1
|
Lamorie-Foote K, Kramer DR, Sundaram S, Cavaleri J, Gilbert ZD, Tang AM, Bashford L, Liu CY, Kellis S, Lee B. Primary somatosensory cortex organization for engineering artificial somatosensation. Neurosci Res 2024; 204:1-13. [PMID: 38278220 DOI: 10.1016/j.neures.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Somatosensory deficits from stroke, spinal cord injury, or other neurologic damage can lead to a significant degree of functional impairment. The primary (SI) and secondary (SII) somatosensory cortices encode information in a medial to lateral organization. SI is generally organized topographically, with more discrete cortical representations of specific body regions. SII regions corresponding to anatomical areas are less discrete and may represent a more functional rather than topographic organization. Human somatosensory research continues to map cortical areas of sensory processing with efforts primarily focused on hand and upper extremity information in SI. However, research into SII and other body regions is lacking. In this review, we synthesize the current state of knowledge regarding the cortical organization of human somatosensation and discuss potential applications for brain computer interface. In addition to accurate individualized mapping of cortical somatosensation, further research is required to uncover the neurophysiological mechanisms of how somatosensory information is encoded in the cortex.
Collapse
Affiliation(s)
- Krista Lamorie-Foote
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Daniel R Kramer
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Colorado School of Medicine, Denver, CO, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Texas at Houston, Houston, TX, United States
| | - Luke Bashford
- Department of Biology and Biological Engineering, T&C Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States; Department of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
2
|
Kalyani A, Contier O, Klemm L, Azañon E, Schreiber S, Speck O, Reichert C, Kuehn E. Reduced dimension stimulus decoding and column-based modeling reveal architectural differences of primary somatosensory finger maps between younger and older adults. Neuroimage 2023; 283:120430. [PMID: 37923281 DOI: 10.1016/j.neuroimage.2023.120430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
The primary somatosensory cortex (SI) contains fine-grained tactile representations of the body, arranged in an orderly fashion. The use of ultra-high resolution fMRI data to detect group differences, for example between younger and older adults' SI maps, is challenging, because group alignment often does not preserve the high spatial detail of the data. Here, we use robust-shared response modeling (rSRM) that allows group analyses by mapping individual stimulus-driven responses to a lower dimensional shared feature space, to detect age-related differences in tactile representations between younger and older adults using 7T-fMRI data. Using this method, we show that finger representations are more precise in Brodmann-Area (BA) 3b and BA1 compared to BA2 and motor areas, and that this hierarchical processing is preserved across age groups. By combining rSRM with column-based decoding (C-SRM), we further show that the number of columns that optimally describes finger maps in SI is higher in younger compared to older adults in BA1, indicating a greater columnar size in older adults' SI. Taken together, we conclude that rSRM is suitable for finding fine-grained group differences in ultra-high resolution fMRI data, and we provide first evidence that the columnar architecture in SI changes with increasing age.
Collapse
Affiliation(s)
- Avinash Kalyani
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120, Germany.
| | - Oliver Contier
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany; Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, 04103, Germany
| | - Lisa Klemm
- Leibniz Institute for Neurobiology (LIN), Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Clinic for Neurology, Otto-von-Guericke University Magdeburg, 39120, Germany
| | - Elena Azañon
- Leibniz Institute for Neurobiology (LIN), Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Clinic for Neurology, Otto-von-Guericke University Magdeburg, 39120, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120, Germany; Clinic for Neurology, Otto-von-Guericke University Magdeburg, 39120, Germany
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120, Germany; Leibniz Institute for Neurobiology (LIN), Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Department Biomedical Magnetic Resonance (BMMR), Otto-von-Guericke University Magdeburg, Germany; Research Campus STIMULATE, Otto von Guericke University, Magdeburg, Germany
| | - Christoph Reichert
- Leibniz Institute for Neurobiology (LIN), Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Research Campus STIMULATE, Otto von Guericke University, Magdeburg, Germany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Tsujinaka R, Oda H, Fukuda S, Hamada N, Matsuoka M, Hiraoka K. Afferent volley from the digital nerve induces short-latency facilitation of perceptual sensitivity and primary sensory cortex excitability. Exp Brain Res 2023; 241:1339-1351. [PMID: 37012374 DOI: 10.1007/s00221-023-06611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Abstract
The present study examined whether the perceptual sensitivity and excitability of the primary sensory cortex are modulated by the afferent volley from the digital nerve of a conditioned finger within a short period of time. The perceptual threshold of an electrical stimulus to the index finger (test stimulus) was decreased by a conditioning stimulus to the index finger 4 or 6 ms before the test stimulus, or by a stimulus to the middle or ring finger 2 ms before that. This is explained by the view that the afferent volleys from the digital nerves of the fingers converge in the somatosensory areas, causing spatial summation of the afferent inputs through a small number of synaptic relays, leading to the facilitation of perceptual sensitivity. The N20 component of the somatosensory-evoked potential was facilitated by a conditioning stimulus to the middle finger 4 ms before a test stimulus or to the thumb 2 ms before the test stimulus. This is explained by the view that the afferent volley from the digital nerve of the finger adjacent to the tested finger induces lateral facilitation of the representation of the tested finger in the primary sensory cortex through a small number of synaptic relays.
Collapse
Affiliation(s)
- Ryo Tsujinaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino City, Japan
| | - Hitoshi Oda
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino City, Japan
| | - Shiho Fukuda
- Department of Rehabilitation Science, School of Medicine, Osaka Metropolitan University, Habikino City, Japan
| | - Naoki Hamada
- Department of Rehabilitation Science, School of Medicine, Osaka Metropolitan University, Habikino City, Japan
| | - Masakazu Matsuoka
- Department of Rehabilitation Science, School of Medicine, Osaka Metropolitan University, Habikino City, Japan
| | - Koichi Hiraoka
- Department of Rehabilitation Science, School of Medicine, Osaka Metropolitan University, Habikino City, Japan.
| |
Collapse
|
4
|
Functional MRI in Radiology—A Personal Review. Healthcare (Basel) 2022; 10:healthcare10091646. [PMID: 36141258 PMCID: PMC9498519 DOI: 10.3390/healthcare10091646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
We, here, provide a personal review article on the development of a functional MRI in the radiology departments of two German university medicine units. Although the international community for human brain mapping has met since 1995, the researchers fascinated by human brain function are still young and innovative. However, the impact of functional magnetic resonance imaging (fMRI) on prognosis and treatment decisions is restricted, even though standardized methods have been developed. The tradeoff between the groundbreaking studies on brain function and the attempt to provide reliable biomarkers for clinical decisions is large. By describing some historical developments in the field of fMRI, from a personal view, the rise of this method in clinical neuroscience during the last 25 years might be understandable. We aim to provide some background for (a) the historical developments of fMRI, (b) the establishment of two research units for fMRI in the departments of radiology in Germany, and (c) a description of some contributions within the selected fields of systems neuroscience, clinical neurology, and behavioral psychology.
Collapse
|
5
|
Analysis of Intracerebral Activity during Reflex Locomotion Stimulation According to Vojta’s Principle. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vojta’s therapy is a widely used approach in both the prevention and therapy of musculoskeletal disorders. Changes in the musculoskeletal system have been described repeatedly, but the principles of the approach have not yet been clarified. The objective of our study was to evaluate changes of intracerebral activity using electromagnetic tomography (sLORETA) that arise during reflex locomotion stimulation of the breast trigger zone according to Vojta’s therapy. Seventeen healthy women took part in the experiment (aged 20–30 years old). EEG activity was recorded 5 min prior to the reflex locomotion stimulation, during stimulation, and 5 min after the stimulation. The obtained data were subsequently processed in the sLORETA program and statistically evaluated at the significance level p ≤ 0.05. The analysis found statistically significant differences in the frequency bands alpha-2, beta-1, and beta-2 between the condition prior to stimulation and the actual stimulation in BAs 6, 7, 23, 24, and 31 and between the resting condition prior to stimulation, and the condition after the stimulation was terminated in the frequency bands alpha-1, alpha-2, beta-1, and beta-2 in BAs 3, 4, 6, and 24. The results showed that reflex locomotion stimulation according to Vojta’s therapy modulates electrical activity in the brain areas responsible for movement planning and regulating and performing the movement.
Collapse
|
6
|
Zlatkina V, Sprung-Much T, Petrides M. Spatial probability maps of the segments of the postcentral sulcus in the human brain. Cereb Cortex 2021; 32:3651-3668. [PMID: 34963136 PMCID: PMC9433426 DOI: 10.1093/cercor/bhab439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
The postcentral sulcus is the posterior boundary of the postcentral gyrus where the somatosensory cortex is represented. In the human brain, the postcentral sulcus is composed of five distinct segments that are related to the somatosensory representation of different parts of the body. Segment 1 of the postcentral sulcus, located near the dorsomedial boundary of each hemisphere, is associated with toe/leg representations, segment 2 with arm/hand representations, segment 3 with blinking, and segments 4 and 5, which are near the lateral fissure and the parietal operculum, with the mouth and tongue representations. The variability in location and spatial extent of these five segments were quantified in 40 magnetic resonance imaging (MRI) anatomical brain scans registered to the stereotaxic space of the Montreal Neurological Institute (MNI space), in the form of volumetric (using MINC Toolkit) and surface (using FreeSurfer) spatial probability maps. These probability maps can be used by researchers and clinicians to improve the localization of the segments of the postcentral sulcus in MRI images of interest and also to improve the interpretation of the location of activation peaks generated in functional neuroimaging studies investigating somatosensory cortex.
Collapse
Affiliation(s)
- Veronika Zlatkina
- Address correspondence to Veronika Zlatkina, Montreal Neurological Institute, 3801 University St., Montreal, QC H3A 2B4, Canada.
| | - Trisanna Sprung-Much
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael Petrides
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
7
|
Wilkinson F. Aura Mapping: Where Vision and Somatosensation Meet. Vision (Basel) 2021; 5:52. [PMID: 34842832 PMCID: PMC8628888 DOI: 10.3390/vision5040052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023] Open
Abstract
While migraine auras are most frequently visual, somatosensory auras are also relatively common. Both are characterized by the spread of activation across a cortical region containing a spatial mapping of the sensory (retinal or skin) surface. When both aura types occur within a single migraine episode, they may offer an insight into the neural mechanism which underlies them. Could they both be initiated by a single neural event, or do the timing and laterality relationships between them demand multiple triggers? The observations reported here were carried out 25 years ago by a group of six individuals with migraine with aura. They timed, described and mapped their visual and somatosensory auras as they were in progress. Twenty-nine episode reports are summarized here. The temporal relationship between the onset of the two auras was quite variable within and across participants. Various forms of the cortical spreading depression hypothesis of migraine aura are evaluated in terms of whether they can account for the timing, pattern of symptom spread and laterality of the recorded auras.
Collapse
Affiliation(s)
- Frances Wilkinson
- Centre for Vision Research & Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
8
|
Wang L, Zhang Z, Okada T, Li C, Chen D, Funahashi S, Wu J, Yan T. Population Receptive Field Characteristics in the between- and Within-Digit Dimensions of the Undominant Hand in the Primary Somatosensory Cortex. Cereb Cortex 2021; 31:4427-4438. [PMID: 33973012 PMCID: PMC8408438 DOI: 10.1093/cercor/bhab097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/02/2021] [Accepted: 03/20/2021] [Indexed: 11/13/2022] Open
Abstract
Somatotopy is an important guiding principle for sensory fiber organization in the primary somatosensory cortex (S1), which reflects tactile information processing and is associated with disease-related reorganization. However, it is difficult to measure the neuronal encoding scheme in S1 in vivo in normal participants. Here, we investigated the somatotopic map of the undominant hand using a Bayesian population receptive field (pRF) model. The model was established in hand space with between- and within-digit dimensions. In the between-digit dimension, orderly representation was found, which had low variability across participants. The pRF shape tended to be elliptical for digits with high spatial acuity, for which the long axis was along the within-digit dimension. In addition, the pRF width showed different change trends in the 2 dimensions across digits. These results provide new insights into the neural mechanisms in S1, allowing for in-depth investigation of somatosensory information processing and disease-related reorganization.
Collapse
Affiliation(s)
- Luyao Wang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.,Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Zhilin Zhang
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Duanduan Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced research institute of multidisciplinary science, Beijing Institute of Technology, Beijing 100081, China
| | - Jinglong Wu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
9
|
Sun F, Zhang G, Yu T, Zhang X, Wang X, Yan X, Qiao L, Ma K, Zhang X. Functional characteristics of the human primary somatosensory cortex: An electrostimulation study. Epilepsy Behav 2021; 118:107920. [PMID: 33770611 DOI: 10.1016/j.yebeh.2021.107920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
The common knowledge of the functional organization of the human primary somatosensory cortex (S1) had been primarily established by Penfield who electrically stimulated the exposed surface [referred as Brodmann area (BA)1] of S1 under neurosurgical conditions. Nevertheless, the functional information regarding the deep surface (BA 2 and 3) of S1 is poorly understood. We retrospectively analyzed all the clinical manifestations induced by extra-operative cortical electrical stimulation (ES) in 33 patients with medically intractable epilepsy who underwent stereo-electroencephalography (SEEG) monitoring for presurgical assessment. Demographic and clinical data were gathered and evaluated to delineate the determinants of the occurrence of positive responses, types of responses, and size of body regions involved. The stimulation of 244 sites in S1 yielded 198 positive sites (81.1%), most of which were located in the sulcal cortex. In multivariable analyses, no clinical or demographic factors predicted the occurrence of responses or their threshold levels. The size of body region involved in the responses had ordinal association with the stimulated BA sites (p < 0.001). Various types of responses elicited from the S1 were documented and classified, and the predictors of those responses were also assessed. Our analysis revealed the functional characteristics of the entire S1 and proved the multiplicity of functions of S1.
Collapse
Affiliation(s)
- Fengqiao Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Kai Ma
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xi Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
10
|
Sun F, Zhang G, Ren L, Yu T, Ren Z, Gao R, Zhang X. Functional organization of the human primary somatosensory cortex: A stereo-electroencephalography study. Clin Neurophysiol 2021; 132:487-497. [PMID: 33465535 DOI: 10.1016/j.clinph.2020.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/31/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The classical homunculus of the human primary somatosensory cortex (S1) established by Penfield has mainly portrayed the functional organization of convexial cortex, namely Brodmann area (BA) 1. However, little is known about the functions in fissural cortex including BA2 and BA3. We aim at drawing a refined and detailed somatosensory homunculus of the entire S1. METHODS We recruited 20 patients with drug-resistant focal epilepsy who underwent stereo-electroencephalography for preoperative assessments. Direct electrical stimulation was performed for functional mapping. Montreal Neurological Institute coordinates of the stimulation sites lying in S1 were acquired. RESULTS Stimulation of 177 sites in S1 yielded 149 positive sites (84%), most of which were located in the sulcal cortex. The spatial distribution of different body-part representations across the S1 surface revealed that the gross medial-to-lateral sequence of body representations within the entire S1 was consistent with the classical "homunculus". And we identified several unreported body-part representations from the sulcal cortex, such as forehead, deep elbow and wrist joints, and some dorsal body regions. CONCLUSIONS Our results reveal general somatotopical characteristics of the entire S1 cortex and differences with the previous works of Penfield. SIGNIFICANCE The classical S1 homunculus was extended by providing further refinement and additional detail.
Collapse
Affiliation(s)
- Fengqiao Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
11
|
Surface-based analysis increases the specificity of cortical activation patterns and connectivity results. Sci Rep 2020; 10:5737. [PMID: 32235885 PMCID: PMC7109138 DOI: 10.1038/s41598-020-62832-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Spatial smoothing of functional magnetic resonance imaging (fMRI) data can be performed on volumetric images and on the extracted surface of the brain. Smoothing on the unfolded cortex should theoretically improve the ability to separate signals between brain areas that are near together in the folded cortex but are more distant in the unfolded cortex. However, surface-based method approaches (SBA) are currently not utilized as standard procedure in the preprocessing of neuroimaging data. Recent improvements in the quality of cortical surface modeling and improvements in its usability nevertheless advocate this method. In the current study, we evaluated the benefits of an up-to-date surface-based smoothing in comparison to volume-based smoothing. We focused on the effect of signal contamination between different functional systems using the primary motor and primary somatosensory cortex as an example. We were particularly interested in how this signal contamination influences the results of activity and connectivity analyses for these brain regions. We addressed this question by performing fMRI on 19 subjects during a tactile stimulation paradigm and by using simulated BOLD responses. We demonstrated that volume-based smoothing causes contamination of the primary motor cortex by somatosensory cortical responses, leading to false positive motor activation. These false positive motor activations were not found by using surface-based smoothing for reasonable kernel sizes. Accordingly, volume-based smoothing caused an exaggeration of connectivity estimates between these regions. In conclusion, this study showed that surface-based smoothing decreases signal contamination considerably between neighboring functional brain regions and improves the validity of activity and connectivity results.
Collapse
|
12
|
Kaas A, Goebel R, Valente G, Sorger B. Topographic Somatosensory Imagery for Real-Time fMRI Brain-Computer Interfacing. Front Hum Neurosci 2019; 13:427. [PMID: 31920588 PMCID: PMC6915074 DOI: 10.3389/fnhum.2019.00427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/18/2019] [Indexed: 11/23/2022] Open
Abstract
Real-time functional magnetic resonance imaging (fMRI) is a promising non-invasive method for brain-computer interfaces (BCIs). BCIs translate brain activity into signals that allow communication with the outside world. Visual and motor imagery are often used as information-encoding strategies, but can be challenging if not grounded in recent experience in these modalities, e.g., in patients with locked-in-syndrome (LIS). In contrast, somatosensory imagery might constitute a more suitable information-encoding strategy as the somatosensory function is often very robust. Somatosensory imagery has been shown to activate the somatotopic cortex, but it has been unclear so far whether it can be reliably detected on a single-trial level and successfully classified according to specific somatosensory imagery content. Using ultra-high field 7-T fMRI, we show reliable and high-accuracy single-trial decoding of left-foot (LF) vs. right-hand (RH) somatosensory imagery. Correspondingly, higher decoding accuracies were associated with greater spatial separation of hand and foot decoding-weight patterns in the primary somatosensory cortex (S1). Exploiting these novel neuroscientific insights, we developed-and provide a proof of concept for-basic BCI communication by showing that binary (yes/no) answers encoded by somatosensory imagery can be decoded with high accuracy in simulated real-time (in 7 subjects) as well as in real-time (1 subject). This study demonstrates that body part-specific somatosensory imagery differentially activates somatosensory cortex in a topographically specific manner; evidence which was surprisingly still lacking in the literature. It also offers proof of concept for a novel somatosensory imagery-based fMRI-BCI control strategy, with particularly high potential for visually and motor-impaired patients. The strategy could also be transferred to lower MRI field strengths and to mobile functional near-infrared spectroscopy. Finally, given that communication BCIs provide the BCI user with a form of feedback based on their brain signals and can thus be considered as a specific form of neurofeedback, and that repeated use of a BCI has been shown to enhance underlying representations, we expect that the current BCI could also offer an interesting new approach for somatosensory rehabilitation training in the context of stroke and phantom limb pain.
Collapse
Affiliation(s)
- Amanda Kaas
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
13
|
Pfannmöller J, Strauss S, Langner I, Usichenko T, Lotze M. Investigations on maladaptive plasticity in the sensorimotor cortex of unilateral upper limb CRPS I patients. Restor Neurol Neurosci 2019; 37:143-153. [PMID: 30988242 DOI: 10.3233/rnn-180886] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Patients with a complex regional pain syndrome (CRPS) in the upper limb show a sensory and motor impairment of the hand. Decreased intra-cortical-inhibition (ICI) of the motor representation of the affected hand muscle and decreased somatosensory hand representation size were related to maladaptive plasticity. OBJECTIVE To achieve new insights about CRPS we examined whether these alterations were present in a single cohort. METHODS We used a multi-modal approach comprising behavioral testing, transcranial magnetic stimulation, and high resolution fMRI combined with a new analysis technique for improved neuronal specificity. RESULTS We found a decreased pinch-grip performance, two-point discrimination on the fingertips, ICI in the motor cortex, and representation size of the hand in Brodmann Area 3b (BA3b) in the somatosensory cortex. Our analysis further showed that correlations with ICI on the non-affected side were absent on the affected side. CONCLUSIONS This study is the first to gather behavioral, neurophysiologic and imaging measurements for one patient cohort and it therefore enables a comprehensive view of collapsed associations of function and representation focused on the hemisphere contralateral to the affected hand.
Collapse
Affiliation(s)
- J Pfannmöller
- Functional Imaging Unit, Center for Diagnostic Radiology, University of Greifswald, Germany
| | - S Strauss
- Functional Imaging Unit, Center for Diagnostic Radiology, University of Greifswald, Germany.,Neurology, University of Greifswald, Germany
| | - I Langner
- Department of Trauma and Reconstructive Surgery, Division of Hand Surgery and Functional Microsurgery, University Medicine Greifswald, Germany
| | - T Usichenko
- Department of Anesthesiology, University Medicine Greifswald, Germany
| | - M Lotze
- Functional Imaging Unit, Center for Diagnostic Radiology, University of Greifswald, Germany
| |
Collapse
|
14
|
Lotze M, Ladda AM, Stephan KM. Cerebral plasticity as the basis for upper limb recovery following brain damage. Neurosci Biobehav Rev 2019; 99:49-58. [DOI: 10.1016/j.neubiorev.2019.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/05/2023]
|
15
|
Hage B, Way E, Barlow SM, Bashford GR. Real-Time Cerebral Hemodynamic Response to Tactile Somatosensory Stimulation. J Neuroimaging 2018; 28:615-620. [PMID: 29992676 PMCID: PMC6212317 DOI: 10.1111/jon.12546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Recent studies in rodents suggest that somatosensory stimulation could provide neuroprotection during ischemic stroke by inducing plasticity in the cortex-vasculature relationship. While functional magnetic resonance imaging (fMRI) has shown that somatosensory stimulation increases cerebral blood flow (CBF) over several seconds, subsecond changes in CBF in the basal cerebral arteries have rarely been studied due to temporal resolution limitations. This study characterized hemodynamic changes in the middle cerebral arteries (MCAs) during somatosensory stimulation with high temporal resolution (100 samples/s) using functional transcranial Doppler ultrasound (fTCD). METHODS Pneumotactile somatosensory stimulation, consisting of punctate pressure pulses traversing the glabrous skin of the hand at 25 cm/s, was used to induce CBF velocity (CBFV) response curves. Changes in CBFV were measured in the bilateral MCAs using fTCD. All 12 subjects underwent three consecutive trials consisting of 20 seconds of stimulation followed by 5 minutes of rest. RESULTS Sharp, bilateral increases in CBFV of about 20% (left MCA = 20.5%, right MCA = 18.8%) and sharp decreases in pulsatility index of about 8% were observed during stimulation. Left lateralization of up to 3.9% was also observed. The magnitude of the initial increase in CBFV showed significant adaptation between subsequent trials. CONCLUSIONS Pneumotactile somatosensory stimulation is a potent stimulus that can evoke large, rapid hemodynamic changes, with adaptation between successive stimulus applications. Due to its high temporal resolution, fTCD is useful for identifying quickly evolving hemodynamic responses, and for correlating changes in hemodynamic parameters such as pulsatility index (PI) and CBFV.
Collapse
Affiliation(s)
- Benjamin Hage
- Department of Biological Systems Engineering, University of Nebraska-Lincoln
| | - Emily Way
- Department of Biological Systems Engineering, University of Nebraska-Lincoln
| | - Steven M. Barlow
- Department of Biological Systems Engineering, University of Nebraska-Lincoln
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln
| | - Gregory R. Bashford
- Department of Biological Systems Engineering, University of Nebraska-Lincoln
| |
Collapse
|
16
|
Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: A 7T fMRI study. Neuroimage 2017. [DOI: 10.1016/j.neuroimage.2017.06.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|