1
|
Yoshikawa T, Tateno T. Localized Theta-Burst Magnetic Stimulation Induces Bidirectional Neural Modulation in the Mouse Auditory Cortex In Vivo. eNeuro 2025; 12:ENEURO.0577-24.2025. [PMID: 40246552 PMCID: PMC12077811 DOI: 10.1523/eneuro.0577-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive method that has been used to treat various brain disorders. The modulatory effects of rTMS can be adjusted by changing the repetition patterns. Theta-burst magnetic stimulation (TBS) is a magnetic stimulation pattern that can induce long-lasting modulatory effects with a short stimulation period. However, its effects on auditory brain regions remain unclear because of a lack of animal studies in which invasive techniques allow for a detailed exploration of the underlying neural mechanisms. In the current study, we investigated the effects of TBS on the C57BL/6J mouse auditory cortex using a custom-built 7 mm magnetic stimulation coil. Extracellular recordings were made before, during, and after the application of intermittent TBS (iTBS), continuous TBS (cTBS), or sham stimulation. Local field potential amplitudes were increased for 5-20 min post-iTBS compared with the sham condition and were decreased at 10 min post-cTBS compared with the sham condition. The bidirectional modulatory effects observed in our study are consistent with previous findings from other brain regions. Additionally, multiunit activities were significantly altered in cortical layers 2/3 and 4 but not layer 5, indicating that the modulatory effects were localized to the surface region of the auditory cortex. Interestingly, in the iTBS group, the amplitude of average spike waveforms increased with a 15 min delay. Our findings provide physiological evidence of TBS modulation of the rodent auditory cortex and may guide future research seeking to optimize rTMS for modulating hearing abilities.
Collapse
Affiliation(s)
- Takahiro Yoshikawa
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Takashi Tateno
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| |
Collapse
|
2
|
Ong RCS, Tang AD. Subthreshold repetitive transcranial magnetic stimulation induces cortical layer-, brain region-, and protocol-dependent neural plasticity. SCIENCE ADVANCES 2025; 11:eado6705. [PMID: 39772671 PMCID: PMC11708880 DOI: 10.1126/sciadv.ado6705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is commonly used to study the brain or as a treatment for neurological disorders, but the neural circuits and molecular mechanisms it affects remain unclear. To determine the molecular mechanisms of rTMS and the brain regions they occur in, we used spatial transcriptomics to map changes to gene expression across the mouse brain in response to two commonly used rTMS protocols. Our results revealed that rTMS alters the expression of genes related to several cellular processes and neural plasticity mechanisms across the brain, which was both brain region- and rTMS protocol-dependent. In the cortex, the effect of rTMS was dependent not only on the cortical region but also on each cortical layer. These findings uncover the diverse molecular mechanisms induced by rTMS, which will be useful in interpreting its effects on cortical and subcortical circuits.
Collapse
Affiliation(s)
- Rebecca C. S. Ong
- Experimental and Regenerative Neurosciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Sciences, Perth, Australia
| | - Alexander D. Tang
- Experimental and Regenerative Neurosciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Sciences, Perth, Australia
- Pharmacology and Toxicology Discipline, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Espinosa Mendoza TA, Oviedo Lara AR, Henk Jordan G, Sampieri-Cabrera R, Perez Martinez LE. Effects of Low-Intensity Transcranial Magnetic Stimulation in Neuropsychological Development of Pediatric Subjects With Autism Spectrum Disorder: A Longitudinal Retrospective Approach. Cureus 2024; 16:e76569. [PMID: 39877774 PMCID: PMC11774318 DOI: 10.7759/cureus.76569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a heterogeneous neurobiological condition characterized by behavioral problems and delayed neurodevelopment. Although transcranial magnetic stimulation (TMS) has been proposed as an alternative treatment for patients with ASD because of its promising benefits in reducing repetitive behaviors and enhancing executive functions, the use of high-intensity pulses (Hi-TMS) appears to be related to the side effects of the therapy. Low-intensity TMS (Li-TMS) has been partially investigated, but it may have clinical effects on ASD and simultaneously increase treatment safety. METHODS In this study, the effects of combined intervention with Li-TMS and conventional therapies were evaluated in 35 patients from Ecuador (six female and 29 male), aged between three and seven years, with a confirmed diagnosis of ASD. Each subject received conventional therapies twice a week (for four weeks) provided at the research center (psychological, occupational, speech, and neuro-psychomotor therapies) alongside daily Li-TMS sessions at 1 Hz and 9 mT of intensity targeting the left dorsolateral prefrontal cortex (L-DLPFC) for 45 min for four weeks (16 sessions in total). The Battelle Developmental Inventory (BDI), first edition, was applied before and after Li-TMS therapy to evaluate its clinical effects in subjects with ASD. Weekly follow-up assessments and parent questionnaires were administered to identify any adverse events. RESULTS In all BDI domains, a significant statistical difference was observed between the pre- and post-intervention averages, supported by extremely low p-values (less than 0.001 in all cases). The personal, social, motor, cognitive, and communicative skills of all the study participants increased after Li-TMS therapy. At the same time, the calculated maturational delay had a significant decrease, suggesting an improvement of ~7.78 months in the neurodevelopment of the ASD subjects. However, age was also found to be a possible cause for these changes in development and maturation. No adverse effects were observed. CONCLUSIONS Both variants of TMS, Hi-TMS and Li-TMS, have proven to be promising treatments for subjects with ASD, improving social and cognitive abilities. This investigation suggests that the combination of conventional therapies and 16 sessions of Li-TMS as a treatment for individuals with ASD had significant clinical progress, specifically in maturation development according to BDI. In addition, the use of low-intensity magnetic fields may allow for safer pulse delivery in pediatric subjects, as no side effects were reported in this study.
Collapse
Affiliation(s)
| | | | - Gabriel Henk Jordan
- Neurosciences, Centro de Especialidades Neuropsicologicas Neuroinnova, Guayaquil, ECU
| | - Raúl Sampieri-Cabrera
- Foresight, Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico, MEX
- Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, México, MEX
| | | |
Collapse
|
4
|
Kim JH, Jeong M, Kim H, Kim JH, Ahn JW, Son B, Choi KH, Chung S, Yoon J. Focused magnetic stimulation for motor recovery after stroke. Brain Stimul 2024; 17:1048-1059. [PMID: 39214184 DOI: 10.1016/j.brs.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The effects of noninvasive focused magnetothermal brain stimulation using magnetic nanoparticles (MNPs) on post-stroke motor deficits and metabolic dormancy in subacute ischemic injury are not well-established. This study examined if magnetothermal brain stimulation using magnetic nanoparticles (Nano-MS) enhances motor recovery after stroke. METHODS We randomly distributed rats into Sham, Control, MNP injection only, and Nano-MS groups. We administered focused magnetic stimulation for 30 min daily following an MNP injection (15 mg/mL) into the targeted motor cortex via the carotid artery three weeks after the transient (90 min) middle cerebral artery occlusion. We assessed motor functionality via behavioral tests and conducted positron emission tomography (PET) imaging to verify cerebral metabolic activity. We assessed neuronal excitability, neuroinflammation, blood-brain barrier (BBB) integrity, and neurogenesis four weeks post-stroke. RESULTS The Nano-MS group exhibited significantly improved motor deficits and cerebral metabolic activity compared to the Control and MNP groups (p < 0.05). Focused Nano-MS modulated neuronal excitability, evident by a depolarized action potential threshold for spike initiation and reduced firing frequency post-stroke. The Nano-MS group demonstrated markedly decreased inflammatory markers, such as IL-1β, IL-6, TNF-α, MCP-1, and ICAM-1, compared to the Control and MNP groups. BBB integrity and immunofluorescence for neurogenesis markers were substantially improved in the Nano-MS group. CONCLUSIONS Focused Nano-MS facilitates the recovery of motor deficits and metabolic inactivity in the brain by effectively modulating excitability, reducing neuroinflammation, enhancing BBB stability, and promoting neurogenesis. Nano-MS is a potential novel, noninvasive therapy for stroke rehabilitation. Further investigation is warranted.
Collapse
Affiliation(s)
- Ja-Hae Kim
- Department of Nuclear Medicine, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Minhee Jeong
- Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Hohyeon Kim
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Ji-Hye Kim
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Ji Woong Ahn
- BnH Research Co., LTD., Goyang-si, Gyeonggi-do, South Korea
| | - Boyoung Son
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Kang-Ho Choi
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, South Korea.
| | - Seungsoo Chung
- Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea; BnH Research Co., LTD., Goyang-si, Gyeonggi-do, South Korea.
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| |
Collapse
|
5
|
Nguyen PT, Makowiecki K, Lewis TS, Fortune AJ, Clutterbuck M, Reale LA, Taylor BV, Rodger J, Cullen CL, Young KM. Low intensity repetitive transcranial magnetic stimulation enhances remyelination by newborn and surviving oligodendrocytes in the cuprizone model of toxic demyelination. Cell Mol Life Sci 2024; 81:346. [PMID: 39134808 PMCID: PMC11335270 DOI: 10.1007/s00018-024-05391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
In people with multiple sclerosis (MS), newborn and surviving oligodendrocytes (OLs) can contribute to remyelination, however, current therapies are unable to enhance or sustain endogenous repair. Low intensity repetitive transcranial magnetic stimulation (LI-rTMS), delivered as an intermittent theta burst stimulation (iTBS), increases the survival and maturation of newborn OLs in the healthy adult mouse cortex, but it is unclear whether LI-rTMS can promote remyelination. To examine this possibility, we fluorescently labelled oligodendrocyte progenitor cells (OPCs; Pdgfrα-CreER transgenic mice) or mature OLs (Plp-CreER transgenic mice) in the adult mouse brain and traced the fate of each cell population over time. Daily sessions of iTBS (600 pulses; 120 mT), delivered during cuprizone (CPZ) feeding, did not alter new or pre-existing OL survival but increased the number of myelin internodes elaborated by new OLs in the primary motor cortex (M1). This resulted in each new M1 OL producing ~ 471 µm more myelin. When LI-rTMS was delivered after CPZ withdrawal (during remyelination), it significantly increased the length of the internodes elaborated by new M1 and callosal OLs, increased the number of surviving OLs that supported internodes in the corpus callosum (CC), and increased the proportion of axons that were myelinated. The ability of LI-rTMS to modify cortical neuronal activity and the behaviour of new and surviving OLs, suggests that it may be a suitable adjunct intervention to enhance remyelination in people with MS.
Collapse
Affiliation(s)
- Phuong Tram Nguyen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kalina Makowiecki
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Thomas S Lewis
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Alastair J Fortune
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Mackenzie Clutterbuck
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Laura A Reale
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
6
|
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has become an increasingly popular tool to modulate neural excitability and induce neural plasticity in clinical and preclinical models; however, the physiological mechanisms in which it exerts these effects remain largely unknown. To date, studies have primarily focused on characterizing rTMS-induced changes occurring at the synapse, with little attention given to changes in intrinsic membrane properties. However, accumulating evidence suggests that rTMS may induce its effects, in part, via intrinsic plasticity mechanisms, suggesting a new and potentially complementary understanding of how rTMS alters neural excitability and neural plasticity. In this review, we provide an overview of several intrinsic plasticity mechanisms before reviewing the evidence for rTMS-induced intrinsic plasticity. In addition, we discuss a select number of neurological conditions where rTMS-induced intrinsic plasticity has therapeutic potential before speculating on the temporal relationship between rTMS-induced intrinsic and synaptic plasticity.
Collapse
Affiliation(s)
- Emily S King
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
7
|
Zhang Y, Zhang Y, Chen Z, Ren P, Fu Y. Continuous high-frequency repetitive transcranial magnetic stimulation at extremely low intensity affects exploratory behavior and spatial cognition in mice. Behav Brain Res 2024; 458:114739. [PMID: 37926334 DOI: 10.1016/j.bbr.2023.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has been shown to be effective for cognitive intervention. However, whether HF-rTMS with extremely low intensity could influence cognitive functions is still under investigation. The present study systematically investigated the effects of continuous 40 Hz and 10 Hz rTMS on cognition in young adult mice at extremely low intensity (10 mT and 1 mT) for 11 days (30 min/day). Cognitive functions were assessed using diverse behavioral tasks, including the open field, Y-maze, and Barnes maze paradigms. We found that 40 Hz rTMS significantly impaired exploratory behavior and spatial memory in both 10 mT and 1 mT conditions. In addition, 40 Hz rTMS induced remarkably different effects on exploratory behavior between 10 mT and 1mT, compared to 10 Hz stimulation. Our results indicate that extremely low intensity rTMS can significantly alter cognitive performance depending on intensity and frequency, shedding light on the understanding of the mechanism of rTMS effects.
Collapse
Affiliation(s)
- Yunfan Zhang
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Yunbin Zhang
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Zhuangfei Chen
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center / Shenzhen Kangning Hospital, Shenzhen, Guangdong 518020, China.
| | - Yu Fu
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
8
|
Dong L, Song LL, Zhao WJ, Zhao L, Tian L, Zheng Y. Modulatory effects of real-time electromagnetic stimulation on epileptiform activity in juvenile rat hippocampus based on multi-electrode array recordings. Brain Res Bull 2023; 198:27-35. [PMID: 37084982 DOI: 10.1016/j.brainresbull.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Electromagnetic stimulation (EMS) has proven to be useful for the focal suppression of epileptiform activity (EFA) in the hippocampus. There is a critical period during EFA for achieving the transition from brief interictal discharges (IIDs) to prolonged ictal discharges (IDs), and it is unknown whether EMS can modulate this transition. Therefore, this study aimed to evaluate the intensity- and time-dependent effect of EMS on the transition of EFA. A juvenile rat EFA model was constructed by perfusing magnesium-free artificial cerebrospinal fluid (aCSF) on brain slices, and the induced EFA was recorded using a micro-electrode array (MEA) platform. After a stable EFA event was recorded for some time, real-time pulsed magnetic stimulation with low and high peak-to-peak input magnetic field intensities was carried out. A 5-min intervention with real-time magnetic fields with low intensity was found to reduce the amplitude of IDs (ID events still existed), whereas a 5-min intervention with real-time magnetic fields with high input voltages completely suppressed IDs. Short-time magnetic fields (9s and 1min) with high or low input intensity had no effect on EFA. Real-time magnetic fields can block the normal EFA process from IIDs to IDs (i.e., a complete EFA cycle) and this suppression effect is dependent on input intensities and intervention duration. The experimental findings further indicate that magnetic stimulation may be chosen as an alternative antiepileptic therapy.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Tiangong University, Tianjin 300387, China; State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Lin-Lin Song
- School of Life Sciences, Tiangong University, Tianjin 300387, China; School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China
| | - Wen-Jun Zhao
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Ling Zhao
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Lei Tian
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
9
|
Rothärmel M, Quesada P, Husson T, Harika-Germaneau G, Nathou C, Guehl J, Dalmont M, Opolczynski G, Miréa-Grivel I, Millet B, Gérardin E, Compère V, Dollfus S, Jaafari N, Bénichou J, Thill C, Guillin O, Moulier V. The priming effect of repetitive transcranial magnetic stimulation on clinical response to electroconvulsive therapy in treatment-resistant depression: a randomized, double-blind, sham-controlled study. Psychol Med 2023; 53:2060-2071. [PMID: 34579796 DOI: 10.1017/s0033291721003810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression (TRD). However, due to response delay and cognitive impairment, ECT remains an imperfect treatment. Compared to ECT, repetitive transcranial magnetic stimulation (rTMS) is less effective at treating severe depression, but has the advantage of being quick, easy to use, and producing almost no side effects. In this study, our objective was to assess the priming effect of rTMS sessions before ECT on clinical response in patients with TRD. METHODS In this multicenter, randomized, double-blind, sham-controlled trial, 56 patients with TRD were assigned to active or sham rTMS before ECT treatment. Five sessions of active/sham neuronavigated rTMS were administered over the left dorsolateral prefrontal cortex (20 Hz, 90% resting motor threshold, 20 2 s trains with 60-s intervals, 800 pulses/session) before ECT (which was active for all patients) started. Any relative improvements were then compared between both groups after five ECT sessions, in order to assess the early response to treatment. RESULTS After ECT, the active rTMS group exhibited a significantly greater relative improvement than the sham group [43.4% (28.6%) v. 25.4% (17.2%)]. The responder rate in the active group was at least three times higher. Cognitive complaints, which were assessed using the Cognitive Failures Questionnaire, were higher in the sham rTMS group compared to the active rTMS group, but this difference was not corroborated by cognitive tests. CONCLUSIONS rTMS could be used to enhance the efficacy of ECT in patients with TRD. ClinicalTrials.gov: NCT02830399.
Collapse
Affiliation(s)
- Maud Rothärmel
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Pierre Quesada
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Thomas Husson
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- Rouen University Hospital, Rouen, France
- INSERM U 1245 University of Rouen, Rouen, France
| | | | - Clément Nathou
- UNICAEN, ISTS, EA 7466, GIP Cyceron, Caen 14000, France
- CHU de Caen, Service de Psychiatrie adulte, Caen 14000, France
- UFR Santé UNICAEN, 2 rue des Rochambelles, Caen 14000, France
| | - Julien Guehl
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Marine Dalmont
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- Rouen University Hospital, Rouen, France
| | - Gaëlle Opolczynski
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Iris Miréa-Grivel
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Bruno Millet
- Department of Adult Psychiatry, boulevard de l'Hôpital, Hôpital Universitaire de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de, Paris 75013, France
| | - Emmanuel Gérardin
- Department of Neuroradiology, Rouen University Hospital, Rouen, France
| | - Vincent Compère
- Department of Anaesthesiology and Intensive Care, Rouen University Hospital, Rouen, France
| | - Sonia Dollfus
- UNICAEN, ISTS, EA 7466, GIP Cyceron, Caen 14000, France
- CHU de Caen, Service de Psychiatrie adulte, Caen 14000, France
- UFR Santé UNICAEN, 2 rue des Rochambelles, Caen 14000, France
| | | | - Jacques Bénichou
- Department of Biostatistics, Rouen University Hospital, Rouen, France
- INSERM U 1018, University of Rouen, Rouen, France
| | - Caroline Thill
- Department of Biostatistics, Rouen University Hospital, Rouen, France
| | - Olivier Guillin
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- Rouen University Hospital, Rouen, France
- INSERM U 1245 University of Rouen, Rouen, France
- Faculté de Médecine, Normandie University, Rouen, France
| | - Virginie Moulier
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- EPS Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| |
Collapse
|
10
|
Wilson MT, Goldsworthy MR, Vallence AM, Fornito A, Rogasch NC. Finding synaptic couplings from a biophysical model of motor evoked potentials after theta-burst transcranial magnetic stimulation. Brain Res 2023; 1801:148205. [PMID: 36563834 DOI: 10.1016/j.brainres.2022.148205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We aimed to use measured input-output (IO) data to identify the best fitting model for motor evoked potentials. METHODS We analyzed existing IO data before and after intermittent and continuous theta-burst stimulation (iTBS & cTBS) from a small group of subjects (18 for each). We fitted individual synaptic couplings and sensitivity parameters using variations of a biophysical model. A best performing model was selected and analyzed. RESULTS cTBS gives a broad reduction in MEPs for amplitudes larger than resting motor threshold (RMT). Close to threshold, iTBS gives strong potentiation. The model captures individual IO curves. There is no change to the population average synaptic weights post TBS but the change in excitatory-to-excitatory synaptic coupling is strongly correlated with the experimental post-TBS response relative to baseline. CONCLUSIONS The model describes population-averaged and individual IO curves, and their post-TBS change. Variation among individuals is accounted for with variation in synaptic couplings, and variation in sensitivity of neural response to stimulation. SIGNIFICANCE The best fitting model could be applied more broadly and validation studies could elucidate underlying biophysical meaning of parameters.
Collapse
Affiliation(s)
- Marcus T Wilson
- Te Aka Mātuatua-School of Science, University of Waikato, Hamilton, New Zealand.
| | - Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Ann-Maree Vallence
- Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Nigel C Rogasch
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia; South Australian Health and Medical Research Institute, Australia
| |
Collapse
|
11
|
Moretti J, Terstege DJ, Poh EZ, Epp JR, Rodger J. Low intensity repetitive transcranial magnetic stimulation modulates brain-wide functional connectivity to promote anti-correlated c-Fos expression. Sci Rep 2022; 12:20571. [PMID: 36446821 PMCID: PMC9708643 DOI: 10.1038/s41598-022-24934-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) induces action potentials to induce plastic changes in the brain with increasing evidence for the therapeutic importance of brain-wide functional network effects of rTMS; however, the influence of sub-action potential threshold (low-intensity; LI-) rTMS on neuronal activity is largely unknown. We investigated whether LI-rTMS modulates neuronal activity and functional connectivity and also specifically assessed modulation of parvalbumin interneuron activity. We conducted a brain-wide analysis of c-Fos, a marker for neuronal activity, in mice that received LI-rTMS to visual cortex. Mice received single or multiple sessions of excitatory 10 Hz LI-rTMS with custom rodent coils or were sham controls. We assessed changes to c-Fos positive cell densities and c-Fos/parvalbumin co-expression. Peak c-Fos expression corresponded with activity during rTMS. We also assessed functional connectivity changes using brain-wide c-Fos-based network analysis. LI-rTMS modulated c-Fos expression in cortical and subcortical regions. c-Fos density changes were most prevalent with acute stimulation, however chronic stimulation decreased parvalbumin interneuron activity, most prominently in the amygdala and striatum. LI-rTMS also increased anti-correlated functional connectivity, with the most prominent effects also in the amygdala and striatum following chronic stimulation. LI-rTMS induces changes in c-Fos expression that suggest modulation of neuronal activity and functional connectivity throughout the brain. Our results suggest that LI-rTMS promotes anticorrelated functional connectivity, possibly due to decreased parvalbumin interneuron activation induced by chronic stimulation. These changes may underpin therapeutic rTMS effects, therefore modulation of subcortical activity supports rTMS for treatment of disorders involving subcortical dysregulation.
Collapse
Affiliation(s)
- Jessica Moretti
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia.
| | - Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Eugenia Z Poh
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia.
| |
Collapse
|
12
|
Boyer M, Baudin P, Stengel C, Valero-Cabré A, Lohof AM, Charpier S, Sherrard RM, Mahon S. In vivo low-intensity magnetic pulses durably alter neocortical neuron excitability and spontaneous activity. J Physiol 2022; 600:4019-4037. [PMID: 35899578 DOI: 10.1113/jp283244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Repetitive transcranial magnetic stimulation (rTMS) is a promising technique to alleviate neurological and psychiatric disorders caused by alterations in cortical activity. Our knowledge of the cellular mechanisms underlying rTMS-based therapies remains limited. We combined in vivo focal application of low-intensity rTMS (LI-rTMS) to the rat somatosensory cortex with intracellular recordings of subjacent pyramidal neurons to characterize the effects of weak magnetic fields at single cell level. Ten minutes of LI-rTMS delivered at 10 Hz reliably evoked action potentials in cortical neurons during the stimulation period, and induced durable attenuation of their intrinsic excitability, synaptic activity, and spontaneous firing. These results help us better understand the mechanisms of weak magnetic stimulation and should allow optimizing the effectiveness of stimulation protocols for clinical use. ABSTRACT Magnetic brain stimulation is a promising treatment for neurological and psychiatric disorders. However, a better understanding of its effects at the individual neuron level is essential to improve its clinical application. We combined focal low-intensity repetitive transcranial magnetic stimulation (LI-rTMS) to the rat somatosensory cortex with intracellular recordings of subjacent pyramidal neurons in vivo. Continuous 10 Hz LI-rTMS reliably evoked firing at ∼4-5 Hz during the stimulation period and induced durable attenuation of synaptic activity and spontaneous firing in cortical neurons, through membrane hyperpolarization and a reduced intrinsic excitability. However, inducing firing in individual neurons by repeated intracellular current injection did not reproduce LI-rTMS effects on neuronal properties. These data provide novel understanding of mechanisms underlying magnetic brain stimulation showing that, in addition to inducing biochemical plasticity, even weak magnetic fields can activate neurons and enduringly modulate their excitability. Abstract figure legend We examined by means of in vivo intracellular recordings in the rodent the effects of low-intensity (10 mT) repetitive transcranial magnetic stimulation (LI-rTMS) on the functional properties of primary somatosensory cortex pyramidal neurons. After a baseline period, during which cortical spontaneous activity and excitability were measured (Pre), LI-rTMS was applied at 10 Hz for 10 minutes. Despite their low intensity, magnetic pulses reliably evoked action potentials in cortical neurons. Ten minutes of LI-rTMS induced a progressive and long-lasting hyperpolarization of the neuronal membrane and a marked decrease in cell firing rate (Post). This was associated with an altered intrinsic neuronal excitability, characterized by reduced membrane input resistance and increased minimal current required to induce neuronal firing. A portion of this figure was created with biorender.com. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Manon Boyer
- IBPS-B2A, UMR 8256 Biological Adaptation and Ageing, Sorbonne Université & CNRS, Paris, 75005, France.,Paris Brain Institute-ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team 'Network Dynamics and cellular excitability', Sorbonne Université, Paris, France, 75013
| | - Paul Baudin
- Paris Brain Institute-ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team 'Network Dynamics and cellular excitability', Sorbonne Université, Paris, France, 75013
| | - Chloé Stengel
- Paris Brain Institute-ICM, INSERM, CNRS, Pitié-Salpêtrière Hospital, team Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, Sorbonne Université, Paris, 75013, France
| | - Antoni Valero-Cabré
- Paris Brain Institute-ICM, INSERM, CNRS, Pitié-Salpêtrière Hospital, team Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, Sorbonne Université, Paris, 75013, France
| | - Ann M Lohof
- IBPS-B2A, UMR 8256 Biological Adaptation and Ageing, Sorbonne Université & CNRS, Paris, 75005, France
| | - Stéphane Charpier
- Paris Brain Institute-ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team 'Network Dynamics and cellular excitability', Sorbonne Université, Paris, France, 75013
| | - Rachel M Sherrard
- IBPS-B2A, UMR 8256 Biological Adaptation and Ageing, Sorbonne Université & CNRS, Paris, 75005, France
| | - Séverine Mahon
- Paris Brain Institute-ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team 'Network Dynamics and cellular excitability', Sorbonne Université, Paris, France, 75013
| |
Collapse
|
13
|
Seewoo BJ, Hennessy LA, Jaeschke LA, Mackie LA, Etherington SJ, Dunlop SA, Croarkin PE, Rodger J. A Preclinical Study of Standard Versus Accelerated Transcranial Magnetic Stimulation for Depression in Adolescents. J Child Adolesc Psychopharmacol 2022; 32:187-193. [PMID: 34978846 PMCID: PMC9057889 DOI: 10.1089/cap.2021.0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: Ongoing studies are focused on adapting transcranial magnetic stimulation (TMS) for the treatment of major depressive disorder in adolescent humans. Most protocols in adolescent humans to date have delivered daily 10 Hz prefrontal stimulation with mixed results. Novel TMS dosing strategies such as accelerated TMS have recently been considered. There are knowledge gaps related to the potential clinical and pragmatic advantages of accelerated TMS. This pilot study compared the behavioral effects of a standard daily and accelerated low-intensity TMS (LI-TMS) protocol in an adolescent murine model of depression. Methods: Male adolescent Sprague Dawley rats were placed in transparent plexiglass tubes for 2.5 hours daily for 13 days as part of a study to validate the chronic restraint stress (CRS) protocol. Rats subsequently received 10 minutes of active or sham 10 Hz LI-TMS daily for 2 weeks (standard) or three times daily for 1 week (accelerated). Behavior was assessed using the elevated plus maze and forced swim test (FST). Hippocampal neurogenesis was assessed by injection of the thymidine analogue 5-ethynyl-2'-deoxyuridine at the end of LI-TMS treatment (2 weeks standard, 1 week accelerated), followed by postmortem histological analysis. Results: There were no significant differences in behavioral outcomes among animals receiving once-daily sham or active LI-TMS treatment. However, animals treated with accelerated LI-TMS demonstrated significant improvements in behavioral outcomes compared with sham treatment. Specifically, animals receiving active accelerated treatment showed greater latency to the first immobility behavior (p < 0.05; active: 130 ± 46 seconds; sham: 54 ± 39 seconds) and increased climbing behaviors (p < 0.05; active: 16 ± 5; sham: 9 ± 5) during FST. There were no changes in hippocampal neurogenesis nor any evidence of cell death in histological sections. Conclusions: An accelerated LI-TMS protocol outperformed the standard (once-daily) protocol in adolescent male animals with depression-like behaviors induced by CRS and was not accompanied by any toxicity or tolerability concerns. These preliminary findings support the speculation that novel TMS dosing strategies should be studied in adolescent humans and will inform future clinical protocols.
Collapse
Affiliation(s)
- Bhedita J. Seewoo
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia.,Centre for Microscopy, Characterisation and Analysis, Research Infrastructure Centres, The University of Western Australia, Perth, Western Australia, Australia
| | - Lauren A. Hennessy
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
| | - Liz A. Jaeschke
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Leah A. Mackie
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Sarah J. Etherington
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Sarah A. Dunlop
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Minderoo Foundation, Perth, Western Australia, Australia
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia.,Address correspondence to: Jennifer Rodger, PhD, Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
14
|
Moretti J, Rodger J. A little goes a long way: Neurobiological effects of low intensity rTMS and implications for mechanisms of rTMS. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100033. [PMID: 36685761 PMCID: PMC9846462 DOI: 10.1016/j.crneur.2022.100033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 01/25/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widespread technique in neuroscience and medicine, however its mechanisms are not well known. In this review, we consider intensity as a key therapeutic parameter of rTMS, and review the studies that have examined the biological effects of rTMS using magnetic fields that are orders of magnitude lower that those currently used in the clinic. We discuss how extensive characterisation of "low intensity" rTMS has set the stage for translation of new rTMS parameters from a mechanistic evidence base, with potential for innovative and effective therapeutic applications. Low-intensity rTMS demonstrates neurobiological effects across healthy and disease models, which include depression, injury and regeneration, abnormal circuit organisation, tinnitus etc. Various short and long-term changes to metabolism, neurotransmitter release, functional connectivity, genetic changes, cell survival and behaviour have been investigated and we summarise these key changes and the possible mechanisms behind them. Mechanisms at genetic, molecular, cellular and system levels have been identified with evidence that low-intensity rTMS and potentially rTMS in general acts through several key pathways to induce changes in the brain with modulation of internal calcium signalling identified as a major mechanism. We discuss the role that preclinical models can play to inform current clinical research as well as uncover new pathways for investigation.
Collapse
Affiliation(s)
- Jessica Moretti
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia,Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia,Perron Institute for Neurological and Translational Science, Perth, WA, Australia,Corresponding author. School of Biological Sciences M317, The University of Western Australia, 35 Stirling Highway, Crawley WA, 6009, Australia.
| |
Collapse
|
15
|
Jiang W, Isenhart R, Kistler N, Lu Z, Xu H, Lee DJ, Liu CY, Song D. Low Intensity Repetitive Transcranial Magnetic Stimulation Modulates Spontaneous Spiking Activities in Rat Cortex. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6318-6321. [PMID: 34892558 DOI: 10.1109/embc46164.2021.9630986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique for neuromodulation. Even at low intensities, rTMS can alter the structure and function of neural circuits; yet the underlying mechanism remains unclear. Here we report a new experimental paradigm for studying the effect of low intensity rTMS (LI-rTMS) on single neuron spiking activities in the sensorimotor cortex of anesthetized rats. We designed, built, and tested a miniaturized TMS coil for use on small animals such as rats. The induced electric field in different 3D locations was measured along different directions using a dipole probe. A maximum electric field strength of 2.3 V/m was achieved. LI-rTMS (10 Hz, 3 min) was delivered to the rat primary motor and somatosensory cortices. Single-unit activities were recorded before and after LI-rTMS. Results showed that LI-rTMS increased the spontaneous firing rates of primary motor and somatosensory cortical neurons. Diverse modulatory patterns were observed in different neurons. These results indicated the feasibility of using miniaturized coil in rodents as an experimental platform for evaluating the effect of LI-rTMS on the brain and developing therapeutic strategies for treating neurological disorders.
Collapse
|
16
|
Tang AD, Bennett W, Bindoff AD, Bolland S, Collins J, Langley RC, Garry MI, Summers JJ, Hinder MR, Rodger J, Canty AJ. Subthreshold repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. Brain Stimul 2021; 14:1498-1507. [PMID: 34653682 DOI: 10.1016/j.brs.2021.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool commonly used to drive neural plasticity in the young adult and aged brain. Recent data from mouse models have shown that even at subthreshold intensities (0.12 T), rTMS can drive neuronal and glial plasticity in the motor cortex. However, the physiological mechanisms underlying subthreshold rTMS induced plasticity and whether these are altered with normal ageing are unclear. OBJECTIVE To assess the effect of subthreshold rTMS, using the intermittent theta burst stimulation (iTBS) protocol on structural synaptic plasticity in the mouse motor cortex of young and aged mice. METHODS Longitudinal in vivo 2-photon microscopy was used to measure changes to the structural plasticity of pyramidal neuron dendritic spines in the motor cortex following a single train of subthreshold rTMS (in young adult and aged animals) or the same rTMS train administered on 4 consecutive days (in young adult animals only). Data were analysed with Bayesian hierarchical generalized linear regression models and interpreted with the aid of Bayes Factors (BF). RESULTS We found strong evidence (BF > 10) that subthreshold rTMS altered the rate of dendritic spine losses and gains, dependent on the number of stimulation sessions and that a single session of subthreshold rTMS was effective in driving structural synaptic plasticity in both young adult and aged mice. CONCLUSION These findings provide further evidence that rTMS drives synaptic plasticity in the brain and uncovers structural synaptic plasticity as a key mechanism of subthreshold rTMS induced plasticity.
Collapse
Affiliation(s)
- Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia.
| | - William Bennett
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Aidan D Bindoff
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Samuel Bolland
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia
| | - Jessica Collins
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Ross C Langley
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Michael I Garry
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia
| | - Jeffery J Summers
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, L3 3AF, Liverpool, United Kingdom
| | - Mark R Hinder
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia
| | - Alison J Canty
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| |
Collapse
|
17
|
Precise Modulation Strategies for Transcranial Magnetic Stimulation: Advances and Future Directions. Neurosci Bull 2021; 37:1718-1734. [PMID: 34609737 DOI: 10.1007/s12264-021-00781-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a popular modulatory technique for the noninvasive diagnosis and therapy of neurological and psychiatric diseases. Unfortunately, current modulation strategies are only modestly effective. The literature provides strong evidence that the modulatory effects of TMS vary depending on device components and stimulation protocols. These differential effects are important when designing precise modulatory strategies for clinical or research applications. Developments in TMS have been accompanied by advances in combining TMS with neuroimaging techniques, including electroencephalography, functional near-infrared spectroscopy, functional magnetic resonance imaging, and positron emission tomography. Such studies appear particularly promising as they may not only allow us to probe affected brain areas during TMS but also seem to predict underlying research directions that may enable us to precisely target and remodel impaired cortices or circuits. However, few precise modulation strategies are available, and the long-term safety and efficacy of these strategies need to be confirmed. Here, we review the literature on possible technologies for precise modulation to highlight progress along with limitations with the goal of suggesting future directions for this field.
Collapse
|
18
|
Seewoo BJ, Feindel KW, Won Y, Joos AC, Figliomeni A, Hennessy LA, Rodger J. White Matter Changes Following Chronic Restraint Stress and Neuromodulation: A Diffusion Magnetic Resonance Imaging Study in Young Male Rats. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:153-166. [PMID: 36325163 PMCID: PMC9616380 DOI: 10.1016/j.bpsgos.2021.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS), a noninvasive neuromodulation technique, is an effective treatment for depression. However, few studies have used diffusion magnetic resonance imaging to investigate the longitudinal effects of rTMS on the abnormal brain white matter (WM) described in depression. Methods In this study, we acquired diffusion magnetic resonance imaging from young adult male Sprague Dawley rats to investigate 1) the longitudinal effects of 10- and 1-Hz low-intensity rTMS (LI-rTMS) in healthy animals; 2) the effect of chronic restraint stress (CRS), an animal model of depression; and 3) the effect of 10 Hz LI-rTMS in CRS animals. Diffusion magnetic resonance imaging data were analyzed using tract-based spatial statistics and fixel-based analysis. Results Similar changes in diffusion and kurtosis fractional anisotropy were induced by 10- and 1-Hz stimulation in healthy animals, although changes induced by 10-Hz stimulation were detected earlier than those following 1-Hz stimulation. Additionally, 10-Hz stimulation increased axial and mean kurtosis within the external capsule, suggesting that the two protocols may act via different underlying mechanisms. Brain maturation–related changes in WM, such as increased corpus callosum, fimbria, and external and internal capsule fiber cross-section, were compromised in CRS animals compared with healthy control animals and were rescued by 10-Hz LI-rTMS. Immunohistochemistry revealed increased myelination within the corpus callosum in LI-rTMS–treated CRS animals compared with those that received sham or no stimulation. Conclusions Overall, decreased WM connectivity and integrity in the CRS model corroborate findings in patients experiencing depression with high anxiety, and the observed LI-rTMS–induced effects on WM structure suggest that LI-rTMS might rescue abnormal WM by increasing myelination.
Collapse
|
19
|
Immediate and cumulative effects of high-frequency repetitive transcranial magnetic stimulation on cognition and neuronal excitability in mice. Neurosci Res 2021; 173:90-98. [PMID: 34111441 DOI: 10.1016/j.neures.2021.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 01/23/2023]
Abstract
This study primarily explored the potential effects of high-frequency (20 Hz) repetitive transcranial magnetic stimulation (rTMS) with different intervention protocols on cognition and neuronal excitability in mice. Mice were randomly divided into 4 groups: a control group that received sham stimulation, an rTMS in vitro group whose acute brain slices received high-frequency stimulation, an rTMS 1 d group that received high-frequency stimulation for only 1 d, and an rTMS 15 d group that received high-frequency stimulation for 15 d. The novel object recognition and step-down tests were used to assess cognitive ability. The patch-clamp technique was used to record the membrane potentials and neural discharges of dentate gyrus granule cells to evaluate neuronal excitability. Results revealed that cognition and neuronal excitability in the rTMS 15 d group were significantly increased than that in the control and rTMS 1 d groups. The neuronal excitability in the rTMS in vitro group was also significantly increased than that in the control and rTMS 1 d groups. No significant changes were observed between the control and rTMS 1 d groups. These results suggested that high-frequency rTMS applied to the acute brain slices of mice in vitro exerted an immediate effect on increasing neuronal excitability. Chronic high-frequency rTMS applied to the brain of mice in vivo exerted a cumulative effect in improving cognition and increasing neuronal excitability.
Collapse
|
20
|
Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, Carpenter LL, Cincotta M, Chen R, Daskalakis JD, Di Lazzaro V, Fox MD, George MS, Gilbert D, Kimiskidis VK, Koch G, Ilmoniemi RJ, Lefaucheur JP, Leocani L, Lisanby SH, Miniussi C, Padberg F, Pascual-Leone A, Paulus W, Peterchev AV, Quartarone A, Rotenberg A, Rothwell J, Rossini PM, Santarnecchi E, Shafi MM, Siebner HR, Ugawa Y, Wassermann EM, Zangen A, Ziemann U, Hallett M. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol 2021; 132:269-306. [PMID: 33243615 PMCID: PMC9094636 DOI: 10.1016/j.clinph.2020.10.003] [Citation(s) in RCA: 705] [Impact Index Per Article: 176.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
This article is based on a consensus conference, promoted and supported by the International Federation of Clinical Neurophysiology (IFCN), which took place in Siena (Italy) in October 2018. The meeting intended to update the ten-year-old safety guidelines for the application of transcranial magnetic stimulation (TMS) in research and clinical settings (Rossi et al., 2009). Therefore, only emerging and new issues are covered in detail, leaving still valid the 2009 recommendations regarding the description of conventional or patterned TMS protocols, the screening of subjects/patients, the need of neurophysiological monitoring for new protocols, the utilization of reference thresholds of stimulation, the managing of seizures and the list of minor side effects. New issues discussed in detail from the meeting up to April 2020 are safety issues of recently developed stimulation devices and pulse configurations; duties and responsibility of device makers; novel scenarios of TMS applications such as in the neuroimaging context or imaging-guided and robot-guided TMS; TMS interleaved with transcranial electrical stimulation; safety during paired associative stimulation interventions; and risks of using TMS to induce therapeutic seizures (magnetic seizure therapy). An update on the possible induction of seizures, theoretically the most serious risk of TMS, is provided. It has become apparent that such a risk is low, even in patients taking drugs acting on the central nervous system, at least with the use of traditional stimulation parameters and focal coils for which large data sets are available. Finally, new operational guidelines are provided for safety in planning future trials based on traditional and patterned TMS protocols, as well as a summary of the minimal training requirements for operators, and a note on ethics of neuroenhancement.
Collapse
Affiliation(s)
- Simone Rossi
- Department of Scienze Mediche, Chirurgiche e Neuroscienze, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab (SI-BIN Lab), University of Siena, Italy.
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany; Institue of Medical Psychology, Otto-Guericke University Magdeburg, Germany
| | - Sven Bestmann
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Carmen Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Linda L Carpenter
- Butler Hospital, Brown University Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Massimo Cincotta
- Unit of Neurology of Florence - Central Tuscany Local Health Authority, Florence, Italy
| | - Robert Chen
- Krembil Research Institute and Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Jeff D Daskalakis
- Center for Addiction and Mental Health (CAMH), University of Toronto, Canada
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico, Roma, Italy
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark S George
- Medical University of South Carolina, Charleston, SC, USA
| | - Donald Gilbert
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, Aristotle University of Thessaloniki, AHEPA University Hospital, Greece
| | | | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Aalto, Finland
| | - Jean Pascal Lefaucheur
- EA 4391, ENT Team, Faculty of Medicine, Paris Est Creteil University (UPEC), Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, (APHP), Créteil, France
| | - Letizia Leocani
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Vita-Salute San Raffaele University, Milano, Italy
| | - Sarah H Lisanby
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Angel V Peterchev
- Departments of Psychiatry & Behavioral Sciences, Biomedical Engineering, Electrical & Computer Engineering, and Neurosurgery, Duke University, Durham, NC, USA
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Rothwell
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Paolo M Rossini
- Department of Neuroscience and Rehabilitation, IRCCS San Raffaele-Pisana, Roma, Italy
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshikatzu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abraham Zangen
- Zlotowski Center of Neuroscience, Ben Gurion University, Beer Sheva, Israel
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
21
|
Cullen CL, Pepper RE, Clutterbuck MT, Pitman KA, Oorschot V, Auderset L, Tang AD, Ramm G, Emery B, Rodger J, Jolivet RB, Young KM. Periaxonal and nodal plasticities modulate action potential conduction in the adult mouse brain. Cell Rep 2021; 34:108641. [PMID: 33472075 DOI: 10.1016/j.celrep.2020.108641] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022] Open
Abstract
Central nervous system myelination increases action potential conduction velocity. However, it is unclear how myelination is coordinated to ensure the temporally precise arrival of action potentials and facilitate information processing within cortical and associative circuits. Here, we show that myelin sheaths, supported by mature oligodendrocytes, remain plastic in the adult mouse brain and undergo subtle structural modifications to influence action potential conduction velocity. Repetitive transcranial magnetic stimulation and spatial learning, two stimuli that modify neuronal activity, alter the length of the nodes of Ranvier and the size of the periaxonal space within active brain regions. This change in the axon-glial configuration is independent of oligodendrogenesis and robustly alters action potential conduction velocity. Because aptitude in the spatial learning task was found to correlate with action potential conduction velocity in the fimbria-fornix pathway, modifying the axon-glial configuration may be a mechanism that facilitates learning in the adult mouse brain.
Collapse
Affiliation(s)
- Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Renee E Pepper
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | | | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Viola Oorschot
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne, VIC 3800, Australia
| | - Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neuroscience, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Georg Ramm
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne, VIC 3800, Australia
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia; Perron Institute for Neurological and Translational Research, Perth, WA 6009, Australia
| | - Renaud B Jolivet
- Département de Physique Nucléaire et Corpusculaire, University of Geneva, 1211 Geneva 4, Switzerland
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia.
| |
Collapse
|
22
|
Clarke D, Beros J, Bates KA, Harvey AR, Tang AD, Rodger J. Low intensity repetitive magnetic stimulation reduces expression of genes related to inflammation and calcium signalling in cultured mouse cortical astrocytes. Brain Stimul 2020; 14:183-191. [PMID: 33359601 DOI: 10.1016/j.brs.2020.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a form of non-invasive brain stimulation frequently used to induce neuroplasticity in the brain. Even at low intensities, rTMS has been shown to modulate aspects of neuronal plasticity such as motor learning and structural reorganisation of neural tissue. However, the impact of low intensity rTMS on glial cells such as astrocytes remains largely unknown. This study investigated changes in RNA (qPCR array: 125 selected genes) and protein levels (immunofluorescence) in cultured mouse astrocytes following a single session of low intensity repetitive magnetic stimulation (LI-rMS - 18 mT). Purified neonatal cortical astrocyte cultures were stimulated with either 1Hz (600 pulses), 10Hz (600 or 6000 pulses) or sham (0 pulses) LI-rMS, followed by RNA extraction at 5 h post-stimulation, or fixation at either 5 or 24-h post-stimulation. LI-rMS resulted in a two-to-four-fold downregulation of mRNA transcripts related to calcium signalling (Stim1 and Orai3), inflammatory molecules (Icam1) and neural plasticity (Ncam1). 10Hz reduced expression of Stim1, Orai3, Kcnmb4, and Ncam1 mRNA, whereas 1Hz reduced expression of Icam1 mRNA and signalling-related genes. Protein levels followed a similar pattern for 10Hz rMS, with a significant reduction of STIM1, ORAI3, KCNMB4, and NCAM1 protein compared to sham, but 1Hz increased STIM1 and ORAI3 protein levels relative to sham. These findings demonstrate the ability of 1Hz and 10Hz LI-rMS to modulate specific aspects of astrocytic phenotype, potentially contributing to the known effects of low intensity rTMS on excitability and neuroplasticity.
Collapse
Affiliation(s)
- Darren Clarke
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| | - Jamie Beros
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Kristyn A Bates
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Alan R Harvey
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia; School of Human Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| |
Collapse
|
23
|
Leung V, Stambaugh M, Abbasi S, Asbeck P, Gough D, Makale M, Murphy KT. A Compact Battery-Powered rTMS Prototype. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3852-3855. [PMID: 33018841 DOI: 10.1109/embc44109.2020.9176533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper describes the design and testing of a compact, battery-powered repetitive Transcranial Magnetic Stimulation (rTMS) prototype. This device generates a 10 Hz magnetic pulse train with peak flux density of 100 mT at 2 cm distance. Circuit component design, including the inductor, switched LC resonator, and boost converter, are discussed in the context of weight and size reduction, and performance optimization. The experimental approach and rationale together with acquired results validating the rTMS prototype design are presented. To the best of our knowledge, this is the first comprehensive feasibility demonstration of an inexpensive, lightweight, and portable rTMS device able to generate therapeutic levels of current, pulse rise time, and number of pulses. The generated magnetic field was kept to 0.1 Tesla for safety and testing considerations, but nevertheless was very close to therapeutic intensity, with driving circuitry scalable to support much stronger fields.Clinical Relevance- This feasibility study of a compact, battery-powered rTMS prototype test platform aims to enable broader and more convenient rTMS treatment at home, in a small clinic, vessel, or field hospital, and potentially, on an ambulatory basis.
Collapse
|
24
|
Fujiki M, Kawasaki Y, Fudaba H. Continuous Theta-Burst Stimulation Intensity Dependently Facilitates Motor-Evoked Potentials Following Focal Electrical Stimulation of the Rat Motor Cortex. Front Neural Circuits 2020; 14:585624. [PMID: 33117132 PMCID: PMC7553073 DOI: 10.3389/fncir.2020.585624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/31/2020] [Indexed: 01/28/2023] Open
Abstract
Although theta-burst stimulation (TBS) is known to differentially modify motor cortical excitability according to stimulus conditions in humans, whether similar effects can be seen in animals, in particular rats, remains to be defined. Given the importance of experimental rat models for humans, this study explored this stimulation paradigm in rats. Specifically, this study aimed to explore corticospinal excitability after TBS in anesthetized animals to confirm its comparability with human results. Both inhibition-facilitation configurations using paired electrical stimulation protocols and the effects of the TBS paradigm on motor-evoked potentials (MEPs) in rat descending motor pathways were assessed. Paired-stimulation MEPs showed inhibition [interstimulus interval (ISI): 3 ms] and facilitation (11 ms) patterns under medetomidine/midazolam/butorphanol (MMB) anesthesia. Furthermore, while ketamine and xylazine (K/X) anesthesia completely blocked facilitation at 11-ms ISI, inhibition at a 3-ms ISI was preserved. Continuous and intermittent TBS strongly facilitated MEPs depending on stimulus intensity, persisting for up to 25 min under both MMB and K/X anesthesia. These findings are similar to the intracortical inhibition and facilitation observed in the human motor cortex using paired-pulse magnetic stimulation, particularly the glutamate-mediated facilitation phase. However, different TBS facilitatory mechanisms occur in the rat motor cortex. These different TBS facilitatory mechanisms affect the comparability and interpretations of TBS between rat and human models.
Collapse
Affiliation(s)
- Minoru Fujiki
- Department of Neurosurgery, School of Medicine, Oita University, Oita, Japan
| | - Yukari Kawasaki
- Department of Neurosurgery, School of Medicine, Oita University, Oita, Japan
| | - Hirotaka Fudaba
- Department of Neurosurgery, School of Medicine, Oita University, Oita, Japan
| |
Collapse
|
25
|
Chiu D, McCane CD, Lee J, John B, Nguyen L, Butler K, Gadhia R, Misra V, Volpi JJ, Verma A, Helekar SA. Multifocal transcranial stimulation in chronic ischemic stroke: A phase 1/2a randomized trial. J Stroke Cerebrovasc Dis 2020; 29:104816. [PMID: 32321651 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/10/2020] [Accepted: 03/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Repetitive transcranial magnetic stimulation (rTMS) may promote recovery of motor function after stroke by inducing functional reorganization of cortical circuits. The objective of this study was to examine whether multifocal cortical stimulation using a new wearable transcranial rotating permanent magnet stimulator (TRPMS) can promote recovery of motor function after stroke by inducing functional reorganization of cortical circuits. METHODS Thirty30 patients with chronic ischemic stroke and stable unilateral weakness were enrolled in a Phase 1/2a randomized double-blind sham-controlled clinical trial to evaluate safety and preliminary efficacy. Bilateral hemispheric stimulation was administered for 20 sessions 40 min each over 4 weeks. The primary efficacy endpoint was the change in functional MRI BOLD activation immediately after end of treatment. Secondary efficacy endpoints were clinical scales of motor function, including the Fugl-Meyer motor arm score, ARAT, grip strength, pinch strength, gait velocity, and NIHSS. RESULTS TRPMS treatment was well-tolerated with no device-related adverse effects. Active treatment produced a significantly greater increase in the number of active voxels on fMRI than sham treatment (median +48.5 vs -30, p = 0.038). The median active voxel number after active treatment was 8.8-fold greater than after sham (227.5 vs 26, p = 0.016). Although the statistical power was inadequate to establish clinical endpoint benefits, numerical improvements were demonstrated in 5 of 6 clinical scales of motor function. The treatment effects persisted over a 3-month duration of follow-up. CONCLUSIONS Multifocal bilateral TRPMS was safe and showed significant fMRI changes suggestive of functional reorganization of cortical circuits in patients with chronic ischemic stroke. A larger randomized clinical trial is warranted to verify recovery of motor function.
Collapse
Affiliation(s)
- David Chiu
- Stanley H. Appel Department of Neurology, Methodist Neurological Institute, Houston Methodist Hospital, 6560 Fannin St #802, Houston, TX 77030, United States.
| | - C David McCane
- Stanley H. Appel Department of Neurology, Methodist Neurological Institute, Houston Methodist Hospital, 6560 Fannin St #802, Houston, TX 77030, United States
| | - Jason Lee
- Stanley H. Appel Department of Neurology, Methodist Neurological Institute, Houston Methodist Hospital, 6560 Fannin St #802, Houston, TX 77030, United States
| | - Blessy John
- Stanley H. Appel Department of Neurology, Methodist Neurological Institute, Houston Methodist Hospital, 6560 Fannin St #802, Houston, TX 77030, United States
| | - Lisa Nguyen
- Stanley H. Appel Department of Neurology, Methodist Neurological Institute, Houston Methodist Hospital, 6560 Fannin St #802, Houston, TX 77030, United States
| | - Kayla Butler
- Stanley H. Appel Department of Neurology, Methodist Neurological Institute, Houston Methodist Hospital, 6560 Fannin St #802, Houston, TX 77030, United States
| | - Rajan Gadhia
- Stanley H. Appel Department of Neurology, Methodist Neurological Institute, Houston Methodist Hospital, 6560 Fannin St #802, Houston, TX 77030, United States
| | - Vivek Misra
- Stanley H. Appel Department of Neurology, Methodist Neurological Institute, Houston Methodist Hospital, 6560 Fannin St #802, Houston, TX 77030, United States
| | - John J Volpi
- Stanley H. Appel Department of Neurology, Methodist Neurological Institute, Houston Methodist Hospital, 6560 Fannin St #802, Houston, TX 77030, United States
| | - Amit Verma
- Stanley H. Appel Department of Neurology, Methodist Neurological Institute, Houston Methodist Hospital, 6560 Fannin St #802, Houston, TX 77030, United States
| | - Santosh A Helekar
- Stanley H. Appel Department of Neurology, Methodist Neurological Institute, Houston Methodist Hospital, 6560 Fannin St #802, Houston, TX 77030, United States
| |
Collapse
|
26
|
Moretti J, Poh EZ, Rodger J. rTMS-Induced Changes in Glutamatergic and Dopaminergic Systems: Relevance to Cocaine and Methamphetamine Use Disorders. Front Neurosci 2020; 14:137. [PMID: 32210744 PMCID: PMC7068681 DOI: 10.3389/fnins.2020.00137] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Cocaine use disorder and methamphetamine use disorder are chronic, relapsing disorders with no US Food and Drug Administration-approved interventions. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation tool that has been increasingly investigated as a possible therapeutic intervention for substance use disorders. rTMS may have the ability to induce beneficial neuroplasticity in abnormal circuits and networks in individuals with addiction. The aim of this review is to highlight the rationale and potential for rTMS to treat cocaine and methamphetamine dependence: we synthesize the outcomes of studies in healthy humans and animal models to identify and understand the neurobiological mechanisms of rTMS that seem most involved in addiction, focusing on the dopaminergic and glutamatergic systems. rTMS-induced changes to neurotransmitter systems include alterations to striatal dopamine release and metabolite levels, as well as to glutamate transporter and receptor expression, which may be relevant for ameliorating the aberrant plasticity observed in individuals with substance use disorders. We also discuss the clinical studies that have used rTMS in humans with cocaine and methamphetamine use disorders. Many such studies suggest changes in network connectivity following acute rTMS, which may underpin reduced craving following chronic rTMS. We suggest several possible future directions for research relating to the therapeutic potential of rTMS in addiction that would help fill current gaps in the literature. Such research would apply rTMS to animal models of addiction, developing a translational pipeline that would guide evidence-based rTMS treatment of cocaine and methamphetamine use disorder.
Collapse
Affiliation(s)
- Jessica Moretti
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Eugenia Z Poh
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| |
Collapse
|
27
|
Kassahun BT, Bier M, Ding J. Perturbing Circadian Oscillations in an In Vitro Suprachiasmatic Nucleus With Magnetic Stimulation. Bioelectromagnetics 2020; 41:63-72. [PMID: 31856348 DOI: 10.1002/bem.22235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 11/21/2019] [Indexed: 11/08/2022]
Abstract
Many neurological disorders are associated with abnormal oscillatory dynamics. The suprachiasmatic nucleus (SCN) is responsible for the timing and synchronization of physiological processes. We performed experiments on PERIOD2::LUCIFERASE transgenic "knock-in" mice. In these mice, a gene that is expressed in a circadian pattern is fused to an inserted gene that codes for luciferase, which is a bioluminescent enzyme. A one-time 3 min magnetic stimulation (MS) was applied to excised slices of the SCN. The MS consisted of a 50-mT field that was turned on and off 4,500 times. The rise time and fall time of the field were 75 μs. A photon count that extended over the full 5 days that the slice remained viable, subsequently revealed how the MS affected the circadian cycle. The MS was applied at points in the circadian cycle that correspond to either maximal or minimal bioluminescence. It was found that both the amplitude and period of the endogenous circadian oscillation are affected by MS and that the effects strongly depend on where in the circadian cycle the stimulation was applied. Our MS dose is in the same range as clinically applied doses, and our findings imply that transcranial MS may be instrumental in remedying disorders that originate in circadian rhythm abnormalities. Bioelectromagnetics. 2020;41:63-72 © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Binyam T Kassahun
- Department of Physics, East Carolina University, Greenville, North Carolina
| | - Martin Bier
- Department of Physics, East Carolina University, Greenville, North Carolina
| | - Jian Ding
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
28
|
Simultaneous quantification of dopamine, serotonin, their metabolites and amino acids by LC-MS/MS in mouse brain following repetitive transcranial magnetic stimulation. Neurochem Int 2019; 131:104546. [DOI: 10.1016/j.neuint.2019.104546] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
|
29
|
Frequency-specific effects of low-intensity rTMS can persist for up to 2 weeks post-stimulation: A longitudinal rs-fMRI/MRS study in rats. Brain Stimul 2019; 12:1526-1536. [PMID: 31296402 DOI: 10.1016/j.brs.2019.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Evidence suggests that repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, alters resting brain activity. Despite anecdotal evidence that rTMS effects wear off, there are no reports of longitudinal studies, even in humans, mapping the therapeutic duration of rTMS effects. OBJECTIVE Here, we investigated the longitudinal effects of repeated low-intensity rTMS (LI-rTMS) on healthy rodent resting-state networks (RSNs) using resting-state functional MRI (rs-fMRI) and on sensorimotor cortical neurometabolite levels using proton magnetic resonance spectroscopy (MRS). METHODS Sprague-Dawley rats received 10 min LI-rTMS daily for 15 days (10 Hz or 1 Hz stimulation, n = 9 per group). MRI data were acquired at baseline, after seven days and after 14 days of daily stimulation and at two more timepoints up to three weeks post-cessation of daily stimulation. RESULTS 10 Hz stimulation increased RSN connectivity and GABA, glutamine, and glutamate levels. 1 Hz stimulation had opposite but subtler effects, resulting in decreased RSN connectivity and glutamine levels. The induced changes decreased to baseline levels within seven days following stimulation cessation in the 10 Hz group but were sustained for at least 14 days in the 1 Hz group. CONCLUSION Overall, our study provides evidence of long-term frequency-specific effects of LI-rTMS. Additionally, the transient connectivity changes following 10 Hz stimulation suggest that current treatment protocols involving this frequency may require ongoing "top-up" stimulation sessions to maintain therapeutic effects.
Collapse
|
30
|
Cullen CL, Senesi M, Tang AD, Clutterbuck MT, Auderset L, O'Rourke ME, Rodger J, Young KM. Low-intensity transcranial magnetic stimulation promotes the survival and maturation of newborn oligodendrocytes in the adult mouse brain. Glia 2019; 67:1462-1477. [PMID: 30989733 PMCID: PMC6790715 DOI: 10.1002/glia.23620] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 11/23/2022]
Abstract
Neuronal activity is a potent extrinsic regulator of oligodendrocyte generation and central nervous system myelination. Clinically, repetitive transcranial magnetic stimulation (rTMS) is delivered to noninvasively modulate neuronal activity; however, the ability of rTMS to facilitate adaptive myelination has not been explored. By performing cre‐lox lineage tracing, to follow the fate of oligodendrocyte progenitor cells in the adult mouse brain, we determined that low intensity rTMS (LI‐rTMS), administered as an intermittent theta burst stimulation, but not as a continuous theta burst or 10 Hz stimulation, increased the number of newborn oligodendrocytes in the adult mouse cortex. LI‐rTMS did not alter oligodendrogenesis per se, but instead increased cell survival and enhanced myelination. These data suggest that LI‐rTMS can be used to noninvasively promote myelin addition to the brain, which has potential implications for the treatment of demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Matteo Senesi
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | | | - Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Megan E O'Rourke
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia.,Brain Plasticity Lab, Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
31
|
Low-intensity repetitive transcranial magnetic stimulation over prefrontal cortex in an animal model alters activity in the auditory thalamus but does not affect behavioural measures of tinnitus. Exp Brain Res 2019; 237:883-896. [DOI: 10.1007/s00221-018-05468-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/29/2018] [Indexed: 12/19/2022]
|
32
|
Helekar SA, Convento S, Nguyen L, John BS, Patel A, Yau JM, Voss HU. The strength and spread of the electric field induced by transcranial rotating permanent magnet stimulation in comparison with conventional transcranial magnetic stimulation. J Neurosci Methods 2018; 309:153-160. [PMID: 30194040 DOI: 10.1016/j.jneumeth.2018.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/16/2018] [Accepted: 09/02/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Weak or low intensity transcranial stimulation of the brain, such as low field magnetic stimulation and electrical stimulation, can produce significant functional and therapeutic neuromodulatory effects. NEW METHOD We have recently developed a portable wearable multifocal brain stimulator called transcranial rotating permanent magnet stimulator (TRPMS) that uses rapidly spinning high field strength permanent magnets attached to a cap. It produces oscillatory stimuli of different frequencies and patterns. Here we compared the strengths and spatial profiles of the changing magnetic fields of a figure-of-eight transcranial magnetic stimulator (TMS) coil, a TRPMS prototype, and a scaled-up version of TRPMS. We measured field strengths and directions of voltages induced in a magnetic field sensor oriented along all three orthogonal axes. RESULTS AND COMPARISON WITH EXISTING METHODS The spatial spread of the TRPMS-induced electric field is more restricted, and its shape and strength vary less with the orientation of the inductance than TMS. The maximum voltage induced by the current prototype is ∼7% of the maximal TMS output at depths corresponding to the human cerebral cortex from the scalp surface. This field strength can be scaled up by a factor ∼8 with a larger diametrically magnetized magnet. These comparative data allow us to estimate that intracortical effects of TRPMS could be stronger than other low intensity stimulation methods. CONCLUSIONS TRPMS might enable greater uniformity, consistency and focality in stimulation of targeted cortical areas subject to significant anatomical variability. Multiple TRPMS microstimulators can also be combined to produce patterned multifocal spatiotemporal stimulation.
Collapse
Affiliation(s)
- S A Helekar
- Speech and Language Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| | - S Convento
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - L Nguyen
- Speech and Language Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - B S John
- Speech and Language Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - A Patel
- Speech and Language Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - J M Yau
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - H U Voss
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10021, USA
| |
Collapse
|
33
|
Harvey RL, Edwards D, Dunning K, Fregni F, Stein J, Laine J, Rogers LM, Vox F, Durand-Sanchez A, Bockbrader M, Goldstein LB, Francisco GE, Kinney CL, Liu CY, Ryan S, Morales-Quezada L, Worthen-Chaudhari L, Labar D, Schambra H, Kappy CR, Kissela B, Pratt W. Randomized Sham-Controlled Trial of Navigated Repetitive Transcranial Magnetic Stimulation for Motor Recovery in Stroke. Stroke 2018; 49:2138-2146. [PMID: 30354990 DOI: 10.1161/strokeaha.117.020607] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- We aimed to determine whether low-frequency electric field navigated repetitive transcranial magnetic stimulation to noninjured motor cortex versus sham repetitive transcranial magnetic stimulation avoiding motor cortex could improve arm motor function in hemiplegic stroke patients when combined with motor training. Methods- Twelve outpatient US rehabilitation centers enrolled participants between May 2014 and December 2015. We delivered 1 Hz active or sham repetitive transcranial magnetic stimulation to noninjured motor cortex before each of eighteen 60-minute therapy sessions over a 6-week period, with outcomes measured at 1 week and 1, 3, and 6 months after end of treatment. The primary end point was the percentage of participants improving ≥5 points on upper extremity Fugl-Meyer score 6 months after end of treatment. Secondary analyses assessed changes on the upper extremity Fugl-Meyer and Action Research Arm Test and Wolf Motor Function Test and safety. Results- Of 199 participants, 167 completed treatment and follow-up because of early discontinuation of data collection. Upper extremity Fugl-Meyer gains were significant for experimental ( P<0.001) and sham groups ( P<0.001). Sixty-seven percent of the experimental group (95% CI, 58%-75%) and 65% of sham group (95% CI, 52%-76%) improved ≥5 points on 6-month upper extremity Fugl-Meyer ( P=0.76). There was also no difference between experimental and sham groups in the Action Research Arm Test ( P=0.80) or the Wolf Motor Function Test ( P=0.55). A total of 26 serious adverse events occurred in 18 participants, with none related to the study or device, and with no difference between groups. Conclusions- Among patients 3 to 12 months poststroke, goal-oriented motor rehabilitation improved motor function 6 months after end of treatment. There was no difference between the active and sham repetitive transcranial magnetic stimulation trial arms. Clinical Trial Registration- URL: https://www.clinicaltrials.gov . Unique identifier: NCT02089464.
Collapse
Affiliation(s)
- Richard L. Harvey
- The Shirley Ryan AbilityLab, Northwestern University Feinberg School of Medicine, Chiago, IL (R.L.H., L.M.R.)
| | - Dylan Edwards
- Burke Neurological Institute, Weill Cornell Neurology, White Plains, NY (D.E.)
| | - Kari Dunning
- Department of Rehabilitation, Exercise and Nutrition Sciences, University of Cincinnati, OH (K.D.)
| | - Felipe Fregni
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA (F.F.)
| | - Joel Stein
- Department of Rehabilitation and Regenerative Medicine, Columbia University Medical Center, New York, NY (J.S.)
| | - Jarmo Laine
- Nexstim Corporation, Helsinki, Finland (J.L.)
| | - Lynn M. Rogers
- The Shirley Ryan AbilityLab, Northwestern University Feinberg School of Medicine, Chiago, IL (R.L.H., L.M.R.)
| | - Ford Vox
- Shepherd Center, Clinical Research, Atlanta, GA (F.V.)
| | - Ana Durand-Sanchez
- Baylor College of Medicine, Physical Medicine and Rehabilitation, TIRR Memorial Herrmann, Houston, TX (A.D.-S.)
| | - Marcia Bockbrader
- Physical Medicine and Rehabilitation, Ohio State University, Columbus (M.B.)
| | - Larry B. Goldstein
- Kentucky Neuroscience Institute, University of Kentucky, Lexington (L.B.G.)
| | - Gerard E. Francisco
- Physical Medicine and Rehabilitation, University of Texas Health Science Center, TIRR Memorial Herrmann, Houston (G.E.F.)
| | - Carolyn L. Kinney
- Mayo Clinic Arizona, Mayo Clinic Hospital, Physical Medicine and Rehabilitation, Phoenix (C.L.K.)
| | - Charles Y. Liu
- USC Neurorestoration Center, Rancho Los Amigos National Rehabilitation Center, Los Angeles, CA (C.Y.L.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Seewoo BJ, Feindel KW, Etherington SJ, Rodger J. Resting-state fMRI study of brain activation using low-intensity repetitive transcranial magnetic stimulation in rats. Sci Rep 2018; 8:6706. [PMID: 29712947 PMCID: PMC5928106 DOI: 10.1038/s41598-018-24951-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/12/2018] [Indexed: 11/28/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique used to treat many neuropsychiatric conditions. However, the mechanisms underlying its mode of action are still unclear. This is the first rodent study using resting-state functional MRI (rs-fMRI) to examine low-intensity (LI) rTMS effects, in an effort to provide a direct means of comparison between rodent and human studies. Using anaesthetised Sprague-Dawley rats, rs-fMRI data were acquired before and after control or LI-rTMS at 1 Hz, 10 Hz, continuous theta burst stimulation (cTBS) or biomimetic high-frequency stimulation (BHFS). Independent component analysis revealed LI-rTMS-induced changes in the resting-state networks (RSN): (i) in the somatosensory cortex, the synchrony of resting activity decreased ipsilaterally following 10 Hz and bilaterally following 1 Hz stimulation and BHFS, and increased ipsilaterally following cTBS; (ii) the motor cortex showed bilateral changes following 1 Hz and 10 Hz stimulation, a contralateral decrease in synchrony following BHFS, and an ipsilateral increase following cTBS; and (iii) hippocampal synchrony decreased ipsilaterally following 10 Hz, and bilaterally following 1 Hz stimulation and BHFS. The present findings demonstrate that LI-rTMS modulates functional links within the rat RSN with frequency-specific outcomes, and the observed changes are similar to those described in humans following rTMS.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.,Centre for Microscopy, Characterisation and Analysis, Research Infrastructure Centres, The University of Western Australia, Perth, WA, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Kirk W Feindel
- Centre for Microscopy, Characterisation and Analysis, Research Infrastructure Centres, The University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Sarah J Etherington
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia. .,Brain Plasticity Group, Perron Institute for Neurological and Translational Research, Perth, WA, Australia.
| |
Collapse
|
35
|
Makowiecki K, Garrett A, Harvey AR, Rodger J. Low-intensity repetitive transcranial magnetic stimulation requires concurrent visual system activity to modulate visual evoked potentials in adult mice. Sci Rep 2018; 8:5792. [PMID: 29643395 PMCID: PMC5895738 DOI: 10.1038/s41598-018-23979-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/19/2018] [Indexed: 12/16/2022] Open
Abstract
Repetitive transcranial stimulation (rTMS) is an increasingly popular method to non-invasively modulate cortical excitability in research and clinical settings. During rTMS, low-intensity magnetic fields reach areas perifocal to the target brain region, however, effects of these low-intensity (LI-) fields and how they interact with ongoing neural activity remains poorly defined. We evaluated whether coordinated neural activity during electromagnetic stimulation alters LI-rTMS effects on cortical excitability by comparing visually evoked potentials (VEP) and densities of parvalbumin-expressing (PV+) GABAergic interneurons in adult mouse visual cortex after LI-rTMS under different conditions: LI-rTMS applied during visually evoked (strong, coordinated) activity or in darkness (weak, spontaneous activity).We also compared response to LI-rTMS in wildtype and ephrin-A2A5−/− mice, which have visuotopic anomalies thought to disrupt coherence of visually-evoked cortical activity. Demonstrating that LI-rTMS effects in V1 require concurrent sensory-evoked activity, LI-rTMS delivered during visually-evoked activity increased PV+ immunoreactivity in both genotypes; however, VEP peak amplitudes changed only in wildtypes, consistent with intracortical disinhibition. We show, for the first time, that neural activity and the degree of coordination in cortical population activity interact with LI-rTMS to alter excitability in a context-dependent manner.
Collapse
Affiliation(s)
- Kalina Makowiecki
- Experimental and Regenerative Neuroscience, The University of Western Australia, Crawley, Australia. .,School of Biological Sciences, The University of Western Australia, Crawley, Australia. .,Department of Systems Neuroscience, JFB, University of Goettingen, Göttingen, Germany.
| | - Andrew Garrett
- Experimental and Regenerative Neuroscience, The University of Western Australia, Crawley, Australia.,School of Biological Sciences, The University of Western Australia, Crawley, Australia
| | - Alan R Harvey
- Experimental and Regenerative Neuroscience, The University of Western Australia, Crawley, Australia.,School of Human Sciences, The University of Western Australia, Crawley, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, The University of Western Australia, Crawley, Australia.,School of Biological Sciences, The University of Western Australia, Crawley, Australia.,School of Human Sciences, The University of Western Australia, Crawley, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Australia
| |
Collapse
|
36
|
Wilson MT, Tang AD, Iyer K, McKee H, Waas J, Rodger J. The challenges of producing effective small coils for transcranial magnetic stimulation of mice. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Tang AD, Bennett W, Hadrill C, Collins J, Fulopova B, Wills K, Bindoff A, Puri R, Garry MI, Hinder MR, Summers JJ, Rodger J, Canty AJ. Low intensity repetitive transcranial magnetic stimulation modulates skilled motor learning in adult mice. Sci Rep 2018; 8:4016. [PMID: 29507375 PMCID: PMC5838100 DOI: 10.1038/s41598-018-22385-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/22/2018] [Indexed: 12/25/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is commonly used to modulate cortical plasticity in clinical and non-clinical populations. Clinically, rTMS is delivered to targeted regions of the cortex at high intensities (>1 T). We have previously shown that even at low intensities, rTMS induces structural and molecular plasticity in the rodent cortex. To determine whether low intensity rTMS (LI-rTMS) alters behavioural performance, daily intermittent theta burst LI-rTMS (120 mT) or sham was delivered as a priming or consolidating stimulus to mice completing 10 consecutive days of skilled reaching training. Relative to sham, priming LI-rTMS (before each training session), increased skill accuracy (~9%) but did not alter the rate of learning over time. In contrast, consolidating LI-rTMS (after each training session), resulted in a small increase in the rate of learning (an additional ~1.6% each day) but did not alter the daily skill accuracy. Changes in behaviour with LI-rTMS were not accompanied with long lasting changes in brain-derived neurotrophic factor (BDNF) expression or in the expression of plasticity markers at excitatory and inhibitory synapses for either priming or consolidation groups. These results suggest that LI-rTMS can alter specific aspects of skilled motor learning in a manner dependent on the timing of intervention.
Collapse
Affiliation(s)
- Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Perth, Australia. .,Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - William Bennett
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia.
| | - Claire Hadrill
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Jessica Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Barbora Fulopova
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Karen Wills
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Aidan Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Rohan Puri
- Human Motor Control Laboratory, School of Medicine, University of Tasmania, Hobart, Australia
| | - Michael I Garry
- Human Motor Control Laboratory, School of Medicine, University of Tasmania, Hobart, Australia
| | - Mark R Hinder
- Human Motor Control Laboratory, School of Medicine, University of Tasmania, Hobart, Australia
| | - Jeffery J Summers
- Human Motor Control Laboratory, School of Medicine, University of Tasmania, Hobart, Australia.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Perth, Australia
| | - Alison J Canty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| |
Collapse
|
38
|
Osanai H, Minusa S, Tateno T. Micro-coil-induced Inhomogeneous Electric Field Produces sound-driven-like Neural Responses in Microcircuits of the Mouse Auditory Cortex In Vivo. Neuroscience 2018; 371:346-370. [DOI: 10.1016/j.neuroscience.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022]
|
39
|
Wischnewski M, Schutter DJ. After-effects of transcranial alternating current stimulation on evoked delta and theta power. Clin Neurophysiol 2017; 128:2227-2232. [DOI: 10.1016/j.clinph.2017.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/06/2017] [Accepted: 08/24/2017] [Indexed: 11/28/2022]
|
40
|
Mulders WHAM, Vooys V, Makowiecki K, Tang AD, Rodger J. The effects of repetitive transcranial magnetic stimulation in an animal model of tinnitus. Sci Rep 2016; 6:38234. [PMID: 27905540 PMCID: PMC5131273 DOI: 10.1038/srep38234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/07/2016] [Indexed: 02/04/2023] Open
Abstract
Tinnitus (phantom auditory perception associated with hearing loss) can seriously affect wellbeing. Its neural substrate is unknown however it has been linked with abnormal activity in auditory pathways. Though no cure currently exists, repetitive transcranial magnetic stimulation (rTMS) has been shown to reduce tinnitus in some patients, possibly via induction of cortical plasticity involving brain derived neurotrophic factor (BDNF). We examined whether low intensity rTMS (LI-rTMS) alleviates signs of tinnitus in a guinea pig model and whether this involves changes in BDNF expression and hyperactivity in inferior colliculus. Acoustic trauma was used to evoke hearing loss, central hyperactivity and tinnitus. When animals developed tinnitus, treatment commenced (10 sessions of 10 minutes 1 Hz LI-rTMS or sham over auditory cortex over 14 days). After treatment ceased animals were tested for tinnitus, underwent single-neuron recordings in inferior colliculus to assess hyperactivity and samples from cortex and inferior colliculus were taken for BDNF ELISA. Analysis revealed a significant reduction of tinnitus after LI-rTMS compared to sham, without a statistical significant effect on BDNF levels or hyperactivity. This suggests that LI-rTMS alleviates behavioural signs of tinnitus by a mechanism independent of inferior colliculus hyperactivity and BDNF levels and opens novel therapeutic avenues for tinnitus treatment.
Collapse
Affiliation(s)
- Wilhelmina H A M Mulders
- The Auditory Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Vanessa Vooys
- The Auditory Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Kalina Makowiecki
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Alex D Tang
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Jennifer Rodger
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| |
Collapse
|
41
|
Lenz M, Vlachos A. Releasing the Cortical Brake by Non-Invasive Electromagnetic Stimulation? rTMS Induces LTD of GABAergic Neurotransmission. Front Neural Circuits 2016; 10:96. [PMID: 27965542 PMCID: PMC5124712 DOI: 10.3389/fncir.2016.00096] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022] Open
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive brain stimulation technique which modulates cortical excitability beyond the stimulation period. However, despite its clinical use rTMS-based therapies which prevent or reduce disabilities in a functionally significant and sustained manner are scarce. It remains unclear how rTMS-mediated changes in cortical excitability, which are not task- or input-specific, exert beneficial effects in some healthy subjects and patients. While experimental evidence exists that repetitive magnetic stimulation (rMS) is linked to the induction of long-term potentiation (LTP) of excitatory neurotransmission, less attention has been dedicated to rTMS-induced structural, functional and molecular adaptations at inhibitory synapses. In this review article we provide a concise overview on basic neuroscience research, which reveals an important role of local disinhibitory networks in promoting associative learning and memory. These studies suggest that a reduction in inhibitory neurotransmission facilitates the expression of associative plasticity in cortical networks under physiological conditions. Hence, it is interesting to speculate that rTMS may act by decreasing GABAergic neurotransmission onto cortical principal neurons. Indeed, evidence has been provided that rTMS is capable of modulating inhibitory networks. Consistent with this suggestion recent basic science work discloses that a 10 Hz rTMS protocol reduces GABAergic synaptic strength on principal neurons. These findings support a model in which rTMS-induced long-term depression (LTD) of GABAergic synaptic strength mediates changes in excitation/inhibition-balance of cortical networks, which may in turn facilitate (or restore) the ability of stimulated networks to express input- and task-specific associative synaptic plasticity.
Collapse
Affiliation(s)
- Maximilian Lenz
- Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Andreas Vlachos
- Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| |
Collapse
|