Fondai D, Podlasz P, Skalicka-Woźniak K. Simple Coumarins from Peucedanum luxurians Fruits: Evaluation of Anxiolytic Activity and Influence on Gene Expression Related to Anxiety in Zebrafish Model. Int J Mol Sci 2023; 24:ijms24108693. [PMID: 37240050 DOI: 10.3390/ijms24108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Anxiety is one of the most common central nervous system disorders, affecting at least one-quarter of the worldwide population. The medications routinely used for the treatment of anxiety (mainly benzodiazepines) are a cause of addiction and are characterized by many undesirable side effects. Thus, there is an important and urgent need for screening and finding novel drug candidates that can be used in the prevention or treatment of anxiety. Simple coumarins usually do not show side effects, or these effects are much lower than in the case of synthetic drugs acting on the central nervous system (CNS). This study aimed to evaluate the anxiolytic activity of three simple coumarins from Peucedanum luxurians Tamamsch, namely officinalin, stenocarpin isobutyrate, and officinalin isobutyrate, in a 5 dpf larval zebrafish model. Moreover, the influence of the tested coumarins on the expression of genes involved in the neural activity (c-fos, bdnf) or dopaminergic (th1), serotoninergic (htr1Aa, htr1b, htr2b), GABA-ergic (gabarapa, gabarapb), enkephalinergic (penka, penkb), and galaninergic (galn) neurotransmission was assessed by quantitative PCR. All tested coumarins showed significant anxiolytic activity, with officinalin as the most potent compound. The presence of a free hydroxyl group at position C-7 and the lack of methoxy moiety at position C-8 might be key structural features responsible for the observed effects. In addition, officinalin and its isobutyrate upregulated the expression of genes involved in neurotransmission and decreased the expression of genes connected with neural activity. Therefore, the coumarins from P. luxurians might be considered as promising drug candidates for the therapy of anxiety and related disorders.
Collapse
Affiliation(s)
- Jarosław Widelski
- Medicinal Plant Unit, Department of Pharmacognosy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Monika Maciąg
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 20-093 Lublin, Poland
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 20-093 Lublin, Poland
| | - Dafina Fondai
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, 10000 Prishtina, Kosovo
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | | |
Collapse
|
12
|
Kim YS, Sohn SH, Min TJ. Protective Effect of Ulinastatin on Cognitive Function After Hypoxia. Neuromolecular Med 2023; 25:136-143. [PMID: 35917079 DOI: 10.1007/s12017-022-08721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
Ulinastatin (UTI) has neuroprotective properties. Neurologic insults, including hypoxia and use of anesthetic agents, cause postoperative cognitive dysfunction and alter gamma-aminobutyric acid (GABA) function. This study aimed to assess whether UTI could preserve learning and memory using a zebrafish hypoxic behavior model and biomarkers. Zebrafish (6-8 months of age and 2.5-3.5 cm long) were divided into eight groups as follows: phosphate-buffered saline (PBS) control, hypoxia + PBS, UTI (10,000, 50,000, and 100,000 units/kg), and hypoxia with UTI (10,000, 50,000, and 100,000 units/kg) groups. The endpoints of the T-maze experiment included total time, distance moved, and frequency in target or opposite compartment. We also measured the degree of brain infarction using 2,3,5‑triphenyltetrazolium chloride staining, assessed SA-β-galactosidase activity, and examined GABAA receptor expression using real-time polymerase chain reaction. In a dose-dependent manner, UTI affected learning and memory in zebrafish. Despite hypoxia, 100,000 units/kg of UTI preserved preference (time and distance) for the target compartment. More than 50,000 units/kg of UTI also showed reduced hypoxia-induced brain infarction, decreased SA-β-galactosidase levels, and upregulated GABAA receptors. This study demonstrated that the location of the GABAA receptor is affected by hypoxia or UTI.
Collapse
Affiliation(s)
- Young Sung Kim
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Sung-Hwa Sohn
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Too Jae Min
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea.
| |
Collapse
|
13
|
Huang Q, Jia Z, Wu S, Liu F, Wang Y, Song G, Chang X, Zhao C. The acute toxicity, mechanism, bioconcentration and elimination of fluxametamide on zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120808. [PMID: 36464115 DOI: 10.1016/j.envpol.2022.120808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Fluxametamide is a completely novel and the first isoxazoline insecticide used to control agricultural pests and has high insecticidal properties. To expand its usage in the paddy field, its potential toxicological effects on fish are necessary to make clear. In this study, the acute toxicity, bioconcentration and elimination of fluxametamide to zebrafish Danio rerio, and the action mode of it on the heteromeric Drα1β2Sγ2 and Drα1β2S GABA receptor was respectively determined by HPLC and two-electrode voltage clamp technique. Fluxametamide exhibited high toxicity to D. rerio, whereas slightly inhibited the GABA-stimulated current of Drα1β2Sγ2 or Drα1β2S. It showed high bioconcentration level in D. rerio at 0.0314 mg L-1 and 0.157 mg L-1, with bioconcentration factors at steady state of 1491.55 and 2875.28, respectively. The concentration of fluxametamide in D. rerio rapidly decreased from 47.84 ± 0.12 to 9.77 ± 1.13 mg kg-1 in 0.0314 mg L-1 or from 393.19 ± 0.46 to 46.93 ± 2.88 mg kg-1 in 0.157 mg L-1 within 10 days, and steadily kept at a low level after 18 days. In conclusion, fluxametamide has highly acute toxicity to D. rerio, and might induce high bioconcentration in a short time. As we know, this is the first report to provide a theoretical basis for evaluating the potential risk of fluxametamide on fish, and guidance for the application of fluxametamide.
Collapse
Affiliation(s)
- Qiutang Huang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zhongqiang Jia
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Feifan Liu
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yingnan Wang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Genmiao Song
- Shangyu Nutrichem Co., Ltd, No.9 Weijiu Rd., Hangzhou Bay Shangyu Economic and Technological Development Area, Hangzhou, 312369, PR China.
| | - Xiaoli Chang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, PR China.
| | - Chunqing Zhao
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
14
|
Oderberg IM, Goessling W. Biliary epithelial cells are facultative liver stem cells during liver regeneration in adult zebrafish. JCI Insight 2023; 8:163929. [PMID: 36625346 PMCID: PMC9870093 DOI: 10.1172/jci.insight.163929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
The liver is a highly regenerative organ, yet the presence of a dedicated stem cell population remains controversial. Here, we interrogate a severe hepatocyte injury model in adult zebrafish to define that regeneration involves a stem cell population. After near-total hepatocyte ablation, single-cell transcriptomic and high-resolution imaging analyses throughout the entire regenerative timeline reveal that biliary epithelial cells undergo transcriptional and morphological changes to become hepatocytes. As a population, biliary epithelial cells give rise to both hepatocytes and biliary epithelial cells. Biliary epithelial cells proliferate and dedifferentiate to express hepatoblast transcription factors prior to hepatocyte differentiation. This process is characterized by increased MAPK, PI3K, and mTOR signaling, and chemical inhibition of these pathways impairs biliary epithelial cell proliferation and fate conversion. We conclude that, upon severe hepatocyte ablation in the adult liver, biliary epithelial cells act as facultative liver stem cells in an EGFR-PI3K-mTOR-dependent manner.
Collapse
Affiliation(s)
- Isaac M. Oderberg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Volkova YA, Rassokhina IV, Kondrakhin EA, Rossokhin AV, Kolbaev SN, Tihonova TB, Kh. Dzhafarov M, Schetinina MA, Chernoburova EI, Vasileva EV, Dmitrenok AS, Kovalev GI, Sharonova IN, Zavarzin IV. Synthesis and Evaluation of Avermectin–Imidazo[1,2-a]pyridine Hybrids as Potent GABAA Receptor Modulators. Bioorg Chem 2022; 127:105904. [DOI: 10.1016/j.bioorg.2022.105904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 01/08/2023]
|
16
|
Chen H, Siu SWI, Wong CTT, Qiu J, Cheung AKK, Lee SMY. Anti-epileptic Kunitz-like peptides discovered in the branching coral Acropora digitifera through transcriptomic analysis. Arch Toxicol 2022; 96:2589-2608. [PMID: 35604417 DOI: 10.1007/s00204-022-03311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
Approximately 50 million people are suffering from epilepsy worldwide. Corals have been used for treating epilepsy in traditional Chinese medicine, but the mechanism of this treatment is unknown. In this study, we analyzed the transcriptome of the branching coral Acropora digitifera and obtained its Kyoto Encyclopedia of Genes and Genomes (KEGG), EuKaryotic Orthologous Groups (KOG) and Gene Ontology (GO) annotation. Combined with multiple sequence alignment and phylogenetic analysis, we discovered three polypeptides, we named them AdKuz1, AdKuz2 and AdKuz3, from A. digitifera that showed a close relationship to Kunitz-type peptides. Molecular docking and molecular dynamics simulation indicated that AdKuz1 to 3 could interact with GABAA receptor but AdKuz2-GABAA remained more stable than others. The biological experiments showed that AdKuz1 and AdKuz2 exhibited an anti-inflammatory effect by decreasing the aberrant level of nitric oxide (NO), IL-6, TNF-α and IL-1β induced by LPS in BV-2 cells. In addition, the pentylenetetrazol (PTZ)-induced epileptic effect on zebrafish was remarkably suppressed by AdKuz1 and AdKuz2. AdKuz2 particularly showed superior anti-epileptic effects compared to the other two peptides. Furthermore, AdKuz2 significantly decreased the expression of c-fos and npas4a, which were up-regulated by PTZ treatment. In addition, AdKuz2 reduced the synthesis of glutamate and enhanced the biosynthesis of gamma-aminobutyric acid (GABA). In conclusion, the results indicated that AdKuz2 may affect the synthesis of glutamate and GABA and enhance the activity of the GABAA receptor to inhibit the symptoms of epilepsy. We believe, AdKuz2 could be a promising anti-epileptic agent and its mechanism of action should be further investigated.
Collapse
Affiliation(s)
- Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shirley Weng In Siu
- Institute of Science and Environment, University of Saint Joseph, Macao, China
| | - Clarence Tsun Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jianwen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Alex Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China. .,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
17
|
Agues-Barbosa T, da Silva Junior FC, Gomes-de-Lima JN, Batistuzzo de Medeiros SR, Luchiari AC. Behavioral genetics of alcohol's effects in three zebrafish (Danio rerio) populations. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110495. [PMID: 34915060 DOI: 10.1016/j.pnpbp.2021.110495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Alcohol abuse is one of the most dangerous and serious problems for patients and society. Interpopulation studies are important in understanding how genetic background contributes to the effects of alcohol. In this study, we applied a chronic alcohol exposure protocol in three zebrafish populations (Danio rerio; both sexes; AB, TU, and outbred fish - OB). We analyzed the behavioral responses and mRNA expression involved in neurotransmitter metabolism - th1, tph1, ache, ada1, gaba1, gad1b, and bdnf. Locomotion patterns were similar between populations (increased speed after acute alcohol and unaltered locomotion after chronic and withdrawal treatments). All populations exhibited increased expression of genes associated with locomotion (th1, gad1b, and gaba1) after acute alcohol exposure. Anxiety-like responses increased in AB and TU fish during withdrawal and decreased in AB fish after acute alcohol exposure. Genes related to anxiety-like behavior (tph1 and ada1) were overexpressed in AB and TU fish after acute and withdrawal treatments, while OB fish exhibited unaltered responses. Bdnf levels decreased during withdrawal in AB and OB fish, while TU showed upregulated levels in both chronic and withdrawal treatments. Our results suggest that zebrafish populations respond differently to alcohol exposure, which may contribute to understanding the mechanisms underlying alcohol use and dependence. Moreover, we found that a more diverse genetic background (OB) was related to higher variability in behavioral and mRNA expression, demonstrating that inbred populations (AB and TU) may be useful tools in identifying alcohol use and abuse mechanisms.
Collapse
Affiliation(s)
- Thais Agues-Barbosa
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | | | | | | | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil.
| |
Collapse
|
18
|
Barnaby W, Dorman Barclay HE, Nagarkar A, Perkins M, Teicher G, Trapani JG, Downes GB. GABAA α subunit control of hyperactive behavior in developing zebrafish. Genetics 2022; 220:6519832. [PMID: 35106556 PMCID: PMC8982038 DOI: 10.1093/genetics/iyac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
GABAA receptors mediate rapid responses to the neurotransmitter gamma-aminobutyric acid and are robust regulators of the brain and spinal cord neural networks that control locomotor behaviors, such as walking and swimming. In developing zebrafish, gross pharmacological blockade of these receptors causes hyperactive swimming, which is also a feature of many zebrafish epilepsy models. Although GABAA receptors are important to control locomotor behavior, the large number of subunits and homeostatic compensatory mechanisms have challenged efforts to determine subunit-selective roles. To address this issue, we mutated each of the 8 zebrafish GABAA α subunit genes individually and in pairs using a CRISPR-Cas9 somatic inactivation approach and, then, we examined the swimming behavior of the mutants at 2 developmental stages, 48 and 96 h postfertilization. We found that disrupting the expression of specific pairs of subunits resulted in different abnormalities in swimming behavior at 48 h postfertilization. Mutation of α4 and α5 selectively resulted in longer duration swimming episodes, mutations in α3 and α4 selectively caused excess, large-amplitude body flexions (C-bends), and mutation of α3 and α5 resulted in increases in both of these measures of hyperactivity. At 96 h postfertilization, hyperactive phenotypes were nearly absent, suggesting that homeostatic compensation was able to overcome the disruption of even multiple subunits. Taken together, our results identify subunit-selective roles for GABAA α3, α4, and α5 in regulating locomotion. Given that these subunits exhibit spatially restricted expression patterns, these results provide a foundation to identify neurons and GABAergic networks that control discrete aspects of locomotor behavior.
Collapse
Affiliation(s)
- Wayne Barnaby
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | - Akanksha Nagarkar
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Matthew Perkins
- Biology Department and Neuroscience Program, Amherst College, Amherst, MA 01002, USA
| | - Gregory Teicher
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Josef G Trapani
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Biology Department and Neuroscience Program, Amherst College, Amherst, MA 01002, USA
| | - Gerald B Downes
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA,Corresponding author: Biology Department, Neuroscience and Behavior Graduate Program, and Molecular and Cellular Biology Graduate Program, 611 North Pleasant St., Morrill Science Center, Building 4 North, Amherst, MA 01003, USA.
| |
Collapse
|
19
|
Petersen BD, Bertoncello KT, Bonan CD. Standardizing Zebrafish Behavioral Paradigms Across Life Stages: An Effort Towards Translational Pharmacology. Front Pharmacol 2022; 13:833227. [PMID: 35126165 PMCID: PMC8810815 DOI: 10.3389/fphar.2022.833227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Zebrafish is a prominent vertebrate model, with many of its advantages related to its development, life cycle, and translational ability. While a great number of behavioral phenotypes and tasks to evaluate them are available, longitudinal studies across zebrafish life stages are scarce and made challenging because of the differences between protocols and endpoints assessed at each life stage. In this mini review, we highlight the relevance that longitudinal studies could have for neurobehavioral pharmacology using this model. We also present possible strategies to standardize behavior endpoints in domains related to human diseases throughout the life cycle, especially between larvae and adult fish. Furthermore, we discuss the remaining difficulties of these analyses and explore future advances needed to bridge this knowledge gap.
Collapse
Affiliation(s)
- Barbara Dutra Petersen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Carla Denise Bonan,
| |
Collapse
|
20
|
Lentinan Impairs the Early Development of Zebrafish Embryos, Possibly by Disrupting Glucose and Lipid Metabolism. Processes (Basel) 2022. [DOI: 10.3390/pr10010120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
LNT is the major biologically active substance extracted from Lentinus edodes (L. edodes). Although functional and pharmacological studies have demonstrated that LNT has multiple benefits for animals and humans, the safety assessment is far from sufficient. To evaluate the potential safety risk, larval zebrafish were continuously exposed to varying concentrations of LNT for 120 h. The 96 h LC50 of LNT was determined to be 1228 μg/mL, and morphological defects including short body length, reduced eye and swim bladder sizes and yolk sac edema were observed. In addition, LNT exposure significantly reduced the blood flow velocity and locomotor activity of larval zebrafish. The biochemical parameters were also affected, showing reduced glucose, triglyceride and cholesterol levels in zebrafish larvae after being exposed to LNT. Correspondingly, the genes involved in glucose and lipid metabolism were disrupted. In conclusion, the present study demonstrates the adverse potential of high concentrations of LNT on the development of zebrafish larvae in the early life stage.
Collapse
|
21
|
Li J, Lyu L, Wen H, Li Y, Wang X, Zhang Y, Yao Y, Qi X. Comparative transcriptomic analysis of gonadal development and renewal in the ovoviviparous black rockfish (Sebastes schlegelii). BMC Genomics 2021; 22:874. [PMID: 34863110 PMCID: PMC8642938 DOI: 10.1186/s12864-021-08169-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The black rockfish (Sebastes schlegelii) has an ovoviviparous reproductive pattern and long-term sperm storage, resulting in asynchronous gonadal development between the sexes. However, the comprehensive understanding of gonadal development in black rockfish has not yet been achieved. Here, we studied gonadal development and germ cell renewal using histology and RNA-seq. RESULTS In this study, RNA-seq was performed on testes and ovaries to characterize key pathways and genes that are active during development and gamete maturation in black rockfish. Differentially expressed genes (DEGs) were identified and annotated in 4 comparisons (F_III vs. F_IV, F_IV vs. F_V, M_III vs. M_IV and M_IV vs. M_V). Based on analysis of DEGs enriched in the testis, 11 and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were mapped to the M_III vs. M_IV group and the M_IV vs. M_V group, respectively. DEGs in ovarian development were also classified into 10 groups according to their biological functions. The expression patterns of the selected genes determined by qPCR were significantly correlated with the RNA-Seq results, supporting the reliability and accuracy of the RNA-Seq analysis. E2 levels showed down regulation from previtellogenesis to mature stage in female and T level showed down regulation from spermatogenesis to regressed stage in the male. CONCLUSIONS The categories "intercellular interaction and cytoskeleton", "molecule amplification" and "repair in the cell cycle" were revealed to be crucial in testis development and spermatogenesis, as was the biosynthesis of a series of metabolites. Our results provide comprehensive insight into black rockfish gonadal development and provide a basis for further study of reproductive physiology and molecular biology in ovoviviparity teleosts.
Collapse
Affiliation(s)
- Jianshuang Li
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Likang Lyu
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Haishen Wen
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Yun Li
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Xiaojie Wang
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Ying Zhang
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Yijia Yao
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Xin Qi
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China.
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China.
| |
Collapse
|
22
|
Zaupa M, Naini SMA, Younes MA, Bullier E, Duboué ER, Le Corronc H, Soula H, Wolf S, Candelier R, Legendre P, Halpern ME, Mangin JM, Hong E. Trans-inhibition of axon terminals underlies competition in the habenulo-interpeduncular pathway. Curr Biol 2021; 31:4762-4772.e5. [PMID: 34529937 DOI: 10.1016/j.cub.2021.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022]
Abstract
Survival of animals is dependent on the correct selection of an appropriate behavioral response to competing external stimuli. Theoretical models have been proposed and underlying mechanisms are emerging to explain how one circuit is selected among competing neural circuits. The evolutionarily conserved forebrain to midbrain habenulo-interpeduncular nucleus (Hb-IPN) pathway consists of cholinergic and non-cholinergic neurons, which mediate different aversive behaviors. Simultaneous calcium imaging of neuronal cell bodies and of the population dynamics of their axon terminals reveals that signals in the cell bodies are not reflective of terminal activity. We find that axon terminals of cholinergic and non-cholinergic habenular neurons exhibit stereotypic patterns of spontaneous activity that are negatively correlated and localize to discrete subregions of the target IPN. Patch-clamp recordings show that calcium bursts in cholinergic terminals at the ventral IPN trigger excitatory currents in IPN neurons, which precede inhibition of non-cholinergic terminals at the adjacent dorsal IPN. Inhibition is mediated through presynaptic GABAB receptors activated in non-cholinergic habenular neurons upon GABA release from the target IPN. Together, the results reveal a hardwired mode of competition at the terminals of two excitatory neuronal populations, providing a physiological framework to explore the relationship between different aversive responses.
Collapse
Affiliation(s)
- Margherita Zaupa
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Seyedeh Maryam Alavi Naini
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Maroun Abi Younes
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Erika Bullier
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Erik R Duboué
- Jupiter Life Science Initiative, Wilkes Honors College and Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Hervé Le Corronc
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Hédi Soula
- INSERM, Sorbonne Université, Nutriomics, La Pitié Salpétrière, 75013 Paris, France
| | - Sebastien Wolf
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, 75005 Paris, France
| | - Raphaël Candelier
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, 75005 Paris, France
| | - Pascal Legendre
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jean-Marie Mangin
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Elim Hong
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
23
|
Pfaff J, Reinwald H, Ayobahan SU, Alvincz J, Göckener B, Shomroni O, Salinas G, Düring RA, Schäfers C, Eilebrecht S. Toxicogenomic differentiation of functional responses to fipronil and imidacloprid in Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105927. [PMID: 34340001 DOI: 10.1016/j.aquatox.2021.105927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Active substances of pesticides, biocides or pharmaceuticals can induce adverse side effects in the aquatic ecosystem, necessitating environmental hazard and risk assessment prior to substance registration. The freshwater crustacean Daphnia magna is a model organism for acute and chronic toxicity assessment representing aquatic invertebrates. However, standardized tests involving daphnia are restricted to the endpoints immobility and reproduction and thus provide only limited insights into the underlying modes-of-action. Here, we applied transcriptome profiling to a modified D. magna Acute Immobilization test to analyze and compare gene expression profiles induced by the GABA-gated chloride channel blocker fipronil and the nicotinic acetylcholine receptor (nAChR) agonist imidacloprid. Daphnids were expose to two low effect concentrations of each substance followed by RNA sequencing and functional classification of affected gene ontologies and pathways. For both insecticides, we observed a concentration-dependent increase in the number of differentially expressed genes, whose expression changes were highly significantly positively correlated when comparing both test concentrations. These gene expression fingerprints showed virtually no overlap between the test substances and they related well to previous data of diazepam and carbaryl, two substances targeting similar molecular key events. While, based on our results, fipronil predominantly interfered with molecular functions involved in ATPase-coupled transmembrane transport and transcription regulation, imidacloprid primarily affected oxidase and oxidoreductase activity. These findings provide evidence that systems biology approaches can be utilized to identify and differentiate modes-of-action of chemical stressors in D. magna as an invertebrate aquatic non-target organism. The mechanistic knowledge extracted from such data will in future contribute to the development of Adverse Outcome Pathways (AOPs) for read-across and prediction of population effects.
Collapse
Affiliation(s)
- Julia Pfaff
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
| | - Hannes Reinwald
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Steve U Ayobahan
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Julia Alvincz
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Bernd Göckener
- Department Environmental and Food Analysis, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Orr Shomroni
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Rolf-Alexander Düring
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
| | - Christoph Schäfers
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany.
| |
Collapse
|
24
|
Weng Y, Huang Z, Wu A, Yu Q, Lu H, Lou Z, Lu L, Bao Z, Jin Y. Embryonic toxicity of epoxiconazole exposure to the early life stage of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146407. [PMID: 34030390 DOI: 10.1016/j.scitotenv.2021.146407] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Epoxiconazole (EPX), as a broad-spectrum triazole fungicide, is widely used in agriculture to resist pests and diseases, while it may have potential toxicity to non-target organisms. In the present study, early developmental stage zebrafish were used as the subject organisms to assess the toxicity of EPX, and the possible mechanism of toxicity was also discussed by biochemical and transcriptomic analysis. Through embryo toxicity test, we had made it clear that the 96 h LC50 of embryo was 7.204 mg/L, and acute exposure to EPX effected hatching rate, heartbeats, body length and even morphological defects. Then, by being exposed to EPX for 7 days at concentrations of 175 (1/40 LC50), 350 (1/20 LC50) and 700 (1/10 LC50), biochemical parameters were affected, mainly manifested as increase of the triglyceride (TG) level and decrease of glucose content. Correspondingly, the transcription of genes related of glucose metabolism, lipid metabolism and cholesterol metabolism were also affected significantly in larval zebrafish. Moreover, some pathways, including lipid metabolism, glucose metabolism and amino acid metabolism were affected through transcriptome sequencing analysis in the larval zebrafish. Further data analysis based on the sequencing, EPX exposure also affected the expression of genes related to cell apoptosis. We further conformed that the bright fluorescence on the liver and bright spots near the liver by acridine orange staining. In addition, the mRNA levels of apoptosis related genes were also significantly affected in the EPX exposed larval zebrafish. Taken together, the work could provide an insight into toxic effects of EPX on the zebrafish larvae at embryo toxicity and transcriptional levels, providing some evidences for the toxic effects of triazole fungicides on non-target organisms.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuizui Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Anyi Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qianxuan Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Huahui Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ze Lou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Longxi Lu
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang 310051, China.
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
25
|
Mundy PC, Pressly B, Carty DR, Yaghoobi B, Wulff H, Lein PJ. The efficacy of γ-aminobutyric acid type A receptor (GABA AR) subtype-selective positive allosteric modulators in blocking tetramethylenedisulfotetramine (TETS)-induced seizure-like behavior in larval zebrafish with minimal sedation. Toxicol Appl Pharmacol 2021; 426:115643. [PMID: 34265354 PMCID: PMC8514104 DOI: 10.1016/j.taap.2021.115643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022]
Abstract
The chemical threat agent tetramethylenedisulfotetramine (TETS) is a γ-aminobutyric acid type A receptor (GABA AR) antagonist that causes life threatening seizures. Currently, there is no specific antidote for TETS intoxication. TETS-induced seizures are typically treated with benzodiazepines, which function as nonselective positive allosteric modulators (PAMs) of synaptic GABAARs. The major target of TETS was recently identified as the GABAAR α2β3γ2 subtype in electrophysiological studies using recombinantly expressed receptor combinations. Here, we tested whether these in vitro findings translate in vivo by comparing the efficacy of GABAAR subunit-selective PAMs in reducing TETS-induced seizure behavior in larval zebrafish. We tested PAMs targeting α1, α2, α2/3/5, α6, ß2/3, ß1/2/3, and δ subunits and compared their efficacy to the benzodiazepine midazolam (MDZ). The data demonstrate that α2- and α6-selective PAMs (SL-651,498 and SB-205384, respectively) were effective at mitigating TETS-induced seizure-like behavior. Combinations of SB-205384 and MDZ or SL-651,498 and 2–261 (ß2/3-selective) mitigated TETS-induced seizure-like behavior at concentrations that did not elicit sedating effects in a photomotor behavioral assay, whereas MDZ alone caused sedation at the concentration required to stop seizure behavior. Isobologram analyses suggested that SB-205384 and MDZ interacted in an antagonistic fashion, while the effects of SL-651,498 and 2–261 were additive. These results further elucidate the molecular mechanism by which TETS induces seizures and provide mechanistic insight regarding specific countermeasures against this chemical convulsant.
Collapse
Affiliation(s)
- Paige C Mundy
- Department of Molecular Biosciences, University of California, School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Brandon Pressly
- Department of Pharmacology, University of California, School of Medicine, Davis, CA 95616, United States.
| | - Dennis R Carty
- Department of Molecular Biosciences, University of California, School of Veterinary Medicine, Davis, CA 95616, United States
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California, School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Heike Wulff
- Department of Pharmacology, University of California, School of Medicine, Davis, CA 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, School of Veterinary Medicine, Davis, CA 95616, United States.
| |
Collapse
|
26
|
Manchanda A, Bonventre JA, Bugel SM, Chatterjee P, Tanguay R, Johnson CP. Truncation of the otoferlin transmembrane domain alters the development of hair cells and reduces membrane docking. Mol Biol Cell 2021; 32:1293-1305. [PMID: 33979209 PMCID: PMC8351550 DOI: 10.1091/mbc.e20-10-0657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Release of neurotransmitter from sensory hair cells is regulated by otoferlin. Despite the importance of otoferlin in the auditory and vestibular pathways, the functional contributions of the domains of the protein have not been fully characterized. Using a zebrafish model, we investigated a mutant otoferlin with a stop codon at the start of the transmembrane domain. We found that both the phenotype severity and the expression level of mutant otoferlin changed with the age of the zebrafish. At the early developmental time point of 72 h post fertilization, low expression of the otoferlin mutant coincided with synaptic ribbon deficiencies, reduced endocytosis, and abnormal transcription of several hair cell genes. As development proceeded, expression of the mutant otoferlin increased, and both synaptic ribbons and hair cell transcript levels resembled wild type. However, hair cell endocytosis deficits and abnormalities in the expression of GABA receptors persisted even after up-regulation of mutant otoferlin. Analysis of membrane-reconstituted otoferlin measurements suggests a function for the transmembrane domain in liposome docking. We conclude that deletion of the transmembrane domain reduces membrane docking, attenuates endocytosis, and results in developmental delay of the hair cell.
Collapse
Affiliation(s)
- Aayushi Manchanda
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97333
| | - Josephine A Bonventre
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333
| | - Sean M Bugel
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333
| | - Paroma Chatterjee
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97333
| | - Robyn Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333
| | - Colin P Johnson
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97333.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333
| |
Collapse
|
27
|
Costa KCM, Brigante TAV, Fernandes GG, Scomparin DS, Scarante FF, de Oliveira DP, Campos AC. Zebrafish as a Translational Model: An Experimental Alternative to Study the Mechanisms Involved in Anosmia and Possible Neurodegenerative Aspects of COVID-19? eNeuro 2021; 8:ENEURO.0027-21.2021. [PMID: 33952614 PMCID: PMC8174008 DOI: 10.1523/eneuro.0027-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
The Coronavirus disease-2019 (COVID-19) presents a variability of clinical symptoms, ranging from asymptomatic to severe respiratory and systemic conditions. In a cohort of patients, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), beyond the classical respiratory manifestations, induces anosmia. Evidence has suggested SARS-CoV-2-induced anosmia can be the result of neurodegeneration of the olfactory pathway. Neurologic symptoms associated with COVID-19 have been reported; however, the precise mechanism and possible long-lasting effects remain poorly investigated. Preclinical models are valuable tools for describing and testing new possible treatments for neurologic disorders. In this way, the zebrafish (Danio rerio) organism model represents an attractive tool in the field of neuroscience, showing economic and logistic advantages besides genetic and physiologic similarities with mammalian, including the brain structure and functions. Besides, its external embryonic development, high availability of eggs, and fast development allows easy genetic manipulation and fast replications. In the present review, we suggest that the zebrafish model can be advantageous to investigate the neurologic features of COVID-19.
Collapse
Affiliation(s)
- Karla C M Costa
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900,
| | - Tamires A V Brigante
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Gabriel G Fernandes
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Davi S Scomparin
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Franciele F Scarante
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Danielle P de Oliveira
- EcoHumanTox Laboratory, Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, São Paulo, Brazil 14049-900
| | - Alline C Campos
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| |
Collapse
|
28
|
Sadamitsu K, Shigemitsu L, Suzuki M, Ito D, Kashima M, Hirata H. Characterization of zebrafish GABA A receptor subunits. Sci Rep 2021; 11:6242. [PMID: 33737538 PMCID: PMC7973766 DOI: 10.1038/s41598-021-84646-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, exerts its effect through the activation of GABA receptors. GABAA receptors are ligand-gated chloride channels composed of five subunit proteins. Mammals have 19 different GABAA receptor subunits (α1–6, β1–3, γ1–3, δ, ε, π, θ, and ρ1–3), the physiological properties of which have been assayed by electrophysiology. However, the evolutionary conservation of the physiological characteristics of diverged GABAA receptor subunits remains unclear. Zebrafish have 23 subunits (α1, α2a, α2b, α3–5, α6a, α6b, β1–4, γ1–3, δ, π, ζ, ρ1, ρ2a, ρ2b, ρ3a, and ρ3b), but the electrophysiological properties of these subunits have not been explored. In this study, we cloned the coding sequences for zebrafish GABAA receptor subunits and investigated their expression patterns in larval zebrafish by whole-mount in situ hybridization. We also performed electrophysiological recordings of GABA-evoked currents from Xenopus oocytes injected with one or multiple zebrafish GABAA receptor subunit cRNAs and calculated the half-maximal effective concentrations (EC50s) for each. Our results revealed the spatial expressions and electrophysiological GABA sensitivities of zebrafish GABAA receptors, suggesting that the properties of GABAA receptor subunits are conserved among vertebrates.
Collapse
Affiliation(s)
- Kenichiro Sadamitsu
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Leona Shigemitsu
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Marina Suzuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Daishi Ito
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Makoto Kashima
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan.
| |
Collapse
|
29
|
Wang D, Hu G, Wang J, Yan D, Wang M, Yang L, Serikuly N, Alpyshov E, Demin KA, Galstyan DS, Amstislavskaya TG, de Abreu MS, Kalueff AV. Studying CNS effects of Traditional Chinese Medicine using zebrafish models. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113383. [PMID: 32918992 DOI: 10.1016/j.jep.2020.113383] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although Traditional Chinese Medicine (TCM) has a millennia-long history of treating human brain disorders, its complex multi-target mechanisms of action remain poorly understood. Animal models are currently widely used to probe the effects of various TCMs on brain and behavior. The zebrafish (Danio rerio) has recently emerged as a novel vertebrate model organism for neuroscience research, and is increasingly applied for CNS drug screening and development. AIM OF THE STUDY As zebrafish models are only beginning to be applied to studying TCM, we aim to provide a comprehensive review of the TCM effects on brain and behavior in this fish model species. MATERIALS AND METHODS A comprehensive search of published literature was conducted using biomedical databases (Web of Science, Pubmed, Sciencedirect, Google Scholar and China National Knowledge Internet, CNKI), with key search words zebrafish, brain, Traditional Chinese Medicine, herbs, CNS, behavior. RESULTS We recognize the developing utility of zebrafish for studying TCM, as well as outline the existing model limitations, problems and challenges, as well as future directions of research in this field. CONCLUSIONS We demonstrate the growing value of zebrafish models for studying TCM, aiming to improve our understanding of TCM' therapeutic mechanisms and potential in treating brain disorders.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Mengyao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - Erik Alpyshov
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David S Galstyan
- Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Zelman Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
30
|
Kent MR, Kara N, Patton JG. Inhibition of GABA A-ρ receptors induces retina regeneration in zebrafish. Neural Regen Res 2021; 16:367-374. [PMID: 32859800 PMCID: PMC7896201 DOI: 10.4103/1673-5374.286972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A potential treatment for retinal diseases is to induce an endogenous Müller glia (MG)-derived regenerative response to replace damaged neurons. In contrast to mammalian MG, zebrafish MG are capable of mediating spontaneous regeneration. We seek to define the mechanisms that enable retina regeneration in zebrafish in order to identify therapeutic targets to induce mammalian retina regeneration. We previously used pharmacological and genetic methods to inhibit gamma aminobutyric acid A (GABAA) receptors in undamaged zebrafish retinas and showed that such inhibition could induce initiation of retina regeneration, as measured by the dedifferentiation of MG and the appearance of MG-derived proliferating progenitor cells. Here, we show that inhibition of a pharmacologically distinct subset of GABAA receptors (GABAA-ρ) can also induce retina regeneration. Dual inhibition of both GABA receptor subtypes led to enhanced retina regeneration. Gene expression analyses indicate that inhibition of GABAA-ρ receptors induces a canonical retinal regenerative response. Our results support a model in which decreased levels of GABA, such as would occur after retinal cell death or damage, induce dedifferentiation of MG and the generation of proliferating progenitor cells during zebrafish retina regeneration. Animal experiments were approved by the Vanderbilt's Institutional Animal Care and Use Committee (Protocol M1800200) on January 29, 2019.
Collapse
Affiliation(s)
- Matthew R Kent
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Nergis Kara
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
31
|
Gong G, Chen H, Kam H, Chan G, Tang YX, Wu M, Tan H, Tse YC, Xu HX, Lee SMY. In Vivo Screening of Xanthones from Garcinia oligantha Identified Oliganthin H as a Novel Natural Inhibitor of Convulsions. JOURNAL OF NATURAL PRODUCTS 2020; 83:3706-3716. [PMID: 33296199 DOI: 10.1021/acs.jnatprod.0c00963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Epilepsy is a chronic neurological disorder, characterized by recurrent, spontaneous, and transient seizures, and affects more than 70 million people worldwide. Although two dozen antiepileptic drugs (AEDs) are approved and available in the market, seizures remain poorly controlled in one-third of epileptic patients who are suffering from drug resistance or various adverse effects. Recently, the xanthone skeleton has been regarded as an attractive scaffold for the discovery and development of emerging anticonvulsants. We had isolated several dihydroxanthone derivatives previously, including oliganthin H, oliganthin I, and oliganthin N, whose structures were similar and delicately elucidated by spectrum analysis or X-ray crystallographic data, from extracts of leaves of Garcinia oligantha. These xanthone analogues were evaluated for anticonvulsant activity, and a novel xanthone, oliganthin H, has been identified as a sound and effective natural inhibitor of convulsions in zebrafish in vivo. A preliminary structure-activity relationship analysis on the relationship between structures of the xanthone analogues and their activities was also conducted. Oliganthin H significantly suppressed convulsant behavior and reduced to about 25% and 50% of PTZ-induced activity, in 12.5 and 25 μM treatment groups (P < 0.01 and 0.001), respectively. Meanwhile, it reduced seizure activity, velocity, seizure duration, and number of bursts in zebrafish larvae (P < 0.05). Pretreatment of oliganthin H significantly restored aberrant induction of gene expressions including npas4a, c-fos, pyya, and bdnf, as well as gabra1, gad1, glsa, and glula, upon PTZ treatment. In addition, in silico analysis revealed the stability of the oliganthin H-GABAA receptor complex and their detailed binding pattern. Therefore, direct interactions with the GABAA receptor and involvement of downstream GABA-glutamate pathways were possible mechanisms of the anticonvulsant action of oliganthin H. Our findings present the anticonvulsant activity of oliganthin H, provide a novel scaffold for further modifications, and highlight the xanthone skeleton as an attractive and reliable resource for the development of emerging AEDs.
Collapse
Affiliation(s)
- Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
- The Second Affiliated Hospital, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yue-Xun Tang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Yu-Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
32
|
Campos-Rodriguez C, Fredrick E, Ramirez-San Juan E, Olsson R. Enantiomeric N-substituted phthalimides with excitatory amino acids protect zebrafish larvae against PTZ-induced seizures. Eur J Pharmacol 2020; 888:173489. [DOI: 10.1016/j.ejphar.2020.173489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
|
33
|
Shen D, Chen J, Liu D, Shen M, Wang X, Wu Y, Ke S, Macdonald RL, Zhang Q. The GABRG2 F343L allele causes spontaneous seizures in a novel transgenic zebrafish model that can be treated with suberanilohydroxamic acid (SAHA). ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1560. [PMID: 33437759 PMCID: PMC7791267 DOI: 10.21037/atm-20-3745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Mutations in the γ-aminobutyric acid type A (GABAA) receptor γ2 subunit gene, GABRG2, have been associated frequently with epilepsy syndromes with varying severities. Recently, a de novo GABRG2 mutation, c.T1027C, p.F343L, was identified in a patient with an early onset epileptic encephalopathy (EOEE). In vitro, we demonstrated that GABAA receptors containing the mutant γ2(F343L) subunit have impaired trafficking to the cell surface. Here, we aim to validate an in vivo zebrafish model of EOEE associated with the GABRG2 mutation T1027C. Methods We generated a novel transgenic zebrafish (AB strain) that overexpressed mutant human γ2(F343L) subunits and provided an initial characterization of the transgenic Tg(hGABRG2F343L) zebrafish. Results Real-time quantitative PCR and in situ hybridization identified a significant up-regulation of c-fos in the mutant transgenic zebrafish, which has a well-established role in epileptogenesis. In the larval stage 5 days postfertilization (dpf), freely swimming Tg(hGABRG2F343L) zebrafish displayed spontaneous seizure-like behaviors consisting of whole-body shaking and hyperactivity during automated locomotion video tracking, and seizures can be induced by light stimulation. Using RNA sequencing, we investigated transcriptomic changes due to the presence of mutant γ2L(F343L) subunits and have found 524 genes that are differentially expressed, including up-regulation of 33 genes associated with protein processing. More specifically, protein network analysis indicated histone deacetylases (HDACs) as potential therapeutic targets, and suberanilohydroxamic acid (SAHA), a broad HDACs inhibitor, alleviated seizure-like phenotypes in mutant zebrafish larvae. Conclusions Overall, our Tg(hGABRG2F343L) overexpression zebrafish model provides the first example of a human epilepsy-associated GABRG2 mutation resulting in spontaneous seizures in zebrafish. Moreover, HDAC inhibition may be worth investigating as a therapeutic strategy for genetic epilepsies caused by missense mutations in GABRG2 and possibly in other central nervous system genes that impair surface trafficking.
Collapse
Affiliation(s)
- Dingding Shen
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juan Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Liu
- School of Life Science, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuan Ke
- Xinglin College, Nantong University, Nantong, China
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
34
|
Tu X, Li YW, Chen QL, Shen YJ, Liu ZH. Tributyltin enhanced anxiety of adult male zebrafish through elevating cortisol level and disruption in serotonin, dopamine and gamma-aminobutyric acid neurotransmitter pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111014. [PMID: 32888589 DOI: 10.1016/j.ecoenv.2020.111014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Tributyltin (TBT), a widely and persistently distributed organontin, has been well documented to disrupt reproduction and behaviors in animals due to its anti-aromatase activity. TBT has been also reported to enhance anxiety in several fish species, whereas the mechanism underlying remains largely unknown. To investigate the disruption of TBT on fish anxiety and the mechanisms possibly involved, adult male zebrafish (Danio rerio) were treated with TBT (100 and 500 ng/L) for 28 days and anxiety behavior was further investigated using a novel tank dive test. Result showed that TBT treatment significantly enhanced the total time of the fish spent in the lower half, delayed the onset time to the higher half of the tank and increased the total duration of freezing of the fish, indicating an enhanced anxiety in TBT-treated fish. Accordingly, TBT sharply elevated the cortisol levels in plasma in a concentration-dependent manner, suggesting that the elevated cortisol level might be involved in the enhanced anxiety. Although the expression of crha was significantly increased and crhbp was significantly decreased in the brain of TBT-treated fish which is consistent to the elevated cortisol level, the expressions of actha and acthb were sharply down-regulated. In contrast, the expressions of genes responsible for the synthesis and action of serotonin (5-HT) (pet1, thp2 and htr1aa), dopamine (DA) (th1, slc6a3, drd2a and drd2b) and gamma-aminobutyric acid (GABA) (gad2 and gabrg2) were all significantly inhibited. The down-regulation of these pivotal genes acting in 5-HT, DA and GABA neurotransmitter systems in response to TBT corresponded well with the TBT-enhanced anxiety in fish. It was thus strongly suggested that these neurotransmitters might be also involved in TBT-enhanced anxiety in adult male zebrafish. The present study extended our understanding of the neurotoxicity of TBT on the anxiety control and behavioral modulation in fish.
Collapse
Affiliation(s)
- Xin Tu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yan-Jun Shen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
35
|
Maciąg M, Michalak A, Skalicka-Woźniak K, Zykubek M, Ciszewski A, Budzyńska B. Zebrafish and mouse models for anxiety evaluation - A comparative study with xanthotoxin as a model compound. Brain Res Bull 2020; 165:139-145. [PMID: 33049351 DOI: 10.1016/j.brainresbull.2020.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/21/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
The ever-present trend for introducing new drugs of natural origin with anxiolytic properties meets healthcare needs of the population, whose almost 34 % struggles with anxiety-related disorders. At the same time, animal assays that could serve as fast and reliable models of anxiety-like behaviors are of great interest to scientists. Thus, the aim of the present study was to evaluate the utility of the zebrafish model for assessing the influence of natural compounds on anxiety in comparison with the well-known mouse model. Secondly, this study is also the first attempt to investigate the influence of a naturally occurring metabolite, i.e. xanthotoxin, on anxiety-related behaviors. The anxiety level in zebrafish was assessed by measuring thigmotaxis, a specific animal behavior to move closer to the boundaries of an open area and to avoid its center. In mice, the elevated plus maze test was chosen to study anxiety-related behaviors. Our results show that xanthotoxin exerted reversed U-shape effect on anxiety behaviors in both models. The similar pattern of xanthotoxin-induced anxiety-related behaviors in both animal models not only confirms the pharmacological properties of xanthotoxin but also proves the predictive power of the zebrafish model for behavioral research of natural compounds.
Collapse
Affiliation(s)
- Monika Maciąg
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; Department of Biopharmacy, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Maria Zykubek
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Andrzej Ciszewski
- Department of Paediatric Orthopaedics and Rehabilitation, Medical University of Lublin, 6 Gębali Street, 20-093 Lublin, Poland
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland.
| |
Collapse
|
36
|
Shen C, Zhou Y, Tang C, He C, Zuo Z. Developmental exposure to mepanipyrim induces locomotor hyperactivity in zebrafish (Danio rerio) larvae. CHEMOSPHERE 2020; 256:127106. [PMID: 32447115 DOI: 10.1016/j.chemosphere.2020.127106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Mepanipyrim is a widely used fungicide, and residues of mepanipyrim are frequently detected in commodities. However, the neurotoxicity and underlying mechanisms of mepanipyrim are still insufficiently understood. In this study, zebrafish embryos at 0.5-1.0 post-fertilization hours (hpf) were exposed to 0.1, 1, 10 and 100 μg/L mepanipyrim for 7 days. Our results showed that mepanipyrim could cause the locomotor hyperactivity and increase the concentration of γ-amino butyric acid (GABA) and the Na+/K+- and Ca2+-ATPase activities in zebrafish larvae. We have conducted the RNA-sequence and RT-qPCR to analyze the gene expressions. The mRNA expression levels of calcium/sodium ion conduction associated genes were observably up-regulated, demonstrating that mepanipyrim could enhance the cell energy metabolism, the synaptic transmission and skeletal muscle contraction, which were consistent with the locomotor hyperactivity. Meanwhile, exposure to mepanipyrim could significantly change the gene expression levels of gad1, bdnf, nlgn1, and type A and B GABA receptors in zebrafish larvae. This is the first study focusing on the underlying mechanisms of the neurotoxic effects that are induced by mepanipyrim.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yixi Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
37
|
Goodman AC, Wong RY. Differential effects of ethanol on behavior and GABA A receptor expression in adult zebrafish (Danio rerio) with alternative stress coping styles. Sci Rep 2020; 10:13076. [PMID: 32753576 PMCID: PMC7403336 DOI: 10.1038/s41598-020-69980-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Variation in stress responses between individuals are linked to factors ranging from stress coping styles to sensitivity of neurotransmitter systems. Many anxiolytic compounds (e.g. ethanol) can increase stressor engagement through modulation of neurotransmitter systems and are used to investigate stress response mechanisms. There are two alternative suites of correlated behavioral and physiological responses to stressors (stress coping styles) that differ in exploration tendencies: proactive and reactive stress coping styles. By chronically treating individuals differing in stress coping style with ethanol, a GABA-acting drug, we assessed the role of the GABAergic system on the behavioral stress response. Specifically, we investigated resulting changes in stress-related behavior (i.e. exploratory behavior) and whole-brain GABAA receptor subunits (gabra1, gabra2, gabrd, & gabrg2) in response to a novelty stressor. We found that ethanol-treated proactive individuals showed lower stress-related behaviors than their reactive counterparts. Proactive individuals showed significantly higher expression of gabra1, gabra2, and gabrg2 compared to reactive individuals and ethanol treatment resulted in upregulation of gabra1 and gabrg2 in both stress coping styles. These results suggest that impacts of ethanol on stress-related behaviors vary by stress coping style and that expression of select GABAA receptor subunits may be one of the underlying mechanisms.
Collapse
Affiliation(s)
- Alexander C Goodman
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| | - Ryan Y Wong
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| |
Collapse
|
38
|
Maharaj S, El Ahmadie N, Rheingold S, El Chehouri J, Yang L, Souders CL, Martyniuk CJ. Sub-lethal toxicity assessment of the phenylurea herbicide linuron in developing zebrafish (Danio rerio) embryo/larvae. Neurotoxicol Teratol 2020; 81:106917. [PMID: 32712134 DOI: 10.1016/j.ntt.2020.106917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/07/2023]
Abstract
Due to run-off and rain events, agrochemicals can enter water catchments, exerting endocrine disruption effects and toxicity to aquatic organisms. Linuron is a phenylurea herbicide used to control a wide variety of vegetative weeds in agriculture in addition to residential applications. However, there are few studies that quantify its toxicity to early developmental stages of fish. The objectives of this study were to assess the acute toxicity of linuron to zebrafish embryos/larvae by measuring mortality, morphological deformities, oxidative respiration, gene expression, and locomotor activity via the Visual Motor Response test. Zebrafish embryos at ~6-h post-fertilization (hpf) were exposed to either embryo rearing medium (ERM), or one dose of 0.625, 1.25, 2.5, 5, and 10 μM linuron for up to 7 days post-fertilization (dpf) depending on the assay. Zebrafish larvae exposed to linuron displayed pericardial edema, yolk sac edema, and spinal curvature. Oxidative respiration assessments in embryos using the Agilent XFe24 Flux Analyzer revealed that linuron decreased mean basal respiration and oligomycin-induced ATP-linked respiration in 30 hpf embryos at 20 μM after a 24-hour exposure. In 7 dpf larvae, transcript abundance was determined for 6 transcripts that have a role in oxidative respiration (atp06, cox1, cox4-1, cox5a1, cytb, and nd1); the relative abundance of these transcripts was not altered with linuron treatment. A Visual Motor Response test was conducted on 7 dpf larvae to determine whether linuron (0.625 to 5 μM) impaired locomotor activity. Larval activity in the dark period decreased in a dose dependent manner and there were indications of hypoactivity as low as 1.25 μM. Transcript abundance was thus determined for tyrosine hydroxylase (th1) and glutamic acid decarboxylase 67 (gad1b), two rate limiting enzymes that control the production of dopamine and gamma-aminobutyric acid respectively. The mRNA levels of gad1b (p = 0.019) were reduced with increasing concentrations of linuron while th1 (p = 0.056) showed a similar decreasing trend, suggesting that neurotransmitter biosynthesis may be altered with exposure to linuron. This study improves knowledge related to the toxicity mechanisms for linuron and is the first to demonstrate that this anti-androgenic chemical impairs oxidative respiration and exerts neurotoxic effects associated with neurotransmitter biosynthesis during early development. These data are significant for environmental risk assessment of agrochemicals.
Collapse
Affiliation(s)
- Sapna Maharaj
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Nader El Ahmadie
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Spencer Rheingold
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jana El Chehouri
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Lihua Yang
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Christopher L Souders
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
39
|
Wang X, Lv Y, Xie J, Li B, Zhou T, Chen Y, Chen Y, Song J. Brain regions of marine medaka activated by acute and short-term ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137279. [PMID: 32145610 DOI: 10.1016/j.scitotenv.2020.137279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 05/28/2023]
Abstract
Altered behaviors have been reported in many marine fish following exposure to high CO2 concentrations. However, the mechanistic link between elevated CO2 and activation of brain regions in fish is unknown. Herein, we examined the relative quantification and location of c-Fos expression in marine medaka following acute (360 min) and short-term (7 d) exposure to CO2-enriched water (1000 ppm and 1800 ppm CO2). In the control and two treatment groups, pH was stable at 8.21, 7.92 and 7.64, respectively. After acute exposure to seawater acidified by enrichment with CO2, there was a clear upregulation of c-Fos protein in the medaka brain (P < 0.05). c-Fos protein expression peaked after 120 min exposure in the two treatment groups and thereafter began to decline. There were marked increases in c-Fos-labeling in the ventricular and periventricular zones of the cerebral hemispheres and the medulla oblongata. After 1800 ppm CO2 exposure for 7 d, medaka showed significant preference for dark zones during the initial 2 min period. c-Fos protein expression in the ventricular and periventricular zones of the diencephalon in medaka exposed to 1000 ppm and 1800 ppm CO2 were 0.51 ± 0.10 and 1.34 ± 0.30, respectively, which were significantly higher than controls (P < 0.05). Highest doublecortin protein expression occurred in theventricular zones of the diencephalon and mesencephalon. These findings suggest that the ventricular and periventricular zones of the cerebral hemispheres and the medulla oblongata of marine medaka are involved in rapid acid-base regulation. Prolonged ocean acidification may induce cell mitosis and differentiation in the adult medaka brain.
Collapse
Affiliation(s)
- Xiaojie Wang
- Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Yutao Lv
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Jinling Xie
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Baolin Li
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Tangjian Zhou
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Yaqi Chen
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Yi Chen
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Jiakun Song
- Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| |
Collapse
|
40
|
Probst J, Kölker S, Okun JG, Kumar A, Gursky E, Posset R, Hoffmann GF, Peravali R, Zielonka M. Chronic hyperammonemia causes a hypoglutamatergic and hyperGABAergic metabolic state associated with neurobehavioral abnormalities in zebrafish larvae. Exp Neurol 2020; 331:113330. [PMID: 32339612 DOI: 10.1016/j.expneurol.2020.113330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/29/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic hyperammonemia is a common condition affecting individuals with inherited urea cycle disorders resulting in progressive cognitive impairment and behavioral abnormalities. Altered neurotransmission has been proposed as major source of neuronal dysfunction during chronic hyperammonemia, but the molecular pathomechanism has remained incompletely understood. Here we show that chronic exposure to ammonium acetate induces locomotor dysfunction and abnormal feeding behavior in zebrafish larvae, indicative for an impairment of higher brain functions. Biochemically, chronically elevated ammonium concentrations cause enhanced activity of glutamate decarboxylase isoforms GAD1 and GAD2 with increased formation of GABA and concomitant depletion of glutamate, ultimately leading to a dysfunctional hypoglutamatergic and hyperGABAergic metabolic state. Moreover, elevated GABA concentrations are accompanied by increased expression of GABAA receptor subunits alpha-1, gamma-2 and delta, supporting the notion of an increased GABA tone in chronic hyperammonemia. Propionate oxidation as major anaplerotic reaction sufficiently compensates for the transamination-dependent withdrawal of 2-oxoglutarate, thereby preventing bioenergetic dysfunction under chronic hyperammonemic conditions. Thus, our study extends the hypothesis of alterations in the glutamatergic and GABAergic system being an important pathophysiological factor causing neurobehavioral impairment in chronic hyperammonemia. Given that zebrafish larvae have already been successfully used for high-throughput identification of novel compounds to treat inherited neurological diseases, the reported zebrafish model should be considered an important tool for systematic drug screening targeting altered glutamatergic and GABAergic metabolism under chronic hyperammonemic conditions in the future.
Collapse
Affiliation(s)
- Joris Probst
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen G Okun
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Amrish Kumar
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Eduard Gursky
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Roland Posset
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ravindra Peravali
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Matthias Zielonka
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany.
| |
Collapse
|
41
|
Drug-selective Anesthetic Insensitivity of Zebrafish Lacking γ-Aminobutyric Acid Type A Receptor β3 Subunits. Anesthesiology 2020; 131:1276-1291. [PMID: 31567362 DOI: 10.1097/aln.0000000000002963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Transgenic mouse studies suggest that γ-aminobutyric acid type A (GABAA) receptors containing β3 subunits mediate important effects of etomidate, propofol, and pentobarbital. Zebrafish, recently introduced for rapid discovery and characterization of sedative-hypnotics, could also accelerate pharmacogenetic studies if their transgenic phenotypes reflect those of mammals. The authors hypothesized that, relative to wild-type, GABAA-β3 functional knock-out (β3) zebrafish would show anesthetic sensitivity changes similar to those of β3 mice. METHODS Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 mutagenesis was used to create a β3 zebrafish line. Wild-type and β3 zebrafish were compared for fertility, growth, and craniofacial development. Sedative and hypnotic effects of etomidate, propofol, pentobarbital, alphaxalone, ketamine, tricaine, dexmedetomidine, butanol, and ethanol, along with overall activity and thigmotaxis were quantified in 7-day postfertilization larvae using video motion analysis of up to 96 animals simultaneously. RESULTS Xenopus oocyte electrophysiology showed that the wild-type zebrafish β3 gene encodes ion channels activated by propofol and etomidate, while the β3 zebrafish transgene does not. Compared to wild-type, β3 zebrafish showed similar morphology and growth, but more rapid swimming. Hypnotic EC50s (mean [95% CI]) were significantly higher for β3 versus wild-type larvae with etomidate (1.3 [1.0 to 1.6] vs. 0.6 [0.5 to 0.7] µM; P < 0.0001), propofol (1.1 [1.0 to 1.4] vs. 0.7 [0.6 to 0.8] µM; P = 0.0005), and pentobarbital (220 [190 to 240] vs. 130 [94 to 179] μM; P = 0.0009), but lower with ethanol (150 [106 to 213] vs. 380 [340 to 420] mM; P < 0.0001) and equivalent with other tested drugs. Comparing β3 versus wild-type sedative EC50s revealed a pattern similar to hypnosis. CONCLUSIONS Global β3 zebrafish are selectively insensitive to the same few sedative-hypnotics previously reported in β3 transgenic mice, indicating phylogenetic conservation of β3-containing GABAA receptors as anesthetic targets. Transgenic zebrafish are potentially valuable models for sedative-hypnotic mechanisms research.
Collapse
|
42
|
Vossen LE, Cerveny D, Österkrans M, Thörnqvist PO, Jutfelt F, Fick J, Brodin T, Winberg S. Chronic Exposure to Oxazepam Pollution Produces Tolerance to Anxiolytic Effects in Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1760-1769. [PMID: 31934760 DOI: 10.1021/acs.est.9b06052] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Environmental concentrations of the anxiolytic drug oxazepam have been found to disrupt antipredator behaviors of wild fish. Most experiments exposed fish for a week, while evidence from mammals suggests that chronic exposure to therapeutic concentrations of benzodiazepines (such as oxazepam) results in the development of tolerance to the anxiolytic effects. If tolerance can also develop in response to the low concentrations found in the aquatic environment, it could mitigate the negative effects of oxazepam pollution. In the current study, we exposed wild-caught zebrafish to oxazepam (∼7 μg L-1) for 7 or 28 days and evaluated behavioral and physiological parameters at both time points. Females showed reduced diving responses to conspecific alarm pheromone after 7 days, but not after 28 days, indicating that they had developed tolerance to the anxiolytic effects of the drug. Zebrafish males were not affected by this oxazepam concentration, in line with earlier results. Serotonin turnover (ratio 5-HIAA/5-HT) was reduced in exposed females and males after 28 days, indicating that brain neurochemistry had not normalized. Post-confinement cortisol concentrations and gene expression of corticotropin-releasing hormone (CRH) were not affected by oxazepam. We did not find evidence that chronically exposed fish had altered relative expression of GABAA receptor subunits, suggesting that some other still unknown mechanism caused the developed tolerance.
Collapse
Affiliation(s)
- Laura E Vossen
- Department of Neuroscience , Uppsala University , SE-751 24 Uppsala , Sweden
| | - Daniel Cerveny
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses , University of South Bohemia in Ceske Budejovice , Zátiší 728/II , 389 25 Vodňany , Czech Republic
| | - Marcus Österkrans
- Department of Neuroscience , Uppsala University , SE-751 24 Uppsala , Sweden
| | - Per-Ove Thörnqvist
- Department of Neuroscience , Uppsala University , SE-751 24 Uppsala , Sweden
| | - Fredrik Jutfelt
- Department of Biology , Norwegian University of Science and Technology , EU2-167 Trondheim , Norway
| | - Jerker Fick
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental Studies , Swedish University of Agricultural Sciences , SE-901 83 Umeå , Sweden
| | - Svante Winberg
- Department of Neuroscience , Uppsala University , SE-751 24 Uppsala , Sweden
| |
Collapse
|
43
|
GABAa receptor subunits expression in silver catfish (Rhamdia quelen) brain and its modulation by Nectandra grandiflora Nees essential oil and isolated compounds. Behav Brain Res 2019; 376:112178. [PMID: 31454673 DOI: 10.1016/j.bbr.2019.112178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/23/2022]
Abstract
Studies using silver catfish (Rhamdia quelen) as experimental models are often applied to screen essential oils (EO) with GABAergic-mediated effects. However, the expression of GABAa receptors in the silver catfish brain remains unknown. Thus, we assessed whether silver catfish express GABAa receptor subunits associated with sedation/anesthetic process and/or neurological diseases. Additionally, we evaluated the brain expression of GABAa receptor subunits in fish sedated with Nectandra grandiflora EO and its isolated compounds, the fish anesthetic (+)-dehydrofukinone (DHF), and dehydrofukinone epoxide (DFX), eremophil-11-en-10-ol (ERM) and selin-11-en-4-α-ol (SEL), which have GABAa-mediated anxiolytic-like effects in mice. The expression of the subunits gabra1, gabra2, gabra3, gabrb1, gabrd and gabrg2 in the silver catfish brain were assessed after a 24h-sedation bath by real time PCR. Since qPCR data rarely describes mechanisms of action, which are usually found through interactions with receptors, we also performed an antagonist-driven experiment using flumazenil (FMZ). Real-time PCR detected the mRNA expression of all targeted genes in R. quelen brain. The expression of gabra1 was decreased in fish sedated with ERM; EO increased gabra2, gabra3, gabrb1 and gabrg2 expression; SEL increased gabrb1, gabrd and gabrg2 expression. EO and compounds DFX, SEL and ERM induced sustained sedation in fish and FMZ-bath prompted the recovery from ERM- and DFX-induced sedation. Our results suggest that the EO, SEL, ERM and DFX sedative effects involve interaction with the GABAergic system. Our findings support the use of the silver catfish as robust and reliable experimental model to evaluate the efficacy of drugs with putative GABAergic-mediated effects.
Collapse
|
44
|
Cao Y, Yan H, Yu G, Su R. Flumazenil-insensitive benzodiazepine binding sites in GABAA receptors contribute to benzodiazepine-induced immobility in zebrafish larvae. Life Sci 2019; 239:117033. [DOI: 10.1016/j.lfs.2019.117033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/16/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
|
45
|
Frank T, Mönig NR, Satou C, Higashijima SI, Friedrich RW. Associative conditioning remaps odor representations and modifies inhibition in a higher olfactory brain area. Nat Neurosci 2019; 22:1844-1856. [PMID: 31591559 PMCID: PMC6858881 DOI: 10.1038/s41593-019-0495-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/09/2019] [Indexed: 11/30/2022]
Abstract
Intelligent behavior involves associations between high-dimensional sensory representations and behaviorally relevant qualities such as valence. Learning of associations involves plasticity of excitatory connectivity but it remains poorly understood how information flow is reorganized in networks and how inhibition contributes to this process. We trained adult zebrafish in an appetitive odor discrimination task and analyzed odor representations in a specific compartment of telencephalic area Dp, the homolog of olfactory cortex. Associative conditioning enhanced responses with a preference for the positively conditioned odor (CS+). Moreover, conditioning systematically remapped odor representations along an axis in coding space that represented attractiveness (valence). Inter-individual variations in this mapping predicted variations in behavioral odor preference. Photoinhibition of interneurons resulted in specific modifications of odor representations that mirrored effects of conditioning and reduced experience-dependent, inter-individual variations in odor-valence mapping. These results reveal an individualized odor-to-valence map that is shaped by inhibition and reorganized during learning.
Collapse
Affiliation(s)
- Thomas Frank
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Nila R Mönig
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Chie Satou
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki, Japan
| | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
46
|
Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation. Nat Commun 2019; 10:4078. [PMID: 31501447 PMCID: PMC6733874 DOI: 10.1038/s41467-019-11936-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/13/2019] [Indexed: 02/08/2023] Open
Abstract
Anesthetics are generally associated with sedation, but some anesthetics can also increase brain and motor activity—a phenomenon known as paradoxical excitation. Previous studies have identified GABAA receptors as the primary targets of most anesthetic drugs, but how these compounds produce paradoxical excitation is poorly understood. To identify and understand such compounds, we applied a behavior-based drug profiling approach. Here, we show that a subset of central nervous system depressants cause paradoxical excitation in zebrafish. Using this behavior as a readout, we screened thousands of compounds and identified dozens of hits that caused paradoxical excitation. Many hit compounds modulated human GABAA receptors, while others appeared to modulate different neuronal targets, including the human serotonin-6 receptor. Ligands at these receptors generally decreased neuronal activity, but paradoxically increased activity in the caudal hindbrain. Together, these studies identify ligands, targets, and neurons affecting sedation and paradoxical excitation in vivo in zebrafish. Some anesthetics despite being generally associated with sedation, can also increase brain activity—a phenomenon called paradoxical excitation. The authors identified dozens of compounds that generally decrease neuronal activity, but increase activity in the caudal hindbrain of zebrafish.
Collapse
|
47
|
Huang QT, Sheng CW, Jiang J, Tang T, Jia ZQ, Han ZJ, Zhao CQ. Interaction of insecticides with heteromeric GABA-gated chloride channels from zebrafish Danio rerio (Hamilton). JOURNAL OF HAZARDOUS MATERIALS 2019; 366:643-650. [PMID: 30580138 DOI: 10.1016/j.jhazmat.2018.11.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 05/07/2023]
Abstract
The ionotropic GABAA receptor (GABAAR) is the main fast inhibitory post-synaptic receptor and is also an important insecticidal target. Effect of insecticides on fish has attracted intensive attention. However, no systematic study on heteromeric zebrafish GABAAR expressed in oocytes has been reported to date. In this study, the α1 subunit, the β2S subunit lacking 47 amino acid residues compared with the β2L subunit, and the γ2 subunit having five transmembrane domains were isolated from zebrafish Danio rerio. The responses of homomeric and heteromeric (α1, β2S and γ2) channels to agonists and GABAAR-targeted compounds were detected with two-electrode voltage clamp. Dose-dependent responses were observed in heteromeric α1β2S, β2Sγ2, and α1β2Sγ2 GABAR channels with EC50 values at 21.75, 6291, and 33.69 μM for GABA-induced current and 3.28, 155.5, and 3.79 mM for β-alanine-induced current, respectively. However, no response was induced by benzamidine in all GABAR channels. Abamectin, dieldrin, fluralaner and fipronil could strongly inhibited GABA-induced inward current ≥50% at 10-6 M, while α-endosulfan, flufiprole and ethiprole only inhibited GABA-induced current <50%. This study has clarified the interaction of insecticides with the heteromeric GABAAR channel, which could help us further explore the potential function and toxicological importance of GABAARs from D. rerio.
Collapse
Affiliation(s)
- Qiu-Tang Huang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Cheng-Wang Sheng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jie Jiang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Tao Tang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, PR China
| | - Zhong-Qiang Jia
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhao-Jun Han
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chun-Qing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
48
|
Williams CR, Dittman AH, McElhany P, Busch DS, Maher M, Bammler TK, MacDonald JW, Gallagher EP. Elevated CO 2 impairs olfactory-mediated neural and behavioral responses and gene expression in ocean-phase coho salmon (Oncorhynchus kisutch). GLOBAL CHANGE BIOLOGY 2019; 25:963-977. [PMID: 30561876 PMCID: PMC7065673 DOI: 10.1111/gcb.14532] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/06/2018] [Indexed: 05/16/2023]
Abstract
Elevated concentrations of CO2 in seawater can disrupt numerous sensory systems in marine fish. This is of particular concern for Pacific salmon because they rely on olfaction during all aspects of their life including during their homing migrations from the ocean back to their natal streams. We investigated the effects of elevated seawater CO2 on coho salmon (Oncorhynchus kisutch) olfactory-mediated behavior, neural signaling, and gene expression within the peripheral and central olfactory system. Ocean-phase coho salmon were exposed to three levels of CO2 , ranging from those currently found in ambient marine water to projected future levels. Juvenile coho salmon exposed to elevated CO2 levels for 2 weeks no longer avoided a skin extract odor that elicited avoidance responses in coho salmon maintained in ambient CO2 seawater. Exposure to these elevated CO2 levels did not alter odor signaling in the olfactory epithelium, but did induce significant changes in signaling within the olfactory bulb. RNA-Seq analysis of olfactory tissues revealed extensive disruption in expression of genes involved in neuronal signaling within the olfactory bulb of salmon exposed to elevated CO2 , with lesser impacts on gene expression in the olfactory rosettes. The disruption in olfactory bulb gene pathways included genes associated with GABA signaling and maintenance of ion balance within bulbar neurons. Our results indicate that ocean-phase coho salmon exposed to elevated CO2 can experience significant behavioral impairments likely driven by alteration in higher-order neural signal processing within the olfactory bulb. Our study demonstrates that anadromous fish such as salmon may share a sensitivity to rising CO2 levels with obligate marine species suggesting a more wide-scale ecological impact of ocean acidification.
Collapse
Affiliation(s)
- Chase R. Williams
- Department of Environmental and Occupational Health Sciences. University of Washington. Seattle, WA 98105
| | - Andrew H. Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E Seattle WA 98112, USA
- Corresponding author at NOAA fisheries, Andrew H. Dittman, Ph.D., Tel: 206-860-3392,
| | - Paul McElhany
- Conservation Biology Division, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 802 Front Street, Mukilteo, WA 98275, USA
| | - D. Shallin Busch
- Conservation Biology Division, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 802 Front Street, Mukilteo, WA 98275, USA
- Ocean Acidification Program, Office of Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle WA 98112, USA
| | - Michael Maher
- Conservation Biology Division, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 802 Front Street, Mukilteo, WA 98275, USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences. University of Washington. Seattle, WA 98105
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences. University of Washington. Seattle, WA 98105
| | - Evan P. Gallagher
- Department of Environmental and Occupational Health Sciences. University of Washington. Seattle, WA 98105
- Corresponding author at the University of Washington, Evan P. Gallagher, Ph.D., Tel: 1-206-616-4739,
| |
Collapse
|
49
|
O’Connor MJ, Beebe LL, Deodato D, Ball RE, Page AT, VanLeuven AJ, Harris KT, Park S, Hariharan V, Lauderdale JD, Dore TM. Bypassing Glutamic Acid Decarboxylase 1 (Gad1) Induced Craniofacial Defects with a Photoactivatable Translation Blocker Morpholino. ACS Chem Neurosci 2019; 10:266-278. [PMID: 30200754 PMCID: PMC6337688 DOI: 10.1021/acschemneuro.8b00231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
γ-Amino
butyric acid (GABA) mediated signaling is critical
in the central and enteric nervous systems, pancreas, lungs, and other
tissues. It is associated with many neurological disorders and craniofacial
development. Glutamic acid decarboxylase (GAD) synthesizes GABA from
glutamate, and knockdown of the gad1 gene results
in craniofacial defects that are lethal in zebrafish. To bypass this
and enable observation of the neurological defects resulting from
knocking down gad1 expression, a photoactivatable
morpholino oligonucleotide (MO) against gad1 was
prepared by cyclization with a photocleavable linker rendering the
MO inactive. The cyclized MO was stable in the dark and toward degradative
enzymes and was completely linearized upon brief exposure to 405 nm
light. In the course of investigating the function of the ccMOs in
zebrafish, we discovered that zebrafish possess paralogous gad1 genes, gad1a and gad1b. A gad1b MO injected at the 1–4 cell stage
caused severe morphological defects in head development, which could
be bypassed, enabling the fish to develop normally, if the fish were
injected with a photoactivatable, cyclized gad1b MO
and grown in the dark. At 1 day post fertilization (dpf), light activation
of the gad1b MO followed by observation at 3 and
7 dpf led to increased and abnormal electrophysiological brain activity
compared to wild type animals. The photocleavable linker can be used
to cyclize and inactivate any MO, and represents a general strategy
to parse the function of developmentally important genes in a spatiotemporal
manner.
Collapse
Affiliation(s)
- Matthew J. O’Connor
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Lindsey L. Beebe
- Department of Genetics, University of Georgia, Athens, Georgia 30602, United States
| | - Davide Deodato
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Rebecca E. Ball
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - A. Tyler Page
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Ariel J. VanLeuven
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Kyle T. Harris
- Department of Chemistry, University of Georgia, Athens, Georgia 30602 United States
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, Georgia 30602, United States
| | - Vani Hariharan
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - James D. Lauderdale
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
- Neuroscience
Division
of the Biomedical and Health Sciences Institute, Athens, Georgia 30602, United States
| | - Timothy M. Dore
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Department of Chemistry, University of Georgia, Athens, Georgia 30602 United States
| |
Collapse
|
50
|
PeptoGrid-Rescoring Function for AutoDock Vina to Identify New Bioactive Molecules from Short Peptide Libraries. Molecules 2019; 24:molecules24020277. [PMID: 30642123 PMCID: PMC6359344 DOI: 10.3390/molecules24020277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/05/2019] [Accepted: 01/09/2019] [Indexed: 11/20/2022] Open
Abstract
Peptides are promising drug candidates due to high specificity and standout safety. Identification of bioactive peptides de novo using molecular docking is a widely used approach. However, current scoring functions are poorly optimized for peptide ligands. In this work, we present a novel algorithm PeptoGrid that rescores poses predicted by AutoDock Vina according to frequency information of ligand atoms with particular properties appearing at different positions in the target protein’s ligand binding site. We explored the relevance of PeptoGrid ranking with a virtual screening of peptide libraries using angiotensin-converting enzyme and GABAB receptor as targets. A reasonable agreement between the computational and experimental data suggests that PeptoGrid is suitable for discovering functional leads.
Collapse
|