1
|
Zamorano-Cataldo M, Vega-Vásquez I, García-Navarrete C, Toledo J, Bustamante D, Ezquer F, Urra FA, Farfán-Troncoso N, Herrera-Marschitz M, Morales P. Mitochondrial dynamics and sex-specific responses in the developing rat hippocampus: Effect of perinatal asphyxia and mesenchymal stem cell Secretome treatment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119851. [PMID: 39332539 DOI: 10.1016/j.bbamcr.2024.119851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
AIMS Perinatal asphyxia is one of the major causes of neonatal death at birth. Survivors can progress but often suffer from long-term sequelae. We aim to determine the effects of perinatal asphyxia on mitochondrial dynamics and whether mesenchymal stem cell secretome (MSC-S) treatment can alleviate the deleterious effects. MATERIALS AND METHODS Animals were subjected to 21 min of asphyxia at the time of delivery. MSC-S or vehicle was intranasally administered 2 h post-delivery. Mitochondrial mass (D-loop, qPCR), mitochondrial dynamics proteins (Drp1, Fis1 and OPA1, Western blot), mitochondrial dynamics (TOMM20, Immunofluorescence), as well as mitochondrial membrane potential (ΔΨm) (Safranin O) were evaluated at P1 and P7 in the hippocampus. KEY FINDINGS Perinatal asphyxia increased levels of mitochondrial dynamics proteins Drp1 and S-OPA1 at P1 and Fis1 at P7. Mitochondrial density and mass were decreased at P1. Perinatal asphyxia induced sex-specific differences, with increased L-OPA1 in females at P7 and increased mitochondria circularity. In males, asphyxia-exposed animals exhibited a reduced ΔΨm at P7. MSC-S treatment normalised levels of mitochondrial dynamics proteins involved in fission. SIGNIFICANCE This study provides novel insights into the effects of perinatal asphyxia on mitochondrial dynamics in the developing brain and on the therapeutic opportunities provided by mesenchymal stem cell secretome treatment. It also highlights on the relevance of considering sex as a biological variable in perinatal brain injury and therapy development. These findings contribute to the development of targeted, personalised therapies for infants affected by perinatal asphyxia.
Collapse
Affiliation(s)
- M Zamorano-Cataldo
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile
| | - I Vega-Vásquez
- Advanced Scientific Equipment Network (REDECA), Medical Faculty, Universidad de Chile, Chile
| | - C García-Navarrete
- Advanced Scientific Equipment Network (REDECA), Medical Faculty, Universidad de Chile, Chile
| | - J Toledo
- Advanced Scientific Equipment Network (REDECA), Medical Faculty, Universidad de Chile, Chile
| | - D Bustamante
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile
| | - F Ezquer
- Center for Regenerative Medicine, Medical Faculty, Clínica Alemana, Universidad del Desarrollo, Chile
| | - F A Urra
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile; Laboratory of Metabolic Plasticity and Bioenergetics, Molecular & Clinical Pharmacology Program, Medical Faculty, Universidad de Chile, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Medical Faculty, Universidad de Chile, Chile
| | - N Farfán-Troncoso
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile.
| | - M Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile.
| | - P Morales
- Molecular & Clinical Pharmacology Program, ICBM, Medical Faculty, Universidad de Chile, Chile; Department of Neuroscience, Medical Faculty, Universidad de Chile, Chile.
| |
Collapse
|
2
|
Tabatabai TS, Salehi M, Rezakhani L, Arabpour Z, Djalilian AR, Alizadeh M. Decellularization of various tissues and organs through chemical methods. Tissue Cell 2024; 91:102573. [PMID: 39393204 PMCID: PMC11993266 DOI: 10.1016/j.tice.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.
Collapse
Affiliation(s)
- Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Jiang XL, Zhang ZB, Feng CX, Lin CJ, Yang H, Tan LL, Ding X, Xu LX, Li G, Pan T, Qin ZH, Sun B, Feng X, Li M. PHLDA1 contributes to hypoxic ischemic brain injury in neonatal rats via inhibiting FUNDC1-mediated mitophagy. Acta Pharmacol Sin 2024; 45:1809-1820. [PMID: 38750074 PMCID: PMC11336168 DOI: 10.1038/s41401-024-01292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/14/2024] [Indexed: 08/22/2024]
Abstract
Hypoxia-ischemia (HI) is one of the main causes of neonatal brain injury. Mitophagy has been implicated in the degradation of damaged mitochondria and cell survival following neonatal brain HI injury. Pleckstrin homology-like domain family A member 1 (PHLDA1) plays vital roles in the progression of various disorders including the regulation of oxidative stress, the immune responses and apoptosis. In the present study we investigated the role of PHLDA1 in HI-induced neuronal injury and further explored the mechanisms underlying PHLDA1-regulated mitophagy in vivo and in vitro. HI model was established in newborn rats by ligation of the left common carotid artery plus exposure to an oxygen-deficient chamber with 8% O2 and 92% N2. In vitro studies were conducted in primary hippocampal neurons subjected to oxygen and glucose deprivation/-reoxygenation (OGD/R). We showed that the expression of PHLDA1 was significantly upregulated in the hippocampus of HI newborn rats and in OGD/R-treated primary neurons. Knockdown of PHLDA1 in neonatal rats via lentiviral vector not only significantly ameliorated HI-induced hippocampal neuronal injury but also markedly improved long-term cognitive function outcomes, whereas overexpression of PHLDA1 in neonatal rats via lentiviral vector aggravated these outcomes. PHLDA1 knockdown in primary neurons significantly reversed the reduction of cell viability and increase in intracellular reactive oxygen species (ROS) levels, and attenuated OGD-induced mitochondrial dysfunction, whereas overexpression of PHLDA1 decreased these parameters. In OGD/R-treated primary hippocampal neurons, we revealed that PHLDA1 knockdown enhanced mitophagy by activating FUNDC1, which was abolished by FUNDC1 knockdown or pretreatment with mitophagy inhibitor Mdivi-1 (25 μM). Notably, pretreatment with Mdivi-1 or the knockdown of FUNDC1 not only increased brain infarct volume, but also abolished the neuroprotective effect of PHLDA1 knockdown in HI newborn rats. Together, these results demonstrate that PHLDA1 contributes to neonatal HI-induced brain injury via inhibition of FUNDC1-mediated neuronal mitophagy.
Collapse
Affiliation(s)
- Xiao-Lu Jiang
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Zu-Bin Zhang
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China.
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsycho Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Chen-Xi Feng
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Chen-Jie Lin
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Hui Yang
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Lan-Lan Tan
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Li-Xiao Xu
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Gen Li
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Tao Pan
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Zheng-Hong Qin
- Institute of Health Technology, Global Institute of Software Technology, Qingshan Road, Suzhou Science & Technology Tower, Hi-Tech Area, Suzhou, 215163, China
| | - Bin Sun
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Xing Feng
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China.
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China.
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Mei Li
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
4
|
Kong W, Lu C. Role of mitochondria in neonatal hypoxic-ischemic encephalopathy. Histol Histopathol 2024; 39:991-1000. [PMID: 38314617 DOI: 10.14670/hh-18-710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Neonatal hypoxic-ischemic encephalopathy, an important cause of death as well as long-term disability in survivors, is caused by oxygen and glucose deprivation, and limited blood flow. Following hypoxic-ischemic injury in the neonatal brain, three main biochemical damages (excitotoxicity, oxidative stress, and exacerbated inflammation) are triggered. Mitochondria are involved in all three cascades. Mitochondria are the nexus of metabolic pathways to offer most of the energy that our body needs. Hypoxic-ischemic injury affects the characteristics of mitochondria, including dynamics, permeability, and ATP production, which also feed back into the process of neonatal hypoxic-ischemic encephalopathy. Mitochondria can be a cellular hub in inflammation, which is another main response of the injured neonatal brain. Some treatments for neonatal hypoxic-ischemic encephalopathy affect the function of mitochondria or target mitochondria, including therapeutic hypothermia and erythropoietin. This review presents the main roles of mitochondria in neonatal hypoxic-ischemic encephalopathy and discusses some potential treatments directed at mitochondria, which may foster the development of new therapeutic strategies for this encephalopathy.
Collapse
Affiliation(s)
- Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Cheng Lu
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Xu P, Liu Y, Wang J, Zhang A, Wang K, Wang Z, Fang Y, Wang X, Zhang J. Gender-specific prognosis models reveal differences in subarachnoid hemorrhage patients between sexes. CNS Neurosci Ther 2024; 30:e14894. [PMID: 39107957 PMCID: PMC11303446 DOI: 10.1111/cns.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) represents a severe stroke subtype. Our study aims to develop gender-specific prognostic prediction models derived from distinct prognostic factors observed among different-gender patients. METHODS Inclusion comprised SAH-diagnosed patients from January 2014 to March 2016 in our institution. Collected data encompassed patients' demographics, admission severity, treatments, imaging findings, and complications. Three-month post-discharge prognoses were obtained via follow-ups. Analyses assessed gender-based differences in patient information. Key factors underwent subgroup analysis, followed by univariate and multivariate analyses to identify gender-specific prognostic factors and establish/validate gender-specific prognostic models. RESULTS A total of 929 patients, with a median age of 57 (16) years, were analyzed; 372 (40%) were male, and 557 (60%) were female. Differences in age, smoking history, hypertension, aneurysm presence, and treatment interventions existed between genders (p < 0.01), yet no disparity in prognosis was noted. Subgroup analysis explored hypertension history, aneurysm presence, and treatment impact, revealing gender-specific variations in these factors' influence on the disease. Screening identified independent prognostic factors: age, SEBES score, admission GCS score, and complications for males; and age, admission GCS score, intraventricular hemorrhage, treatment interventions, symptomatic vasospasm, hydrocephalus, delayed cerebral ischemia, and seizures for females. Evaluation and validation of gender-specific models yielded an AUC of 0.916 (95% CI: 0.878-0.954) for males and 0.914 (95% CI: 0.885-0.944) for females in the ROC curve. Gender-specific prognostic models didn't significantly differ from the overall population-based model (model 3) but exhibited robust discriminative ability and clinical utility. CONCLUSION Variations in baseline and treatment-related factors among genders contribute partly to gender-based prognosis differences. Independent prognostic factors vary by gender. Gender-specific prognostic models exhibit favorable prognostic performance.
Collapse
Affiliation(s)
- Penglei Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Yuchun Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
| | - Junjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of MedicineZhejiang University School of MedicineYiwuChina
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Kaikai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Zefeng Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
- Brain Research InstituteZhejiang UniversityZhejiangChina
- MOE Frontier Science Center for Brain Science & Brain‐Machine IntegrationZhejiang UniversityZhejiangChina
| |
Collapse
|
6
|
Knapskog AB, Edwin TH, Ueland PM, Ulvik A, Fang EF, Eldholm RS, Halaas NB, Giil LM, Saltvedt I, Watne LO, Aksnes M. Sex-specific associations of kynurenic acid with neopterin in Alzheimer's disease. Alzheimers Res Ther 2024; 16:167. [PMID: 39068471 PMCID: PMC11282793 DOI: 10.1186/s13195-024-01531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Sex differences in neuroinflammation could contribute to women's increased risk of Alzheimer's disease (AD), providing rationale for exploring sex-specific AD biomarkers. In AD, dysregulation of the kynurenine pathway (KP) contributes to neuroinflammation and there is some evidence of sex differences in KP metabolism. However, the sex-specific associations between KP metabolism and biomarkers of AD and neuroinflammation need to be explored further. METHODS Here we investigate sex differences in cerebrospinal fluid concentrations of seven KP metabolites and sex-specific associations with established AD biomarkers and neopterin, an indicator of neuroinflammation. This study included 311 patients with symptomatic AD and 105 age-matched cognitively unimpaired (CU) controls, followed for up to 5 years. RESULTS We found sex differences in KP metabolites in the AD group, with higher levels of most metabolites in men, while there were no sex differences in the CU group. In line with this, more KP metabolites were significantly altered in AD men compared to CU men, and there was a trend in the same direction in AD women. Furthermore, we found sex-specific associations between kynurenic acid and the kynurenic acid/quinolinic acid ratio with neopterin, but no sex differences in the associations between KP metabolites and clinical progression. DISCUSSION In our cohort, sex differences in KP metabolites were restricted to AD patients. Our results suggest that dysregulation of the KP due to increased inflammation could contribute to higher AD risk in women.
Collapse
Affiliation(s)
- Anne-Brita Knapskog
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | - Trine Holt Edwin
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | | | | | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
- The Norwegian Centre On Healthy Ageing (NO-Age), Oslo, Norway
| | - Rannveig Sakshaug Eldholm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Geriatric Medicine, St. Olavs Hospital, Trondheim University Hospital, 7006, Trondheim, Norway
| | - Nathalie Bodd Halaas
- Oslo Delirium Research Group, Oslo University Hospital, 0450, Oslo, Norway
- Department of Geriatric Medicine, University of Oslo, 0315, Oslo, Norway
| | - Lasse M Giil
- Neuro-SysMed, Department of Internal Medicine, Haraldsplass Deaconess Hospital, 5892, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Geriatric Medicine, St. Olavs Hospital, Trondheim University Hospital, 7006, Trondheim, Norway
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Oslo University Hospital, 0450, Oslo, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, 1478, Lørenskog, Norway
- Department of Geriatric Medicine, Akershus University Hospital, 1478, Lørenskog, Norway
| | - Mari Aksnes
- Department of Geriatric Medicine, University of Oslo, 0315, Oslo, Norway.
| |
Collapse
|
7
|
Bjornson KJ, Vanderplow AM, Bhasker AI, Cahill ME. Increased regional activity of a pro-autophagy pathway in schizophrenia as a contributor to sex differences in the disease pathology. Cell Rep Med 2024; 5:101652. [PMID: 39019008 PMCID: PMC11293356 DOI: 10.1016/j.xcrm.2024.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/14/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Based on recent genome-wide association studies, it is theorized that altered regulation of autophagy contributes to the pathophysiology of schizophrenia and bipolar disorder. As activity of autophagy-regulatory pathways is controlled by discrete phosphorylation sites on the relevant proteins, phospho-protein profiling is one of the few approaches available for enabling a quantitative assessment of autophagic activity in the brain. Despite this, a comprehensive phospho-protein assessment in the brains of schizophrenia and bipolar disorder subjects is currently lacking. Using this direction, our broad screening identifies an increase in AMP-activated protein kinase (AMPK)-mediated phospho-activation of the pro-autophagy protein beclin-1 solely in the prefrontal cortex of female, but not male, schizophrenia subjects. Using a reverse translational approach, we surprisingly find that this increase in beclin-1 activity facilitates synapse formation and enhances cognition. These findings are interpreted in the context of human studies demonstrating that female schizophrenia subjects have a lower susceptibility to cognitive dysfunction than males.
Collapse
Affiliation(s)
- Kathryn J Bjornson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amanda M Vanderplow
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aishwarya I Bhasker
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael E Cahill
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Cucinotta L, Mannino D, Filippone A, Romano A, Esposito E, Paterniti I. The role of autophagy in Parkinson's disease: a gender difference overview. Front Pharmacol 2024; 15:1408152. [PMID: 38933683 PMCID: PMC11199695 DOI: 10.3389/fphar.2024.1408152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies have demonstrated dysregulation of the autophagy pathway in patients with Parkinson's disease (PD) and in animal models of PD, highlighting its emerging role in disease. In particular, several studies indicate that autophagy, which is an essential degradative process for the damaged protein homeostasis and the management of cell balance, can manifest significant variations according to gender. While some evidence suggests increased autophagic activation in men with PD, women may have distinct regulatory patterns. In this review, we examined the existing literature on gender differences in PD-associated autophagic processes, focusing on the autophagy related proteins (ATGs) and leucine rich repeat kinase 2 (LRRK2) genes. Also, this review would suggest that an in-depth understanding of these gender differences in autophagic processes could open new perspectives for personalized therapeutic strategies, promoting more effective and targeted management of PD.
Collapse
Affiliation(s)
- Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Wang W, Ma X, Bhatta S, Shao C, Zhao F, Fujioka H, Torres S, Wu F, Zhu X. Intraneuronal β-amyloid impaired mitochondrial proteostasis through the impact on LONP1. Proc Natl Acad Sci U S A 2023; 120:e2316823120. [PMID: 38091289 PMCID: PMC10740390 DOI: 10.1073/pnas.2316823120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondrial dysfunction plays a critical role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial proteostasis regulated by chaperones and proteases in each compartment of mitochondria is critical for mitochondrial function, and it is suspected that mitochondrial proteostasis deficits may be involved in mitochondrial dysfunction in AD. In this study, we identified LONP1, an ATP-dependent protease in the matrix, as a top Aβ42 interacting mitochondrial protein through an unbiased screening and found significantly decreased LONP1 expression and extensive mitochondrial proteostasis deficits in AD experimental models both in vitro and in vivo, as well as in the brain of AD patients. Impaired METTL3-m6A signaling contributed at least in part to Aβ42-induced LONP1 reduction. Moreover, Aβ42 interaction with LONP1 impaired the assembly and protease activity of LONP1 both in vitro and in vivo. Importantly, LONP1 knockdown caused mitochondrial proteostasis deficits and dysfunction in neurons, while restored expression of LONP1 in neurons expressing intracellular Aβ and in the brain of CRND8 APP transgenic mice rescued Aβ-induced mitochondrial deficits and cognitive deficits. These results demonstrated a critical role of LONP1 in disturbed mitochondrial proteostasis and mitochondrial dysfunction in AD and revealed a mechanism underlying intracellular Aβ42-induced mitochondrial toxicity through its impact on LONP1 and mitochondrial proteostasis.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Xiaopin Ma
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Sabina Bhatta
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Changjuan Shao
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University, Cleveland, OH44106
| | - Sandy Torres
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Fengqin Wu
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| |
Collapse
|
10
|
Xu YH, Xu JB, Chen LL, Su W, Zhu Q, Tong GL. Protective mechanisms of quercetin in neonatal rat brain injury induced by hypoxic-ischemic brain damage (HIBD). Food Sci Nutr 2023; 11:7649-7663. [PMID: 38107093 PMCID: PMC10724619 DOI: 10.1002/fsn3.3684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 12/19/2023] Open
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is a leading cause of infant mortality worldwide. This study explored whether quercetin (Que) exerts neuroprotective effects in a rat model of HIBD. A total of 36 seven-day-old Sprague-Dawley rats were divided into control, Que, HI, and HI + Que groups. The Rice method was used to establish HIBD in HI and HI + Que rats, which were treated with hypoxia (oxygen concentration of 8%) for 2 h after ligation of the left common carotid artery. The rats in the HI + Que group were intraperitoneally injected with Que (30 mg/kg) 1 h before hypoxia, and the rats in the Que group were only injected with the same amount of Que. Brain tissues were harvested 24 h postoperation and assessed by hematoxylin and eosin staining, 2,3,5-triphenyltetrazolium chloride staining, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay; relative gene and protein levels were evaluated by RT-qPCR, IHC, or western blot (WB) assay. Brain tissue morphologies were characterized by transmission electron microscopy (TEM); LC3B protein levels were assessed by immunofluorescence staining. Escape latencies and platform crossing times were significantly improved (p < .05) in HI + Que groups; infarct volume significantly decreased (p < .001), whereas the numbers of autophagic bodies and apoptotic cells increased and decreased, respectively. Meanwhile, NLRX1, ATG7, and Beclin1 expressions were significantly upregulated, and mTOR and TIM23 expressions, LC3B protein level, and LC 3II/LC 3I ratio were significantly downregulated. Que exerted neuroprotective effects in a rat model of HIBD by regulating NLRX1 and autophagy.
Collapse
Affiliation(s)
- Yan-Hong Xu
- Anhui Provincial Children's Hospital Hefei China
| | - Jin-Bo Xu
- Anhui Provincial Children's Hospital Hefei China
| | - Lu-Lu Chen
- Anhui Provincial Children's Hospital Hefei China
| | - Wei Su
- Anhui Provincial Children's Hospital Hefei China
| | - Qing Zhu
- Anhui Provincial Children's Hospital Hefei China
| | | |
Collapse
|
11
|
Bensalem J, Teong XT, Hattersley KJ, Hein LK, Fourrier C, Liu K, Hutchison AT, Heilbronn LK, Sargeant TJ. Basal autophagic flux measured in blood correlates positively with age in adults at increased risk of type 2 diabetes. GeroScience 2023; 45:3549-3560. [PMID: 37498479 PMCID: PMC10643809 DOI: 10.1007/s11357-023-00884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Preclinical data show that autophagy delays age-related disease. It has been postulated that age-related disease is-at least in part-caused by an age-related decline in autophagy. However, autophagic flux has never been measured in humans across a spectrum of aging in a physiologically relevant context. To address this critical gap in knowledge, the objective of this cross-sectional observational study was to measure basal autophagic flux in whole blood taken from people at elevated risk of developing type 2 diabetes and correlate it with chronological age. During this study, 119 people were recruited and five people were excluded during sample analysis such that 114 people were included in the final analysis. Basal autophagic flux measured in blood and correlations with parameters such as age, body weight, fat mass, AUSDRISK score, blood pressure, glycated hemoglobin HbA1c, blood glucose and insulin, blood lipids, high-sensitivity C-reactive protein, plasma protein carbonylation, and plasma β-hexosaminidase activity were analysed. Despite general consensus in the literature that autophagy decreases with age, we found that basal autophagic flux increased with age in this human cohort. This is the first study to report measurement of basal autophagic flux in a human cohort and its correlation with age. This increase in basal autophagy could represent a stress response to age-related damage. These data are significant not only for their novelty but also because they will inform future clinical studies and show that measurement of basal autophagic flux in a human cohort is feasible.
Collapse
Affiliation(s)
- Julien Bensalem
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Xiao Tong Teong
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kathryn J Hattersley
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Leanne K Hein
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Célia Fourrier
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kai Liu
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Amy T Hutchison
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Leonie K Heilbronn
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy J Sargeant
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
12
|
Jagečić D, Petrović DJ, Šimunić I, Isaković J, Mitrečić D. The Oxygen and Glucose Deprivation of Immature Cells of the Nervous System Exerts Distinct Effects on Mitochondria, Mitophagy, and Autophagy, Depending on the Cells' Differentiation Stage. Brain Sci 2023; 13:910. [PMID: 37371388 DOI: 10.3390/brainsci13060910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Perinatal brain damage, one of the most common causes of lifelong impairment, is predominantly caused by a lack of oxygen and glucose during early development. These conditions, in turn, affect cells of the nervous tissue through various stages of their maturation. To quantify the influence of these factors on cell differentiation and mitochondrial parameters, we exposed neural cell precursors to oxygen and glucose deprivation (OGD) during three stages of their differentiation: day 1, day 7, and day 14 (D1, D7, and D14, respectively). The obtained results show that OGD slows down cellular differentiation and causes cell death. Regardless of the level of cell maturity, the overall area of the mitochondria, their length, and the branching of their filaments decreased uniformly when exposed to OGD-related stress. Moreover, the cells in all stages of differentiation exhibited an increase in ROS production, hyperpolarization of the mitochondrial membrane, and autophagy. Interestingly, day 7 was the only stage in which a significant increase in mitochondrial fission, along with measurable instances of mitophagy, were detected. Taken together, the results of this study suggest that, apart from common reactions to a sudden lack of oxygen and glucose, cells in specific stages of neural differentiation can also exhibit increased preferences for mitochondrial fission and mitophagy. Such findings could play a role in guiding the future development of novel therapeutic approaches targeting perinatal brain damage during specific stages of nervous system development.
Collapse
Affiliation(s)
- Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
| | - Dražen Juraj Petrović
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
- Genos d.o.o., Laboratory for Glycobiology, 10 000 Zagreb, Croatia
| | - Iva Šimunić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
| | - Jasmina Isaković
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
- Omnion Research International, 10 000 Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
13
|
Moruno-Manchon J, Noh B, McCullough L. Sex-biased autophagy as a potential mechanism mediating sex differences in ischemic stroke outcome. Neural Regen Res 2023; 18:31-37. [PMID: 35799505 PMCID: PMC9241419 DOI: 10.4103/1673-5374.340406] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stroke is the second leading cause of death and a major cause of disability worldwide, and biological sex is an important determining factor in stroke incidence and pathology. From childhood through adulthood, men have a higher incidence of stroke compared with women. Abundant research has confirmed the beneficial effects of estrogen in experimental ischemic stroke but genetic factors such as the X-chromosome complement can also play an important role in determining sex differences in stroke. Autophagy is a self-degrading cellular process orchestrated by multiple core proteins, which leads to the engulfment of cytoplasmic material and degradation of cargo after autophagy vesicles fuse with lysosomes or endosomes. The levels and the activity of components of these signaling pathways and of autophagy-related proteins can be altered during ischemic insults. Ischemic stroke activates autophagy, however, whether inhibiting autophagy after stroke is beneficial in the brain is still under a debate. Autophagy is a potential mechanism that may contribute to differences in stroke progression between the sexes. Furthermore, the effects of manipulating autophagy may also differ between the sexes. Mechanisms that regulate autophagy in a sex-dependent manner in ischemic stroke remain unexplored. In this review, we summarize clinical and pre-clinical evidence for sex differences in stroke. We briefly introduce the autophagy process and summarize the effects of gonadal hormones in autophagy in the brain and discuss X-linked genes that could potentially regulate brain autophagy. Finally, we review pre-clinical studies that address the mechanisms that could mediate sex differences in brain autophagy after stroke.
Collapse
|
14
|
Adeyemo T, Jaiyesimi A, Bumgardner JG, Lohr C, Banerjee A, McKenna MC, Waddell J. Choline Improves Neonatal Hypoxia-Ischemia Induced Changes in Male but Not Female Rats. Int J Mol Sci 2022; 23:13983. [PMID: 36430459 PMCID: PMC9694200 DOI: 10.3390/ijms232213983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Choline is an essential nutrient with many roles in brain development and function. Supplementation of choline in early development can have long-lasting benefits. Our experiments aimed to determine the efficacy of choline supplementation in a postnatal day (PND) 10 rat model of neonatal hypoxia ischemia (HI) at term using both male and female rat pups. Choline (100 mg/kg) or saline administration was initiated the day after birth and given daily for 10 or 14 consecutive days. We determined choline's effects on neurite outgrowth of sex-specific cultured cerebellar granule cells after HI with and without choline. The magnitude of tissue loss in the cerebrum was determined at 72 h after HI and in adult rats. The efficacy of choline supplementation in improving motor ability and learning, tested using eyeblink conditioning, were assessed in young adult male and female rats. Overall, we find that choline improves neurite outgrowth, short-term histological measures and learning ability in males. Surprisingly, choline did not benefit females, and appears to exacerbate HI-induced changes.
Collapse
Affiliation(s)
- Tayo Adeyemo
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Ayodele Jaiyesimi
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Jill G. Bumgardner
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Charity Lohr
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Mary C. McKenna
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
16
|
Tang T, Hu L, Liu Y, Fu X, Li J, Yan F, Cao S, Chen G. Sex-Associated Differences in Neurovascular Dysfunction During Ischemic Stroke. Front Mol Neurosci 2022; 15:860959. [PMID: 35431804 PMCID: PMC9012443 DOI: 10.3389/fnmol.2022.860959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 12/28/2022] Open
Abstract
Neurovascular units (NVUs) are basic functional units in the central nervous system and include neurons, astrocytes and vascular compartments. Ischemic stroke triggers not only neuronal damage, but also dissonance of intercellular crosstalk within the NVU. Stroke is sexually dimorphic, but the sex-associated differences involved in stroke-induced neurovascular dysfunction are studied in a limited extend. Preclinical studies have found that in rodent models of stroke, females have less neuronal loss, stronger repairing potential of astrocytes and more stable vascular conjunction; these properties are highly related to the cerebroprotective effects of female hormones. However, in humans, these research findings may be applicable only to premenopausal stroke patients. Women who have had a stroke usually have poorer outcomes compared to men, and because stoke is age-related, hormone replacement therapy for postmenopausal women may exacerbate stroke symptoms, which contradicts the findings of most preclinical studies. This stark contrast between clinical and laboratory findings suggests that understanding of neurovascular differences between the sexes is limited. Actually, apart from gonadal hormones, differences in neuroinflammation as well as genetics and epigenetics promote the sexual dimorphism of NVU functions. In this review, we summarize the confirmed sex-associated differences in NVUs during ischemic stroke and the possible contributing mechanisms. We also describe the gap between clinical and preclinical studies in terms of sexual dimorphism.
Collapse
Affiliation(s)
- Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Liu
- Department of Ultrasonography, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Shenglong Cao,
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Gao Chen,
| |
Collapse
|
17
|
Nair S, Leverin AL, Rocha-Ferreira E, Sobotka KS, Thornton C, Mallard C, Hagberg H. Induction of Mitochondrial Fragmentation and Mitophagy after Neonatal Hypoxia-Ischemia. Cells 2022; 11:cells11071193. [PMID: 35406757 PMCID: PMC8997592 DOI: 10.3390/cells11071193] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia-ischemia (HI) leads to immature brain injury mediated by mitochondrial stress. If damaged mitochondria cannot be repaired, mitochondrial permeabilization ensues, leading to cell death. Non-optimal turnover of mitochondria is critical as it affects short and long term structural and functional recovery and brain development. Therefore, disposal of deficient mitochondria via mitophagy and their replacement through biogenesis is needed. We utilized mt-Keima reporter mice to quantify mitochondrial morphology (fission, fusion) and mitophagy and their mechanisms in primary neurons after Oxygen Glucose Deprivation (OGD) and in brain sections after neonatal HI. Molecular mechanisms of PARK2-dependent and -independent pathways of mitophagy were investigated in vivo by PCR and Western blotting. Mitochondrial morphology and mitophagy were investigated using live cell microscopy. In primary neurons, we found a primary fission wave immediately after OGD with a significant increase in mitophagy followed by a secondary phase of fission at 24 h following recovery. Following HI, mitophagy was upregulated immediately after HI followed by a second wave at 7 days. Western blotting suggests that both PINK1/Parkin-dependent and -independent mechanisms, including NIX and FUNDC1, were upregulated immediately after HI, whereas a PINK1/Parkin mechanism predominated 7 days after HI. We hypothesize that excessive mitophagy in the early phase is a pathologic response which may contribute to secondary energy depletion, whereas secondary mitophagy may be involved in post-HI regeneration and repair.
Collapse
Affiliation(s)
- Syam Nair
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden; (A.-L.L.); (E.R.-F.); (K.S.S.); (C.M.); (H.H.)
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
- Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden
- Correspondence:
| | - Anna-Lena Leverin
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden; (A.-L.L.); (E.R.-F.); (K.S.S.); (C.M.); (H.H.)
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Eridan Rocha-Ferreira
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden; (A.-L.L.); (E.R.-F.); (K.S.S.); (C.M.); (H.H.)
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
- Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden
| | - Kristina S. Sobotka
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden; (A.-L.L.); (E.R.-F.); (K.S.S.); (C.M.); (H.H.)
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK;
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden; (A.-L.L.); (E.R.-F.); (K.S.S.); (C.M.); (H.H.)
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden; (A.-L.L.); (E.R.-F.); (K.S.S.); (C.M.); (H.H.)
- Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden
| |
Collapse
|
18
|
Mitochondrial dynamics in the neonatal brain - a potential target following injury? Biosci Rep 2022; 42:231001. [PMID: 35319070 PMCID: PMC8965818 DOI: 10.1042/bsr20211696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/08/2023] Open
Abstract
The impact of birth asphyxia and its sequelae, hypoxic–ischaemic (HI) brain injury, is long-lasting and significant, both for the infant and for their family. Treatment options are limited to therapeutic hypothermia, which is not universally successful and is unavailable in low resource settings. The energy deficits that accompany neuronal death following interruption of blood flow to the brain implicate mitochondrial dysfunction. Such HI insults trigger mitochondrial outer membrane permeabilisation leading to release of pro-apoptotic proteins into the cytosol and cell death. More recently, key players in mitochondrial fission and fusion have been identified as targets following HI brain injury. This review aims to provide an introduction to the molecular players and pathways driving mitochondrial dynamics, the regulation of these pathways and how they are altered following HI insult. Finally, we review progress on repurposing or repositioning drugs already approved for other indications, which may target mitochondrial dynamics and provide promising avenues for intervention following brain injury. Such repurposing may provide a mechanism to fast-track, low-cost treatment options to the clinic.
Collapse
|
19
|
Role of Mitophagy in the Pathogenesis of Stroke: From Mechanism to Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6232902. [PMID: 35265262 PMCID: PMC8898771 DOI: 10.1155/2022/6232902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria can supply adenosine triphosphate (ATP) to the tissue, which can regulate metabolism during the pathologic process and is also involved in the pathophysiology of neuronal injury after stroke. Recent studies have suggested that selective autophagy could play important roles in the pathophysiological process of stroke, especially mitophagy. It is usually mediated by the PINK1/Parkin-independent pathway or PINK1/Parkin-dependent pathway. Moreover, mitophagy may be a potential target in the therapy of stroke because the control of mitophagy is neuroprotective in stroke in vitro and in vivo. In this review, we briefly summarize recent researches in mitophagy, introduce the role of mitophagy in the pathogenesis of stroke, then highlight the strategies targeting mitophagy in the treatment of stroke, and finally propose several issues in the treatment of stroke by targeting mitophagy.
Collapse
|
20
|
Beikoghli Kalkhoran S, Kararigas G. Oestrogenic Regulation of Mitochondrial Dynamics. Int J Mol Sci 2022; 23:ijms23031118. [PMID: 35163044 PMCID: PMC8834780 DOI: 10.3390/ijms23031118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biological sex influences disease development and progression. The steroid hormone 17β-oestradiol (E2), along with its receptors, is expected to play a major role in the manifestation of sex differences. E2 exerts pleiotropic effects in a system-specific manner. Mitochondria are one of the central targets of E2, and their biogenesis and respiration are known to be modulated by E2. More recently, it has become apparent that E2 also regulates mitochondrial fusion–fission dynamics, thereby affecting cellular metabolism. The aim of this article is to discuss the regulatory pathways by which E2 orchestrates the activity of several components of mitochondrial dynamics in the cardiovascular and nervous systems in health and disease. We conclude that E2 regulates mitochondrial dynamics to maintain the mitochondrial network promoting mitochondrial fusion and attenuating mitochondrial fission in both the cardiovascular and nervous systems.
Collapse
|
21
|
Sierra-Fonseca JA, Rodriguez M, Themann A, Lira O, Flores-Ramirez FJ, Vargas-Medrano J, Gadad BS, Iñiguez SD. Autophagy Induction and Accumulation of Phosphorylated Tau in the Hippocampus and Prefrontal Cortex of Adult C57BL/6 Mice Subjected to Adolescent Fluoxetine Treatment. J Alzheimers Dis 2021; 83:1691-1702. [PMID: 34420960 DOI: 10.3233/jad-210475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Fluoxetine (FLX) represents the antidepressant of choice for the management of pediatric mood-related illnesses. Accumulating preclinical evidence suggests that ontogenic FLX exposure leads to deregulated affect-related phenotypes in adulthood. Mood-related symptomatology constitutes a risk-factor for various neurological disorders, including Alzheimer's disease (AD), making it possible for juvenile FLX history to exacerbate the development of neurodegenerative diseases. OBJECTIVE Because AD is characterized by the pathological accumulation of hyperphosphorylated tau, which can result from impaired function of protein degradation pathways, such as autophagy and the ubiquitin-proteasome system (UPS), we evaluated the long-term effects of adolescent FLX exposure on these pathways, using mice as a model system. METHODS We subjected C57BL/6 adolescent male mice to FLX (20 mg/kg/day) from postnatal day (PD) 35 to PD49. Twenty-one days after the last FLX injection (i.e., adulthood; PD70), mice were euthanized and, using immunoblotting analysis, we evaluated protein markers of autophagy (Beclin-1, LC3-II, p62) and the UPS (K48-pUb), as well as AD-associated forms of phosphorylated tau, within the hippocampus and prefrontal cortex. RESULTS Juvenile FLX pre-exposure mediated long-term changes in the expression of protein markers (increased LC3-II and decreased p62) that is consistent with autophagy activation, particularly in the prefrontal cortex. Furthermore, FLX history induced persistent accumulation of AD-associated variants of tau in both the hippocampus and prefrontal cortexConclusion: Adolescent FLX treatment may have enduring effects in the neuronal protein degradation machinery, which could adversely influence clearance of abnormal proteins, potentially predisposing individuals to developing AD in later life.
Collapse
Affiliation(s)
| | - Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | | | - Javier Vargas-Medrano
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Bharathi S Gadad
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
22
|
Sierra-Fonseca JA, Hamdan JN, Cohen AA, Cardenas SM, Saucedo S, Lodoza GA, Gosselink KL. Neonatal Maternal Separation Modifies Proteostasis Marker Expression in the Adult Hippocampus. Front Mol Neurosci 2021; 14:661993. [PMID: 34447296 PMCID: PMC8383781 DOI: 10.3389/fnmol.2021.661993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Exposure to early-life stress (ELS) can persistently modify neuronal circuits and functions, and contribute to the expression of misfolded and aggregated proteins that are hallmarks of several neurodegenerative diseases. The healthy brain is able to clear dysfunctional proteins through the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP). Accumulating evidence indicates that impairment of these pathways contributes to enhanced protein aggregation and neurodegeneration. While stress is a known precipitant of neurological decline, few specific mechanistic links underlying this relationship have been identified. We hypothesized that neonatal maternal separation (MatSep), a well-established model of ELS, has the ability to alter the levels of UPS and ALP components in the brain, and thus has the potential to disrupt proteostasis. The expression of proteostasis-associated protein markers was evaluated by immunoblotting in the hippocampus and cortex of adult Wistar rats that were previously subjected to MatSep. We observed multiple sex- and MatSep-specific changes in the expression of proteins in the ALP, mitophagy, and UPS pathways, particularly in the hippocampus of adult animals. In contrast, MatSep had limited influence on proteostasis marker expression in the cortex of adult animals. Our results indicate that MatSep can selectively modify the intracellular protein degradation machinery in ways that may impact the development and progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Jorge A. Sierra-Fonseca
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Jameel N. Hamdan
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Alexis A. Cohen
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
- Neuroscience Program, Smith College, Northampton, MA, United States
| | - Sonia M. Cardenas
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Sigifredo Saucedo
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Gabriel A. Lodoza
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Kristin L. Gosselink
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
- Department of Physiology and Pathology, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| |
Collapse
|
23
|
Cerebral blood volume increment after resuscitation measured by near-infrared time-resolved spectroscopy can estimate degree of hypoxic-ischemic insult in newborn piglets. Sci Rep 2021; 11:13096. [PMID: 34162942 PMCID: PMC8222402 DOI: 10.1038/s41598-021-92586-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Neonatal hypoxic–ischemic encephalopathy is a notable cause of neonatal death and developmental disabilities. To achieve better outcomes, it is important in treatment strategy selection to categorize the degree of hypoxia ischemia and evaluate dose response. In an asphyxia piglet model with histopathological brain injuries that we previously developed, animals survived 5 days after insult and showed changes in cerebral blood volume (CBV) that reflected the severity of injuries. However, little is known about the relationship between changes in CBV during and after insult. In this study, an HI event was induced by varying the amount and timing of inspired oxygen in 20 anesthetized piglets. CBV was measured using near-infrared time-resolved spectroscopy before, during, and 6 h after insult. Change in CBV was calculated as the difference between the peak CBV value during insult and the value at the end of insult. The decrease in CBV during insult was found to correlate with the increase in CBV within 6 h after insult. Heart rate exhibited a similar tendency to CBV, but blood pressure did not. Because the decrement in CBV was larger in severe HI, the CBV increment immediately after insult is considered useful for assessing degree of HI insult.
Collapse
|
24
|
Yang LJ, Cui H. Olig2 knockdown alleviates hypoxic-ischemic brain damage in newborn rats. Histol Histopathol 2021; 36:675-684. [PMID: 34013967 DOI: 10.14670/hh-18-344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Neuronal damage is an important pathological mechanism in neonatal hypoxic-ischemic brain damage (HIBD). We found in our previous studies that oligodendrocyte transcription factor 2 (Olig2) downregulation was able to increase cell survival in the brain. However, the specific mechanism has yet to be clarified. METHODS Sprague-Dawley rats aged 3 d were randomly divided into three groups: the normal control group, the Olig2-RNAi group, and the RNAi-negative control group. The normal control group received no treatment, the Olig2-RNAi group received the Olig2 RNAi adenovirus, and the RNAi-negative control group was given the control adenovirus after the completion of the HIBD model. Infarct lesions and their volumes were observed by triphenyltetrazolium chloride (TTC) staining 3 d after the completion of the adenovirus local injection. The condition of the tissue was characterized by hematoxylin-eosin staining 7 d after the model was established, and cell viability was determined by azure methylene blue staining. Subcellular damage was analyzed by transmission electron microscopy. Rotarod analysis was performed to detect moving behavior ability and an MWM assay was conducted to evaluate the memory. RESULTS TTC staining showed a smaller brain injury area in the Olig2-RNAi group than in the RNAi-negative control group. Hematoxylin-eosin staining indicated the presence of severe cell injury in the hippocampal region after HIBD, which improved after Olig2 knockdown. Azure methylene blue staining and electron microscopy results suggested that the cells improved after Olig2 knockdown. The rats stayed longer on the rotating rod, and their latency in the water maze test was gradually shortened relative to that of the rats in the Olig2-RNAi negative control group. CONCLUSION Olig2 knockdown can promote the repair of hypoxic-ischemic brain damage in newborn rats.
Collapse
Affiliation(s)
- L J Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - H Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
25
|
Wu J, Bai Y, Wang Y, Ma J. Melatonin and regulation of autophagy: Mechanisms and therapeutic implications. Pharmacol Res 2020; 163:105279. [PMID: 33161138 DOI: 10.1016/j.phrs.2020.105279] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential subcellular units that generate basic energy for the cell, as well as influence Ca2+ flux, apoptosis, and cell signaling. Mitophagy can selectively remove impaired mitochondria to preserve mitochondrial function, which is crucial for normal cellular maintenance. Mitochondrial dysfunction and mitophagy are widely reported to be linked to various pathogeneses. In addition, there is increasing evidence regarding the beneficial role of melatonin in the regulation and intervention of mitophagy progression. In this review, we focus on specific pathological conditions, including ischemia/reperfusion injury (IRI), cancer and neurodegenerative diseases, and elucidate the essential role of melatonin in the modulation of mitophagy in each of these distinct disorders.
Collapse
Affiliation(s)
- Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yaguang Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
26
|
Uzor NE, Scheihing DM, Kim GS, Moruno-Manchon JF, Zhu L, Reynolds CR, Stephenson JM, Holmes A, McCullough LD, Tsvetkov AS. Aging lowers PEX5 levels in cortical neurons in male and female mouse brains. Mol Cell Neurosci 2020; 107:103536. [PMID: 32777345 PMCID: PMC7484460 DOI: 10.1016/j.mcn.2020.103536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 01/10/2023] Open
Abstract
Peroxisomes exist in nearly every cell, oxidizing fats, synthesizing lipids and maintaining redox balance. As the brain ages, multiple pathways are negatively affected, but it is currently unknown if peroxisomal proteins are affected by aging in the brain. While recent studies have investigated a PEX5 homolog in aging C. elegans models and found that it is reduced in aging, it is unclear if PEX5, a mammalian peroxisomal protein that plays a role in peroxisomal homeostasis and degradation, is affected in the aging brain. To answer this question, we first determined the amount of PEX5, in brain homogenates from young (3 months) and aged (26 through 32+ months of age) wild-type mice of both sexes. PEX5 protein was decreased in aged male brains, but this reduction was not significant in female brains. RNAScope and real-time qPCR analyses showed that Pex5 mRNA was also reduced in aged male brain cortices, but not in females. Immunohistochemistry assays of cortical neurons in young and aged male brains showed that the amount of neuronal PEX5 was reduced in aged male brains. Cortical neurons in aged female mice also had reduced PEX5 levels in comparison to younger female mice. In conclusion, total PEX5 levels and Pex5 gene expression both decrease with age in male brains, and neuronal PEX5 levels lower in an age-dependent manner in the cortices of animals of both sexes.
Collapse
Affiliation(s)
- Ndidi-Ese Uzor
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA
| | - Diego Morales Scheihing
- Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA
| | - Gab Seok Kim
- Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA
| | - Jose Felix Moruno-Manchon
- Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA
| | - Liang Zhu
- Biostatistics and Epidemiology Research Design, University of Texas Health Science Center at Houston, Houston 77030, TX, USA
| | - Caroline R Reynolds
- Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA
| | - Jessica M Stephenson
- Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA
| | - Aleah Holmes
- Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA
| | - Louise D McCullough
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA; UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston 77030, TX, USA
| | - Andrey S Tsvetkov
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA; UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston 77030, TX, USA.
| |
Collapse
|
27
|
Ajoolabady A, Aslkhodapasandhokmabad H, Aghanejad A, Zhang Y, Ren J. Mitophagy Receptors and Mediators: Therapeutic Targets in the Management of Cardiovascular Ageing. Ageing Res Rev 2020; 62:101129. [PMID: 32711157 DOI: 10.1016/j.arr.2020.101129] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
Mitophagy serves as a cardinal regulator in the maintenance of mitochondrial integrity, function, and cardiovascular homeostasis, through the fine control and governance of cellular metabolism, ATP production, redox balance, and mitochondrial quality and quantity control. As a unique form of selective autophagy, mitophagy specifically recognizes and engulfs long-lived or damaged (depolarized) mitochondria through formation of the double-membraned intracellular organelles - mitophagosomes, ultimately resulting in lysosomal degradation. Levels of mitophagy are reported to be altered in pathological settings including cardiovascular diseases and biological ageing although the precise nature of mitophagy change in ageing and ageing-associated cardiovascular deterioration remains poorly defined. Ample clinical and experimental evidence has depicted a convincing tie between cardiovascular ageing and altered mitophagy. In particular, ageing perturbs multiple enigmatic various signal machineries governing mitophagy, mitochondrial quality, and mitochondrial function, contributing to ageing-elicited anomalies in the cardiovascular system. This review will update novel regulatory mechanisms of mitophagy especially in the perspective of advanced ageing, and discuss how mitophagy dysregulation may be linked to cardiovascular abnormalities in ageing. We hope to pave the way for development of new therapeutic strategies against the growing health and socieconomical issue of cardiovascular ageing through targeting mitophagy.
Collapse
|
28
|
Rodríguez M, Valez V, Cimarra C, Blasina F, Radi R. Hypoxic-Ischemic Encephalopathy and Mitochondrial Dysfunction: Facts, Unknowns, and Challenges. Antioxid Redox Signal 2020; 33:247-262. [PMID: 32295425 DOI: 10.1089/ars.2020.8093] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Hypoxic-ischemic events due to intrapartum complications represent the second cause of neonatal mortality and initiate an acute brain disorder known as hypoxic-ischemic encephalopathy (HIE). In HIE, the brain undergoes primary and secondary energy failure phases separated by a latent phase in which partial neuronal recovery is observed. A hypoxic-ischemic event leads to oxygen restriction causing ATP depletion, neuronal oxidative stress, and cell death. Mitochondrial dysfunction and enhanced oxidant formation in brain cells are characteristic phenomena associated with energy failure. Recent Advances: Mitochondrial sources of oxidants in neurons include complex I of the mitochondrial respiratory chain, as a key contributor to O2•- production via succinate by a reverse electron transport mechanism. The reaction of O2•- with nitric oxide (•NO) yields peroxynitrite, a mitochondrial and cellular toxin. Quantitation of the redox state of cytochrome c oxidase, through broadband near-infrared spectroscopy, represents a promising monitoring approach to evaluate mitochondrial dysfunction in vivo in humans, in conjunction with the determination of cerebral oxygenation and their correlation with the severity of brain injury. Critical Issues: The energetic failure being a key phenomenon in HIE connected with the severity of the encephalopathy, measurement of mitochondrial dysfunction in vivo provides an approach to assess evolution, prognosis, and adequate therapies. Restoration of mitochondrial redox homeostasis constitutes a key therapeutic goal. Future Directions: While hypothermia is the only currently accepted therapy in clinical management to preserve mitochondrial function, other mitochondria-targeted and/or redox-based treatments are likely to synergize to ensure further efficacy.
Collapse
Affiliation(s)
- Marianela Rodríguez
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay.,Departamento de Neonatología, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Valeria Valez
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Carolina Cimarra
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Fernanda Blasina
- Departamento de Neonatología, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
29
|
De Miranda BR, Fazzari M, Rocha EM, Castro S, Greenamyre JT. Sex Differences in Rotenone Sensitivity Reflect the Male-to-Female Ratio in Human Parkinson's Disease Incidence. Toxicol Sci 2020; 170:133-143. [PMID: 30907971 DOI: 10.1093/toxsci/kfz082] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is a critical need to include female subjects in disease research; however, in Parkinson's disease, where the male-to-female incidence is about 1.5-to-1, the majority of preclinical research is conducted in male animals. The mitochondrial complex I inhibitor, rotenone, is selectively toxic to dopaminergic neurons, and reproduces several neuropathological features of Parkinson's disease, including α-synuclein pathology. Rotenone has been primarily utilized in male Lewis rats; however, pilot studies in age-matched female Lewis rats revealed that our usual dose (2.8 mg/kg/day intraperitoneal [i.p.]) did not cause dopaminergic neurodegeneration. Therefore, we compared rotenone-treated males (2.8 mg/kg/day, i.p.) to females at increasing doses (2.8 mg/kg/day, 3.2 mg/kg/day, 3.6 mg/kg/day, and 1.6 mg/kg bis in die, i.p.). Female rats receiving 3.2 mg/kg, and 3.6 mg/kg rotenone displayed significant loss of dopaminergic neurons in the substantia nigra as assessed by stereology, which was accompanied by a loss of striatal dopaminergic terminals. Even at these higher doses, however, females showed less inflammation, and less accumulation of α-synuclein and transferrin, possibly as a result of preserved autophagy. Thus, the bias toward increased male incidence of human Parkinson's disease is reflected in the rotenone model. Whether such sex differences will translate into differences in responses to mechanism-driven therapeutic interventions remains to be determined.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Marco Fazzari
- Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, 15261.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261.,Fondazione Ri.MED, Via Bandiera 11, Palermo 90133, Italy
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Sandra Castro
- Pittsburgh Institute for Neurodegenerative Diseases.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| |
Collapse
|
30
|
Demarest TG, Varma VR, Estrada D, Babbar M, Basu S, Mahajan UV, Moaddel R, Croteau DL, Thambisetty M, Mattson MP, Bohr VA. Biological sex and DNA repair deficiency drive Alzheimer's disease via systemic metabolic remodeling and brain mitochondrial dysfunction. Acta Neuropathol 2020; 140:25-47. [PMID: 32333098 DOI: 10.1007/s00401-020-02152-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease that is more prevalent in women. The increased risk of AD in women is not well understood. It is well established that there are sex differences in metabolism and that metabolic alterations are an early component of AD. We utilized a cross-species approach to evaluate conserved metabolic alterations in the serum and brain of human AD subjects, two AD mouse models, a human cell line, and two Caenorhabditis elegans AD strains. We found a mitochondrial complex I-specific impairment in cortical synaptic brain mitochondria in female, but not male, AD mice. In the hippocampus, Polβ haploinsufficiency caused synaptic complex I impairment in male and female mice, demonstrating the critical role of DNA repair in mitochondrial function. In non-synaptic, glial-enriched, mitochondria from the cortex and hippocampus, complex II-dependent respiration increased in female, but not male, AD mice. These results suggested a glial upregulation of fatty acid metabolism to compensate for neuronal glucose hypometabolism in AD. Using an unbiased metabolomics approach, we consistently observed evidence of systemic and brain metabolic remodeling with a shift from glucose to lipid metabolism in humans with AD, and in AD mice. We determined that this metabolic shift is necessary for cellular and organismal survival in C. elegans, and human cell culture AD models. We observed sex-specific, systemic, and brain metabolic alterations in humans with AD, and that these metabolite changes significantly correlate with amyloid and tau pathology. Among the most significant metabolite changes was the accumulation of glucose-6-phosphate in AD, an inhibitor of hexokinase and rate-limiting metabolite for the pentose phosphate pathway (PPP). Overall, we identified novel mechanisms of glycolysis inhibition, PPP, and tricarboxylic acid cycle impairment, and a neuroprotective augmentation of lipid metabolism in AD. These findings support a sex-targeted metabolism-modifying strategy to prevent and treat AD.
Collapse
Affiliation(s)
- Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vijay R Varma
- Unit of Clinical and Translational Neuroscience, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Darlene Estrada
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Mansi Babbar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sambuddha Basu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Uma V Mahajan
- Unit of Clinical and Translational Neuroscience, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Madhav Thambisetty
- Unit of Clinical and Translational Neuroscience, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
31
|
Abstract
The hippocampus is central to spatial learning and stress responsiveness, both of which differ in form and function in males versus females, yet precisely how the hippocampus contributes to these sex differences is largely unknown. In reproductively mature individuals, sex differences in the steroid hormone milieu undergirds many sex differences in hippocampal-related endpoints. However, there is also evidence for developmental programming of adult hippocampal function, with a central role for androgens as well as their aromatized byproduct, estrogens. These include sex differences in cell genesis, synapse formation, dendritic arborization, and excitatory/inhibitory balance. Enduring effects of steroid hormone modulation occur during two developmental epochs, the first being the classic perinatal critical period of sexual differentiation of the brain and the other being adolescence and the associated hormonal changes of puberty. The cellular mechanisms by which steroid hormones enduringly modify hippocampal form and function are poorly understood, but we here review what is known and highlight where attention should be focused.
Collapse
|
32
|
Shang D, Wang L, Klionsky DJ, Cheng H, Zhou R. Sex differences in autophagy-mediated diseases: toward precision medicine. Autophagy 2020; 17:1065-1076. [PMID: 32264724 DOI: 10.1080/15548627.2020.1752511] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nearly all diseases in humans, to a certain extent, exhibit sex differences, including differences in the onset, progression, prevention, therapy, and prognosis of diseases. Accumulating evidence shows that macroautophagy/autophagy, as a mechanism for development, differentiation, survival, and homeostasis, is involved in numerous aspects of sex differences in diseases such as cancer, neurodegeneration, and cardiovascular diseases. Advances in our knowledge regarding sex differences in autophagy-mediated diseases have enabled an understanding of their roles in human diseases, although the underlying molecular mechanisms of sex differences in autophagy remain largely unexplored. In this review, we discuss current advances in our insight into the biology of sex differences in autophagy and disease, information that will facilitate precision medicine.Abbreviations: AD: Azheimer disease; AMBRA1: autophagy and beclin 1 regulator 1; APP: amyloid beta precursor protein; AR: androgen receptor; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATP6AP2: ATPase H+ transporting accessory protein 2; BCL2L1: BCL2 like 1; BECN1: beclin 1; CTSD: cathepsin D; CYP19A1: cytochrome P450 family 19 subfamily A member 1; DSD: disorders of sex development; eALDI: enhancer alternate long-distance initiator; ESR1: estrogen receptor 1; ESR2: estrogen receptor 2; FYCO1: FYVE and coiled-coil domain autophagy adaptor 1; GABARAP: GABA type A receptor-associated protein; GLA: galactosidase alpha; GTEx: genotype-tissue expression; HDAC6: histone deacetylase 6; I-R: ischemia-reperfusion; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; m6A: N6-methyladenosine; MYBL2: MYB proto-oncogene like 2; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PSEN1: presenilin 1; PSEN2: presenilin 2; RAB9A, RAB9A: member RAS oncogene family; RAB9B, RAB9B: member RAS oncogene family; RAB40AL: RAB40A like; SF1: splicing factor 1; SOX9: SRY-box transcription factor 9; SRY: sex determining region Y; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated; VDAC2: voltage dependent anion channel 2; WDR45: WD repeat domain 45; XPDS: X-linked parkinsonism and spasticity; YTHDF2: YTH N6-methyladenosine RNA binding protein 2.
Collapse
Affiliation(s)
- Dangtong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan, China
| | - Lingling Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan, China
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan, China.,Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Tsuji S, Di Martino E, Mukai T, Tsuji S, Murakami T, Harris RA, Blomgren K, Åden U. Aggravated brain injury after neonatal hypoxic ischemia in microglia-depleted mice. J Neuroinflammation 2020; 17:111. [PMID: 32276642 PMCID: PMC7149909 DOI: 10.1186/s12974-020-01792-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/27/2020] [Indexed: 01/17/2023] Open
Abstract
Background Neuroinflammation plays an important role in neonatal hypoxic-ischemic encephalopathy (HIE). Although microglia are largely responsible for injury-induced inflammatory response, they play beneficial roles in both normal and disease states. However, the effects of microglial depletion on neonatal HIE remain unclear. Methods Tamoxifen was administered to Cx3cr1CreER/+Rosa26DTA/+ (microglia-depleted model) and Cx3cr1CreER/+Rosa26DTA/− (control) mice at P8 and P9 to assess the effect of microglial depletion. The density of microglia was quantified using Iba-1 staining. Moreover, the proportion of resident microglia after the HI insult was analyzed using flow cytometric analysis. At P10, the HI insult was conducted using the Rice-Vannucci procedure at P10. The infarct size and apoptotic cells were analyzed at P13. Cytokine analyses were performed using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) at P13. Results At P10, tamoxifen administration induced > 99% microglial depletion in DTA+ mice. Following HI insult, there was persisted microglial depletion over 97% at P13. Compared to male DTA− mice, male DTA+ mice exhibited significantly larger infarct volumes; however, there were no significant differences among females. Moreover, compared to male DTA− mice, male DTA+ mice had a significantly higher density of TUNEL+ cells in the caudoputamen, cerebral cortex, and thalamus. Moreover, compared to female DTA− mice, female DTA+ mice showed a significantly greater number of TUNEL+ cells in the hippocampus and thalamus. Compared to DTA− mice, ELISA revealed significantly lower IL-10 and TGF-β levels in both male and female DTA+ mice under both normal conditions and after HI (more pronounced). Conclusion We established a microglial depletion model that aggravated neuronal damage and apoptosis after the HI insult, which was predominantly observed in males.
Collapse
Affiliation(s)
- Shunichiro Tsuji
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Obstetrics and Gynecology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu City, Shiga, 520-2192, Japan
| | - Elena Di Martino
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Takeo Mukai
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Shoko Tsuji
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu City, Shiga, 520-2192, Japan
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital Solna, Stockholm, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Ulrika Åden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Neonatal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
34
|
Jankauskaitė E, Ambroziak AM, Hajieva P, Ołdak M, Tońska K, Korwin M, Bartnik E, Kodroń A. Testosterone increases apoptotic cell death and decreases mitophagy in Leber's hereditary optic neuropathy cells. J Appl Genet 2020; 61:195-203. [PMID: 32157656 PMCID: PMC7148285 DOI: 10.1007/s13353-020-00550-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022]
Abstract
Leber’s hereditary optic neuropathy (LHON) is one of the most common mitochondrial diseases caused by point mutations in mitochondrial DNA (mtDNA). The majority of diagnosed LHON cases are caused by a point mutation at position 11,778 in the mitochondrial genome. LHON mainly affects young men in their 20s and 30s with usually poor visual prognosis. It remains unexplained why men are more likely to develop the disease and why only retinal ganglion cells are affected. In this study, a cell model was used for the first time to investigate the influence of testosterone on the cell death mechanism apoptosis and on an autophagy/mitophagy. Cells with m.11778G > A were found to be significantly more susceptible to nucleosome formation and effector caspase activation that serve as hallmarks of apoptotic cell death. Cells having this mutation expressed higher levels of mitophagic receptors BNIP3 and BNIP3L/Nix in a medium with testosterone. Moreover, cells having the mutation exhibited greater mitochondrial mass, which suggests these cells have a decreased cell survival. The observed decrease in cell survival was supported by the observed increase in apoptotic cell death. Autophagy was analyzed after inhibition with Bafilomycin A1 (Baf A1). The results indicate impairment in autophagy in LHON cells due to lower autophagic flux supported by observed lower levels of autophagosome marker LC3-II. The observed impaired lower autophagic flux in mutant cells correlated with increased levels of BNIP3 and BNIP3L/Nix in mutant cells.
Collapse
Affiliation(s)
- Elona Jankauskaitė
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Anna Maria Ambroziak
- Faculty of Physics, University of Warsaw, 5 Pasteur Str., 02-093, Warsaw, Poland
| | - Parvana Hajieva
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55099, Mainz, Germany
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 Mochnackiego Str., 02-042, Warsaw, Poland.,Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, 5 Chałubińskiego Str., 02-004, Warsaw, Poland
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Str., 02-106, Warsaw, Poland
| | - Magdalena Korwin
- Department of Ophthalmology, Medical University of Warsaw, 13 Sierakowskiego Str., 03-709, Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Str., 02-106, Warsaw, Poland
| | - Agata Kodroń
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Str., 02-106, Warsaw, Poland
| |
Collapse
|
35
|
Gupta B, Hornick MG, Briyal S, Donovan R, Prazad P, Gulati A. Anti-apoptotic and Immunomodulatory Effect of CB2 Agonist, JWH133, in a Neonatal Rat Model of Hypoxic-Ischemic Encephalopathy. Front Pediatr 2020; 8:65. [PMID: 32175293 PMCID: PMC7056833 DOI: 10.3389/fped.2020.00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Neonatal HIE is associated with high morbidity and mortality. Current research, is focused on developing alternative treatments to therapeutic hypothermia for treatment of HIE. The endocannabinoid system is known to be influential in neuronal protection. Activation of brain CB2 receptors, has been shown to reduce inflammatory markers and decrease infarct volume in adult cerebral ischemic models. Methods: Rat pups were divided into six groups: 1-Placebo; 2-JWH133; 3-HIE + Placebo; 4-HIE + JWH133; 5-HIE + Hypothermia + Placebo; and 6-HIE + Hypothermia + JWH133. HIE was induced in in groups 3-6 by right carotid ligation on postnatal day 7 followed by placement in a hypoxic chamber. Pups in groups 5 and 6 were treated with hypothermia. Western blot analysis was used to analyze brain tissue for acute inflammatory markers (IL-6, TNFα, MIP1α, and RANTES), immunoregulatory cytokines (TGFβ and IL-10), and CB2 receptor expression. DNA fragmentation in the brains of pups was determined via TUNEL staining post HIE. Results: The combination of JWH133 and hypothermia significantly reduced tumor necrosis factor α (TNFα) (-57.7%, P = 0.0072) and macrophage inflammatory protein 1α (MIP1α) (-50.0%, P = 0.0211) as compared to placebo. DNA fragmentation was also significantly reduced, with 6.9 ± 1.4% TUNEL+ cells in HIE+JWH133 and 12.9 ± 2.2% in HIE+Hypothermia + JWH133 vs. 16.6 ± 1.9% in HIE alone. No significant difference was noted between groups for the expression of interleukins 6 and 10, RANTES, or TGFβ. After 8 h, CB2 receptor expression increased nearly 2-fold in the HIE and HIE + JWH133 groups (+214%, P = 0.0102 and +198%, P = 0.0209, respectively) over placebo with no significant change in the hypothermia groups. By 24 h post HIE, CB2 receptor expression was elevated over five times that of placebo in the HIE (P < 0.0001) and HIE + JWH133 (P = 0.0002) groups, whereas hypothermia treatment maintained expression similar to that of placebo animals. Conclusion: These results indicate that the combination of CB2 agonist and hypothermia may be neuroprotective in treating HIE, opening the door for further studies to examine alternative or adjuvant therapies to hypothermia.
Collapse
Affiliation(s)
- Bhavna Gupta
- Division of Neonatology, Department of Pediatrics, Advocate Children's Hospital, Park Ridge, IL, United States
| | - Mary G Hornick
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Seema Briyal
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Ramona Donovan
- Advocate Center for Pediatric Research, Advocate Children's Hospital, Park Ridge, IL, United States
| | - Preetha Prazad
- Division of Neonatology, Department of Pediatrics, Advocate Children's Hospital, Park Ridge, IL, United States
| | - Anil Gulati
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
36
|
Singh-Mallah G, Nair S, Sandberg M, Mallard C, Hagberg H. The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxid Redox Signal 2019; 31:643-663. [PMID: 30957515 PMCID: PMC6657303 DOI: 10.1089/ars.2019.7779] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
Significance: Perinatal brain injury is caused by hypoxia-ischemia (HI) in term neonates, perinatal arterial stroke, and infection/inflammation leading to devastating long-term neurodevelopmental deficits. Therapeutic hypothermia is the only currently available treatment but is not successful in more than 50% of term neonates suffering from hypoxic-ischemic encephalopathy. Thus, there is an urgent unmet need for alternative or adjunct therapies. Reactive oxygen species (ROS) are important for physiological signaling, however, their overproduction/accumulation from mitochondria and endoplasmic reticulum (ER) during HI aggravate cell death. Recent Advances and Critical Issues: Mechanisms underlying ER stress-associated ROS production have been primarily elucidated using either non-neuronal cells or adult neurodegenerative experimental models. Findings from mature brain cannot be simply transferred to the immature brain. Therefore, age-specific studies investigating ER stress modulators may help investigate ER stress-associated ROS pathways in the immature brain. New therapeutics such as mitochondrial site-specific ROS inhibitors that selectively inhibit superoxide (O2•-)/hydrogen peroxide (H2O2) production are currently being developed. Future Directions: Because ER stress and oxidative stress accentuate each other, a combinatorial therapy utilizing both antioxidants and ER stress inhibitors may prove to be more protective against perinatal brain injury. Moreover, multiple relevant targets need to be identified for targeting ROS before they are formed. The role of organelle-specific ROS in brain repair needs investigation. Antioxid. Redox Signal. 31, 643-663.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
37
|
McCoin CS, Von Schulze A, Allen J, Fuller KNZ, Xia Q, Koestler DC, Houchen CJ, Maurer A, Dorn GW, Shankar K, Morris EM, Thyfault JP. Sex modulates hepatic mitochondrial adaptations to high-fat diet and physical activity. Am J Physiol Endocrinol Metab 2019; 317:E298-E311. [PMID: 31039007 PMCID: PMC6732468 DOI: 10.1152/ajpendo.00098.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
The impact of sexual dimorphism and mitophagy on hepatic mitochondrial adaptations during the treatment of steatosis with physical activity are largely unknown. Here, we tested if deficiencies in liver-specific peroxisome proliferative activated-receptor-γ coactivator-1α (PGC-1α), a transcriptional coactivator of biogenesis, and BCL-2/ADENOVIRUS EIB 19-kDa interacting protein (BNIP3), a mitophagy regulator, would impact hepatic mitochondrial adaptations (respiratory capacity, H2O2 production, mitophagy) to a high-fat diet (HFD) and HFD plus physical activity via voluntary wheel running (VWR) in both sexes. Male and female wild-type (WT), liver-specific PGC-1α heterozygote (LPGC-1α), and BNIP3 null mice were thermoneutral housed (29-31°C) and divided into three groups: sedentary-low-fat diet (LFD), 16 wk of (HFD), or 16 wk of HFD with VWR for the final 8 wk (HFD + VWR) (n = 5-7/sex/group). HFD did not impair mitochondrial respiratory capacity or coupling in any group; however, HFD + VWR significantly increased maximal respiratory capacity only in WT and PGC-1α females. Males required VWR to elicit mitochondrial adaptations that were inherently present in sedentary females including greater mitochondrial coupling control and reduced H2O2 production. Females had overall reduced markers of mitophagy, steatosis, and liver damage. Steatosis and markers of liver injury were present in sedentary male mice on the HFD and were effectively reduced with VWR despite no resolution of steatosis. Overall, reductions in PGC-1α and loss of BNIP3 only modestly impacted mitochondrial adaptations to HFD and HFD + VWR with the biggest effect seen in BNIP3 females. In conclusion, hepatic mitochondrial adaptations to HFD and treatment of HFD-induced steatosis with VWR are more dependent on sex than PGC-1α or BNIP3.
Collapse
Affiliation(s)
- Colin S McCoin
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
- Kansas City Veterans Affairs Medical Center , Kansas City, Kansas
| | - Alex Von Schulze
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
- Kansas City Veterans Affairs Medical Center , Kansas City, Kansas
| | - Julie Allen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
- Kansas City Veterans Affairs Medical Center , Kansas City, Kansas
| | - Kelly N Z Fuller
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Qing Xia
- Department of Biostatistics, University of Kansas Medical Center , Kansas City, Kansas
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center , Kansas City, Kansas
| | - Claire J Houchen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Adrianna Maurer
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri
| | - Kartik Shankar
- Arkansas Children's Nutrition Center and the Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, Arizona
| | - E Matthew Morris
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
- Kansas City Veterans Affairs Medical Center , Kansas City, Kansas
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
- Kansas City Veterans Affairs Medical Center , Kansas City, Kansas
| |
Collapse
|
38
|
Barrios-Anderson A, Chen X, Nakada S, Chen R, Lim YP, Stonestreet BS. Inter-alpha Inhibitor Proteins Modulate Neuroinflammatory Biomarkers After Hypoxia-Ischemia in Neonatal Rats. J Neuropathol Exp Neurol 2019; 78:742-755. [PMID: 31274164 PMCID: PMC6640908 DOI: 10.1093/jnen/nlz051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation contributes to hypoxic-ischemic (HI) brain injury. Inter-alpha inhibitor proteins (IAIPs) have important immunomodulatory properties. Human (h) plasma-derived IAIPs reduce brain injury and improve neurobehavioral outcomes after HI. However, the effects of hIAIPs on neuroinflammatory biomarkers after HI have not been examined. We determined whether hIAIPs attenuated HI-related neuroinflammation. Postnatal day-7 rats exposed to sham-placebo, or right carotid ligation and 8% oxygen for 90 minutes with placebo, and hIAIP treatment were studied. hIAIPs (30 mg/kg) or PL was injected intraperitoneally immediately, 24, and 48 hours after HI. Rat complete blood counts and sex were determined. Brain tissue and peripheral blood were prepared for analysis 72 hours after HI. The effects of hIAIPs on HI-induced neuroinflammation were quantified by image analysis of positively stained astrocytic (glial fibrillary acid protein [GFAP]), microglial (ionized calcium binding adaptor molecule-1 [Iba-1]), neutrophilic (myeloperoxidase [MPO]), matrix metalloproteinase-9 (MMP9), and MMP9-MPO cellular markers in brain regions. hIAIPs reduced quantities of cortical GFAP, hippocampal Iba-1-positive microglia, corpus callosum MPO, and cortical MMP9-MPO cells and the percent of neutrophils in peripheral blood after HI in male, but not female rats. hIAIPs modulate neuroinflammatory biomarkers in the neonatal brain after HI and may exhibit sex-related differential effects.
Collapse
Affiliation(s)
- Adriel Barrios-Anderson
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Sakura Nakada
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Ray Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Yow-Pin Lim
- ProThera Biologics, Inc
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, Rhode Island
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| |
Collapse
|
39
|
Wei Y, Huang J. Role of estrogen and its receptors mediated-autophagy in cell fate and human diseases. J Steroid Biochem Mol Biol 2019; 191:105380. [PMID: 31078693 DOI: 10.1016/j.jsbmb.2019.105380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Studies have shown that morbidity of several diseases varies between males and females. This difference likely arises due to sex-related hormones. Estrogen, a primary female sex steroid hormone, plays a critical role in mediating many of the physiological functions like growth, differentiation, metabolism, and cell death. Recently, it has been demonstrated that estrogen mediates autophagy through its receptors (ERs) namely ERα, ERβ, and G-protein coupled estrogen receptor (GPER). However, the specific role of estrogen and its receptors mediated-autophagy in cell fate and human diseases such as cancers, cardiovascular disease and nervous system disease remains unclear. In this review, we comprehensively summarize the complex role of estrogen and its receptors-mediated autophagy in different cell lines and human diseases. In addition, we further discuss the key signaling molecules governing the role of ERs in autophagy. This review will serve as the basis for a proposed model of autophagy constituting a new frontier in estrogen-related human diseases. Here, we discuss the dual role of ERα in classical and non-classical autophagy through B-cell lymphoma 2 (BCL2)-associated athanogene 3 (BAG3). Next, we review the role of ERβ in pro-survival pathways through the promotion of autophagy under stress conditions. We further discuss activation of GPER via estrogen often mediates autophagy or mitophagy suppression, respectively. In summary, we believe that understanding the relationship between estrogen and its receptors mediated-autophagy on cell fate and human diseases will provide insightful knowledge for future therapeutic implications.
Collapse
Affiliation(s)
- Yong Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Jian Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
40
|
Effect of Acetyl-L-carnitine Used for Protection of Neonatal Hypoxic-Ischemic Brain Injury on Acute Kidney Changes in Male and Female Rats. Neurochem Res 2019; 44:2405-2412. [PMID: 31041669 DOI: 10.1007/s11064-019-02807-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is a common cause of brain injury in infants. Acute kidney injury frequently occurs after birth asphyxia and is associated with adverse outcome. Treatment with acetyl-L-carnitine (ALCAR) after HI protects brain and improves outcome. Rat pups underwent carotid ligation and 75 min hypoxia on postnatal day 7 to determine effects of HI on kidney which is understudied in this model. HI + ALCAR pups were treated at 0, 4 and 24 h after HI. The organic cation/carnitine transporter 2 (OCTN2), transports ALCAR and functions to reabsorb carnitine and acylcarnitines from urine. At 24 h after injury OCTN2 levels were significantly decreased in kidney from HI pups, 0.80 ± 0.04 (mean ± SEM, p < 0.01), compared to sham controls 1.03 ± 0.04, and HI + ALCAR pups 1.11 ± 0.06. The effect of HI on the level of pyruvate dehydrogenase (PDH) was determined since kidney has high energy requirements. At 24 h after HI, kidney PDH/β-actin ratios were significantly lower in HI pups, 0.98 ± 0.05 (mean ± SEM, p < 0.05), compared to sham controls 1.16 ± 0.06, and HI + ALCAR pups 1.24 ± 0.03, p < 0.01. Treatment of pups with ALCAR after HI prevented the decrease in renal OCTN2 and PDH levels at 24 h after injury. Protection of PDH and OCTN2 after HI would improve energy metabolism in kidney, maintain tissue carnitine levels and overall carnitine homeostasis which is essential for neonatal health.
Collapse
|
41
|
Ruszkiewicz JA, Miranda-Vizuete A, Tinkov AA, Skalnaya MG, Skalny AV, Tsatsakis A, Aschner M. Sex-Specific Differences in Redox Homeostasis in Brain Norm and Disease. J Mol Neurosci 2019; 67:312-342. [DOI: 10.1007/s12031-018-1241-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
|
42
|
Higgins GC, Nguyen TV, Ramm G, Coughlan MT. Methods in renal research: Measurement of autophagic flux in the renal cortex ex vivo. Nephrology (Carlton) 2018; 23:815-820. [PMID: 29504645 DOI: 10.1111/nep.13251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2018] [Indexed: 12/09/2022]
Abstract
The role of autophagy in the kidney and many nephrological diseases has gained prominence in recent years. Much of this research has been focused on markers of autophagy that are static and reveal little about the state of this dynamic pathway. Other mechanistic investigations are limited to in vitro studies, that often provide circumstantial evidence of autophagic flux. Here we describe a method for measuring autophagic flux ex vivo that allows more direct observations to be made in situ regarding the state of autophagic flux within the renal cortex of a single animal.
Collapse
Affiliation(s)
- Gavin C Higgins
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Diabetic Complications, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Tuong-Vi Nguyen
- Diabetic Complications, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Georg Ramm
- Membrane Biology Group, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia.,Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Diabetic Complications, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Fitzgerald E, Boardman JP, Drake AJ. Preterm Birth and the Risk of Neurodevelopmental Disorders - Is There a Role for Epigenetic Dysregulation? Curr Genomics 2018; 19:507-521. [PMID: 30386170 PMCID: PMC6158617 DOI: 10.2174/1389202919666171229144807] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/06/2017] [Accepted: 12/17/2017] [Indexed: 12/29/2022] Open
Abstract
Preterm Birth (PTB) accounts for approximately 11% of all births worldwide each year and is a profound physiological stressor in early life. The burden of neuropsychiatric and developmental impairment is high, with severity and prevalence correlated with gestational age at delivery. PTB is a major risk factor for the development of cerebral palsy, lower educational attainment and deficits in cognitive functioning, and individuals born preterm have higher rates of schizophrenia, autistic spectrum disorder and attention deficit/hyperactivity disorder. Factors such as gestational age at birth, systemic inflammation, respiratory morbidity, sub-optimal nutrition, and genetic vulnerability are associated with poor outcome after preterm birth, but the mechanisms linking these factors to adverse long term outcome are poorly understood. One potential mechanism linking PTB with neurodevelopmental effects is changes in the epigenome. Epigenetic processes can be defined as those leading to altered gene expression in the absence of a change in the underlying DNA sequence and include DNA methylation/hydroxymethylation and histone modifications. Such epigenetic modifications may be susceptible to environmental stimuli, and changes may persist long after the stimulus has ceased, providing a mechanism to explain the long-term consequences of acute exposures in early life. Many factors such as inflammation, fluctuating oxygenation and excitotoxicity which are known factors in PTB related brain injury, have also been implicated in epigenetic dysfunction. In this review, we will discuss the potential role of epigenetic dysregulation in mediating the effects of PTB on neurodevelopmental outcome, with specific emphasis on DNA methylation and the α-ketoglutarate dependent dioxygenase family of enzymes.
Collapse
Affiliation(s)
| | | | - Amanda J. Drake
- Address correspondence to this author at the University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK; Tel: 44 131 2426748; Fax: 44 131 2426779; E-mail:
| |
Collapse
|
44
|
Congdon EE. Sex Differences in Autophagy Contribute to Female Vulnerability in Alzheimer's Disease. Front Neurosci 2018; 12:372. [PMID: 29988365 PMCID: PMC6023994 DOI: 10.3389/fnins.2018.00372] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with over 5. 4 million cases in the US alone (Alzheimer's Association, 2016). Clinically, AD is defined by the presence of plaques composed of Aβ and neurofibrillary pathology composed of the microtubule associated protein tau. Another key feature is the dysregulation of autophagy at key steps in the pathway. In AD, disrupted autophagy contributes to disease progression through the failure to clear pathological protein aggregates, insulin resistance, and its role in the synthesis of Aβ. Like many psychiatric and neurodegenerative diseases, the risk of developing AD, and disease course are dependent on the sex of the patient. One potential mechanism through which these differences occur, is the effects of sex hormones on autophagy. In women, the loss of hormones with menopause presents both a risk factor for developing AD, and an obvious example of where sex differences in AD can stem from. However, because AD pathology can begin decades before menopause, this does not provide the full answer. We propose that sex-based differences in autophagy regulation during the lifespan contribute to the increased risk of AD, and greater severity of pathology seen in women.
Collapse
Affiliation(s)
- Erin E Congdon
- Neuroscience and Physiology, School of Medicine, New York University, New York City, NY, United States
| |
Collapse
|
45
|
Xiao-Xu-Ming Decoction Reduced Mitophagy Activation and Improved Mitochondrial Function in Cerebral Ischemia and Reperfusion Injury. Behav Neurol 2018; 2018:4147502. [PMID: 30018669 PMCID: PMC6029470 DOI: 10.1155/2018/4147502] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/09/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022] Open
Abstract
We investigated whether Xiao-Xu-Ming decoction reduced mitophagy activation and kept mitochondrial function in cerebral ischemia-reperfusion injury. Rats were randomly divided into 5 groups: sham, ischemia and reperfusion (IR), IR plus XXMD (60 g/kg/day) (XXMD60), IR plus cyclosporin A (10 mg/kg/day) (CsA), and IR plus vehicle (Vehicle). Focal cerebral ischemia and reperfusion models were induced by middle cerebral artery occlusion (MCAO). Cerebral infarct areas were measured by triphenyl tetrazolium chloride staining. Cerebral ischemic injury was evaluated by hematoxylin and eosin staining (HE) and Nissl staining. Ultrastructural features of mitochondria and mitophagy in the penumbra of the ischemic cortex were observed by transmission electron microscopy. Mitophagy was detected by immunofluorescence labeled with LC3B and VDAC1. Autophagy lysosome formation was observed by immunofluorescence labeled with LC3B and Lamp1. The expression of LC3B, Beclin1, and Lamp1 was analyzed by Western blot. The rats subjected to MCAO showed worsened neurological score and cell ischemic damage. These were all significantly reversed by XXMD or CsA. Moreover, XXMD/CsA notably downregulated mitophagy and reduced the increase in LC3, Beclin1, and Lamp1 expression induced by cerebral ischemia and reperfusion. The findings demonstrated that XXMD exerted neuroprotective effect via downregulating LC3, Beclin1, Lamp1, and mitochondrial p62 expression level, thus leading to the inhibition of mitophagy.
Collapse
|
46
|
Zhou Z, Lu J, Liu WW, Manaenko A, Hou X, Mei Q, Huang JL, Tang J, Zhang JH, Yao H, Hu Q. Advances in stroke pharmacology. Pharmacol Ther 2018; 191:23-42. [PMID: 29807056 DOI: 10.1016/j.pharmthera.2018.05.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stroke occurs when a cerebral blood vessel is blocked or ruptured, and it is the major cause of death and adult disability worldwide. Various pharmacological agents have been developed for the treatment of stroke either through interrupting the molecular pathways leading to neuronal death or enhancing neuronal survival and regeneration. Except for rtPA, few of these agents have succeeded in clinical trials. Recently, with the understanding of the pathophysiological process of stroke, there is a resurrection of research on developing neuroprotective agents for stroke treatment, and novel molecular targets for neuroprotection and neurorestoration have been discovered to predict or offer clinical benefits. Here we review the latest major progress of pharmacological studies in stroke, especially in ischemic stroke; summarize emerging potential therapeutic mechanisms; and highlight recent clinical trials. The aim of this review is to provide a panorama of pharmacological interventions for stroke and bridge basic and translational research to guide the clinical management of stroke therapy.
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Jianfei Lu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, the Second Military Medical University, Shanghai 200433, China
| | - Anatol Manaenko
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China
| | - Jun-Long Huang
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China.
| | - Qin Hu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
47
|
Gaignard P, Fréchou M, Liere P, Thérond P, Schumacher M, Slama A, Guennoun R. Sex differences in brain mitochondrial metabolism: influence of endogenous steroids and stroke. J Neuroendocrinol 2018. [PMID: 28650095 DOI: 10.1111/jne.12497] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Steroids are neuroprotective and a growing body of evidence indicates that mitochondria are a potential target of their effects. The mitochondria are the site of cellular energy synthesis, regulate oxidative stress and play a key role in cell death after brain injury and neurodegenerative diseases. After providing a summary of the literature on the general functions of mitochondria and the effects of sex steroid administrations on mitochondrial metabolism, we summarise and discuss our recent findings concerning sex differences in brain mitochondrial function under physiological and pathological conditions. To analyse the influence of endogenous sex steroids, the oxidative phosphorylation system, mitochondrial oxidative stress and brain steroid levels were compared between male and female mice, either intact or gonadectomised. The results obtained show that females have higher a mitochondrial respiration and lower oxidative stress compared to males and also that these differences were suppressed by ovariectomy but not orchidectomy. We have also shown that the decrease in brain mitochondrial respiration induced by ischaemia/reperfusion is different according to sex. In both sexes, treatment with progesterone reduced the ischaemia/reperfusion-induced mitochondrial alterations. Our findings indicate sex differences in brain mitochondrial function under physiological conditions, as well as after stroke, and identify mitochondria as a target of the neuroprotective properties of progesterone. Thus, it is necessary to investigate sex specificity in brain physiopathological mechanisms, especially when mitochondria impairment is involved.
Collapse
Affiliation(s)
- P Gaignard
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
- Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, Kremlin-Bicêtre, France
| | - M Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| | - P Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| | - P Thérond
- Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, Kremlin-Bicêtre, France
| | - M Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| | - A Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, Kremlin-Bicêtre, France
| | - R Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| |
Collapse
|
48
|
Charriaut-Marlangue C, Besson VC, Baud O. Sexually Dimorphic Outcomes after Neonatal Stroke and Hypoxia-Ischemia. Int J Mol Sci 2017; 19:ijms19010061. [PMID: 29278365 PMCID: PMC5796011 DOI: 10.3390/ijms19010061] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 01/21/2023] Open
Abstract
Cohort studies have demonstrated a higher vulnerability in males towards ischemic and/or hypoxic-ischemic injury in infants born near- or full-term. Male sex was also associated with limited brain repair following neonatal stroke and hypoxia-ischemia, leading to increased incidence of long-term cognitive deficits compared to females with similar brain injury. As a result, the design of pre-clinical experiments considering sex as an important variable was supported and investigated because neuroprotective strategies to reduce brain injury demonstrated sexual dimorphism. While the mechanisms underlining these differences between boys and girls remain unclear, several biological processes are recognized to play a key role in long-term neurodevelopmental outcomes: gonadal hormones across developmental stages, vulnerability to oxidative stress, modulation of cell death, and regulation of microglial activation. This review summarizes the current evidence for sex differences in neonatal hypoxic-ischemic and/or ischemic brain injury, considering the major pathways known to be involved in cognitive and behavioral deficits associated with damages of the developing brain.
Collapse
Affiliation(s)
- Christiane Charriaut-Marlangue
- U1141 PROTECT, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France.
| | - Valérie C Besson
- U1141 PROTECT, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France.
- EA4475-Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Baud
- U1141 PROTECT, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France.
- Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva and University of Geneva, 1205 Geneva, Switzerland.
| |
Collapse
|
49
|
Thornton C, Jones A, Nair S, Aabdien A, Mallard C, Hagberg H. Mitochondrial dynamics, mitophagy and biogenesis in neonatal hypoxic-ischaemic brain injury. FEBS Lett 2017; 592:812-830. [PMID: 29265370 DOI: 10.1002/1873-3468.12943] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/22/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischaemic encephalopathy, resulting from asphyxia during birth, affects 2-3 in every 1000 term infants and depending on severity, brings about life-changing neurological consequences or death. This hypoxic-ischaemia (HI) results in a delayed neural energy failure during which the majority of brain injury occurs. Currently, there are limited treatment options and additional therapies are urgently required. Mitochondrial dysfunction acts as a focal point in injury development in the immature brain. Not only do mitochondria become permeabilised, but recent findings implicate perturbations in mitochondrial dynamics (fission, fusion), mitophagy and biogenesis. Mitoprotective therapies may therefore offer a new avenue of intervention for babies who suffer lifelong disabilities due to birth asphyxia.
Collapse
Affiliation(s)
- Claire Thornton
- Perinatal Brain Injury Group, Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Adam Jones
- Perinatal Brain Injury Group, Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Syam Nair
- Perinatal Center, Department of Physiology, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Afra Aabdien
- Perinatal Brain Injury Group, Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Carina Mallard
- Perinatal Center, Department of Physiology, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Henrik Hagberg
- Perinatal Brain Injury Group, Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK.,Perinatal Center, Department of Clinical Sciences & Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
50
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|