1
|
Woodfin S, Hall S, Ramerth A, Chapple B, Fausnacht D, Moore W, Alkhalidy H, Liu D. Potential Application of Plant-Derived Compounds in Multiple Sclerosis Management. Nutrients 2024; 16:2996. [PMID: 39275311 PMCID: PMC11397714 DOI: 10.3390/nu16172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration, resulting in significant disability and reduced quality of life. Current therapeutic strategies primarily target immune dysregulation, but limitations in efficacy and tolerability highlight the need for alternative treatments. Plant-derived compounds, including alkaloids, phenylpropanoids, and terpenoids, have demonstrated anti-inflammatory effects in both preclinical and clinical studies. By modulating immune responses and promoting neuroregeneration, these compounds offer potential as novel adjunctive therapies for MS. This review provides insights into the molecular and cellular basis of MS pathogenesis, emphasizing the role of inflammation in disease progression. It critically evaluates emerging evidence supporting the use of plant-derived compounds to attenuate inflammation and MS symptomology. In addition, we provide a comprehensive source of information detailing the known mechanisms of action and assessing the clinical potential of plant-derived compounds in the context of MS pathogenesis, with a focus on their anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Seth Woodfin
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Sierra Hall
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Alexis Ramerth
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Brooke Chapple
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA 24088, USA
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Zhang X, Kuang Q, Xu J, Lin Q, Chi H, Yu D. MSC-Based Cell Therapy in Neurological Diseases: A Concise Review of the Literature in Pre-Clinical and Clinical Research. Biomolecules 2024; 14:538. [PMID: 38785945 PMCID: PMC11117494 DOI: 10.3390/biom14050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with the ability to self-renew and multi-directional differentiation potential. Exogenously administered MSCs can migrate to damaged tissue sites and participate in the repair of damaged tissues. A large number of pre-clinical studies and clinical trials have demonstrated that MSCs have the potential to treat the abnormalities of congenital nervous system and neurodegenerative diseases. Therefore, MSCs hold great promise in the treatment of neurological diseases. Here, we summarize and highlight current progress in the understanding of the underlying mechanisms and strategies of MSC application in neurological diseases.
Collapse
Affiliation(s)
- Xiaorui Zhang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qihong Kuang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguang Xu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Lin
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoming Chi
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daojin Yu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Xu J, Guo Y, Liu Q, Yang H, Ma M, Yu J, Chen L, Ou C, Liu X, Wu J. Pregabalin Mediates Retinal Ganglion Cell Survival From Retinal Ischemia/Reperfusion Injury Via the Akt/GSK3β/β-Catenin Signaling Pathway. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 36326725 PMCID: PMC9645359 DOI: 10.1167/iovs.63.12.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Purpose Progressive retinal ganglion cell (RGC) loss induced by retinal ischemia/reperfusion (RIR) injury leads to irreversible visual impairment. Pregabalin (PGB) is a promising drug for neurodegenerative diseases. However, with regard to RGC survival, its specific role and exact mechanism after RIR injury remain unclear. In this study, we sought to investigate whether PGB could protect RGCs from mitochondria-related apoptosis induced by RIR and explore the possible mechanisms. Methods C57BL/6J mice and primary RGCs were pretreated with PGB prior to ischemia/reperfusion modeling. The retinal structure and cell morphology were assessed by immunochemical assays and optical coherence tomography. CCK8 was used to assay cell viability, and an electroretinogram was performed to detect RGC function. Mitochondrial damage was assessed by a reactive oxygen species (ROS) assay kit and transmission electron microscopy. Western blot and immunofluorescence assays quantified the expression of proteins associated with the Akt/GSK3β/β-catenin pathway. Results Treatment with PGB increased the viability of RGCs in vitro. Consistently, PGB preserved the normal thickness of the retina, upregulated Bcl-2, reduced the ratio of cleaved caspase-3/caspase-3 and the expression of Bax in vivo. Meanwhile, PGB improved mitochondrial structure and prevented excessive ROS production. Moreover, PGB restored the amplitudes of oscillatory potentials and photopic negative responses following RIR. The mechanisms underlying its neuroprotective effects were attributed to upregulation of the Akt/GSK3β/β-catenin pathway. However, PGB-mediated neuroprotection was suppressed when using MK2206 (an Akt inhibitor), whereas it was preserved when treated with TWS119 (a GSK3β inhibitor). Conclusions PGB exerts a protective effect against RGC apoptosis induced by RIR injury, mediated by the Akt/GSK3β/β-catenin pathway.
Collapse
Affiliation(s)
- Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyan Guo
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Liu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Ma
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Yu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Linjiang Chen
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunlian Ou
- Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Liu
- Department of Ophthalmology, The Second People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jing Wu
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Zhang Z, Jiang J, He Y, Cai J, Xie J, Wu M, Xing M, Zhang Z, Chang H, Yu P, Chen S, Yang Y, Shi Z, Liu Q, Sun H, He B, Zeng J, Huang J, Chen J, Li H, Li Y, Lin WJ, Tang Y. Pregabalin mitigates microglial activation and neuronal injury by inhibiting HMGB1 signaling pathway in radiation-induced brain injury. J Neuroinflammation 2022; 19:231. [PMID: 36131309 PMCID: PMC9490947 DOI: 10.1186/s12974-022-02596-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Radiation-induced brain injury (RIBI) is the most serious complication of radiotherapy in patients with head and neck tumors, which seriously affects the quality of life. Currently, there is no effective treatment for patients with RIBI, and identifying new treatment that targets the pathological mechanisms of RIBI is urgently needed. METHODS Immunofluorescence staining, western blotting, quantitative real-time polymerase chain reaction (Q-PCR), co-culture of primary neurons and microglia, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, enzyme-linked immunosorbent assay (ELISA), and CRISPR-Cas9-mediated gene editing techniques were employed to investigate the protective effects and underlying mechanisms of pregabalin that ameliorate microglial activation and neuronal injury in the RIBI mouse model. RESULTS Our findings showed that pregabalin effectively repressed microglial activation, thereby reducing neuronal damage in the RIBI mouse model. Pregabalin mitigated inflammatory responses by directly inhibiting cytoplasmic translocation of high-mobility group box 1 (HMGB1), a pivotal protein released by irradiated neurons which induced subsequent activation of microglia and inflammatory cytokine expression. Knocking out neuronal HMGB1 or microglial TLR2/TLR4/RAGE by CRISPR/Cas9 technique significantly inhibited radiation-induced NF-κB activation and pro-inflammatory transition of microglia. CONCLUSIONS Our findings indicate the protective mechanism of pregabalin in mitigating microglial activation and neuronal injury in RIBI. It also provides a therapeutic strategy by targeting HMGB1-TLR2/TLR4/RAGE signaling pathway in the microglia for the treatment of RIBI.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jingru Jiang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yong He
- Radiotherapeutic Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Minyi Wu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Mengdan Xing
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhenzhen Zhang
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Pei Yu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Siqi Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuhua Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiang Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Haohui Sun
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Baixuan He
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Junbo Zeng
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jialin Huang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiongxue Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Honghong Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Assis AD, Chiarotto GB, da Silva NS, Simões GF, Oliveira ALR. Pregabalin synchronizes the regeneration of nerve and muscle fibers optimizing the gait recovery of MDX dystrophic mice. FASEB J 2022; 36:e22511. [PMID: 35998000 DOI: 10.1096/fj.202200411rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder induced by mutations in the dystrophin gene, leading to a degeneration of muscle fibers, triggering retrograde immunomodulatory, and degenerative events in the central nervous system. Thus, neuroprotective drugs such as pregabalin (PGB) can improve motor function by modulating plasticity, together with anti-inflammatory effects. The present work aimed to study the effects of PGB on axonal regeneration after axotomy in dystrophic and non-dystrophic mice. For that, MDX and C57BL/10 mouse strains were subjected to peripheral nerve damage and were treated with PGB (30 mg/kg/day, i.p.) for 28 consecutive days. The treatment was carried out in mice as soon as they completed 5 weeks of life, 1 week before the lesion, corresponding to the peak period of muscle degeneration in the MDX strain. Six-week-old mice were submitted to unilateral sciatic nerve crush and were sacrificed in the 9th week of age. The ipsi and contralateral sciatic nerves were processed for immunohistochemistry and qRT-PCR, evaluating the expression of proteins and gene transcripts related to neuronal and Schwann cell activity. Cranial tibial muscles were dissected for evaluation of neuromuscular junctions using α-bungarotoxin, and the myelinated axons of the sciatic nerve were analyzed by morphometry. The recovery of motor function was monitored throughout the treatment through tests of forced locomotion (rotarod) and spontaneous walking track test (Catwalk system). The results show that treatment with PGB reduced the retrograde cyclic effects of muscle degeneration/regeneration on the nervous system. This fact was confirmed after peripheral nerve injury, showing better adaptation and response of neurons and glia for rapid axonal regeneration, with efficient muscle targeting and regain of function. No side effects of PGB treatment were observed, and the expression of pro-regenerative proteins in neurons and Schwann cells was upregulated. Morphometry of the axons was in line with the preservation of motor endplates, resulting in enhanced performance of dystrophic animals. Overall, the present data indicate that pregabalin is protective and enhances regeneration of the SNP during the development of DMD, improving motor function, which can, in turn, be translated to the clinic.
Collapse
Affiliation(s)
- Alex Dias Assis
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Campinas, Brazil
| | | | | | | | | |
Collapse
|
6
|
da Costa Sobral KG, Neuberger B, Mello FK, Mallmann MP, Sampaio TB, Oliveira MS. Anticonvulsant activity of β-caryophyllene in association with pregabalin in a seizure model in rats. Epilepsy Res 2022; 179:106842. [PMID: 34942451 DOI: 10.1016/j.eplepsyres.2021.106842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 11/03/2022]
Abstract
Epilepsy is a common chronic neurological disease. The hallmark of epilepsy is recurrent, unprovoked seizures. Unfortunately, drug resistance is frequent in patients with epilepsy, and therefore improved therapeutic strategies are needed. In the present study, we tested the effect of pregabalin in association with beta-caryophyllene, an FDA-approved food additive and naturally occurring agonist of cannabinoid receptor subtype 2 against pentylenetetrazol (PTZ)-induced seizures in rats. In addition, selected neurochemical parameters were evaluated in the cerebral cortex. Adult male Wistar rats received beta-caryophyllene (100 mg/kg), pregabalin (40 mg/kg) or their combination before PTZ (60 mg/kg). Appropriated vehicle-treated control groups were included for each treatment. Animals were monitored by video-EEG and the latency to myoclonic seizures, latency to tonic-clonic seizures, tonic-clonic seizure duration and overall seizure score were measured. Glial fibrillary acidic protein (GFAP) release, erythroid-related factor 2 (Nrf2), c-fos and 3-nitrotyrosine (3-NT) levels were evaluated in the frontal cortex. We found that beta-caryophyllene plus pregabalin increased the latency to PTZ-induced myoclonic and tonic-clonic seizures and decreased the tonic-clonic seizure duration and overall seizure score. Interestingly, lower levels of GFAP, c-Fos and 3-NT were observed in animals receiving beta-caryophyllene and pregabalin treatments. Our results suggest a possible synergic effect of beta-caryophyllene plus pregabalin against PTZ induced-seizures.
Collapse
Affiliation(s)
| | - Bruna Neuberger
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.
| | | | | | | | | |
Collapse
|
7
|
Nano-hesperetin enhances the functional recovery and endogenous remyelination of the optic pathway in focal demyelination model. Brain Res Bull 2020; 164:392-399. [PMID: 32926949 DOI: 10.1016/j.brainresbull.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Our recent report demonstrated that hesperetin (Hst) as a citrus flavonoid, significantly reduces the levels of demyelination in optic chiasm of rats. Previous evidence also indicated that nano-hesperetin (nano-Hst) possesses beneficial impacts in experimental models of Alzheimer's disease and autism. In this study, the effects of nano-Hst on latency of visual signals, demyelination levels, glial activation, and expression of Olig2 and MBP were evaluated in lysolecithin (LPC)-induced demyelination model. Focal demyelination was induced by injection of LPC (1%, 2 μL) into the rat optic chiasm. Animals received oral administration of nano-Hst at dose of 20 mg/kg for 14 or 21 days post LPC injection. Visual evoked potential (VEP) recording showed that nano-Hst reduces the latency of visual signals and ameliorates the extent of demyelination areas and glial activation. Expression levels of the Olig2 and MBP were also significantly increased in nano-Hst treated rats. Overall, our data suggest that nano-Hst reduces the latency of visual signals through its protective effects on myelin sheath, amelioration of glial activation, and enhancement of endogenous remyelination.
Collapse
|
8
|
Metabolomic and transcriptomic signatures of prenatal excessive methionine support nature rather than nurture in schizophrenia pathogenesis. Commun Biol 2020; 3:409. [PMID: 32732995 PMCID: PMC7393105 DOI: 10.1038/s42003-020-01124-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022] Open
Abstract
The imbalance of prenatal micronutrients may perturb one-carbon (C1) metabolism and increase the risk for neuropsychiatric disorders. Prenatal excessive methionine (MET) produces in mice behavioral phenotypes reminiscent of human schizophrenia. Whether in-utero programming or early life caregiving mediate these effects is, however, unknown. Here, we show that the behavioral deficits of MET are independent of the early life mother-infant interaction. We also show that MET produces in early life profound changes in the brain C1 pathway components as well as glutamate transmission, mitochondrial function, and lipid metabolism. Bioinformatics analysis integrating metabolomics and transcriptomic data reveal dysregulations of glutamate transmission and lipid metabolism, and identify perturbed pathways of methylation and redox reactions. Our transcriptomics Linkage analysis of MET mice and schizophrenia subjects reveals master genes involved in inflammation and myelination. Finally, we identify potential metabolites as early biomarkers for neurodevelopmental defects and suggest therapeutic targets for schizophrenia. Chen, Alhassen et al. show that schizophrenia-like behavioral deficits induced by excessive prenatal methionine administration are due to in-uterus aberrations rather than through early life mother-infant interaction in mice. This study identifies the brain metabolites and transcriptomic signatures, which potentially serve as early biomarkers for schizophrenia-like behaviors.
Collapse
|
9
|
Arbutin Improves Functional Recovery and Attenuates Glial Activation in Lysolecethin-Induced Demyelination Model in Rat Optic Chiasm. Mol Neurobiol 2020; 57:3228-3242. [PMID: 32506379 DOI: 10.1007/s12035-020-01962-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammation, glial activation, and oxidative injury are the main pathological mechanisms of demyelination in multiple sclerosis (MS). Arbutin, a natural polyphenol compound, possesses antioxidant, anti-inflammatory, and neuroprotective properties whose therapeutic potential has not been studied in the experimental animal models of MS. In the present study, the efficiency of arbutin on lysolecthin (LPC)-induced local demyelination model was investigated. Demyelination was induced by micro-injection of 2 μl LPC (1%) into the rat optic chiasm and the treated group received daily injection of arbutin (50 mg/kg, i.p) during 2 weeks. Visual-evoked potential (VEP) recordings were used to functionally assess the visual pathway. Gene expression analysis was done to evaluate the arbutin effect on the inflammatory, stress oxidative-related mediators, and myelin markers. The myelin-specific staining was performed to assess demyelination and GFAP staining as an astrocyte marker. We found that arbutin significantly reduced P1-latency of VEPs waves and demyelination at 7 and 14 days post-demyelination. Arbutin decreased inflammatory cytokines (IL-1B, IL-17, TNF-α) and iNOS mRNA expression level. In addition, the expression level of anti-inflammatory cytokine (IL-10) and antioxidant mediators (Nrf-2 and HO-1) was enhanced by arbutin treatment. Arbutin increased MBP and Olig2 expression levels in demyelination context. Finally, arbutin attenuated GFAP as an astrocyte marker. Finally, this study demonstrates that arbutin improves functional recovery and myelin repair in the demyelinated optic chiasm through attenuation of inflammation, astrocyte activation, and oxidative stress. These findings might open new promising avenues for treating demyelinating disorders such as multiple sclerosis. Graphical abstract.
Collapse
|
10
|
Dalenogare DP, Theisen MC, Peres DS, Fialho MFP, Lückemeyer DD, Antoniazzi CTDD, Kudsi SQ, Ferreira MDA, Ritter CDS, Ferreira J, Oliveira SM, Trevisan G. TRPA1 activation mediates nociception behaviors in a mouse model of relapsing-remitting experimental autoimmune encephalomyelitis. Exp Neurol 2020; 328:113241. [DOI: 10.1016/j.expneurol.2020.113241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
|
11
|
Alles SRA, Cain SM, Snutch TP. Pregabalin as a Pain Therapeutic: Beyond Calcium Channels. Front Cell Neurosci 2020; 14:83. [PMID: 32351366 PMCID: PMC7174704 DOI: 10.3389/fncel.2020.00083] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Initially developed to generate new treatments for epilepsy, gabapentin, and pregabalin (“gabapentinoids”) were engineered to mimic the action of GABA and to modulate GABA metabolism. Rather than their intended pharmacological action on GABA neurotransmission, instead, they exhibit a high affinity for the α2δ-1 and α2δ-2 subunits of voltage-activated calcium channels, wherein binding of gabapentinoids inhibits cellular calcium influx and attenuates neurotransmission. Despite a lack of activity on GABA levels, gabapentin and pregabalin are effective at suppressing seizures and subsequently approved as a new class of antiepileptic therapy for partial-onset epilepsy. Through the same hypothesized molecular mechanism and by controlling neuronal hyperexcitability, gabapentinoids demonstrate clear efficacy in pain management, which has arguably been their most extensively prescribed application to date. In this review, we focus on pregabalin as a second-generation gabapentinoid widely employed in the treatment of a variety of pain conditions. We also discuss the wider functional roles of α2δ subunits and the contributions that pregabalin might play in affecting physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Sascha R A Alles
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Stuart M Cain
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
KARACA Ö, PINAR HU, ÖZGÜR AF, KULAKSIZOĞLU S, DOĞAN R. The effect of pregabalin on tourniquet-induced ischemia-reperfusion injury: a prospective randomized study. Turk J Med Sci 2019; 49:1693-1700. [PMID: 31655508 PMCID: PMC7518663 DOI: 10.3906/sag-1902-230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
Background/aim The aim of this study was to investigate the efficacy of pregabalin on ischemia-reperfusion injuries. Materials and methods Fifty-four patients were randomly assigned into 2 groups. A 150-mg tablet of pregabalin was given the night before and then 1 h before the operation for patients in Group P (pregabalin group, n = 27). A placebo was given to patients in Group C (control group, n = 27) at the same times. After combined spinal-epidural anesthesia was performed, venous blood samples were taken before tourniquet inflation (t1), just before tourniquet deflation (t2), and 20 min after tourniquet deflation (t3) for the analysis of total antioxidant status (TAS), total oxidant status (TOS), catalase (CAT), and ischemia-modified albumin (IMA). Results There was no significant difference in TAS levels between the groups for the t3 period. However, the TAS in Group P was significantly higher in the t3 period than the t2 period (mean ± SD, 0.46 ± 0.1 vs. 0.38 ± 0.2 mmol of Trolox equivalent/L, respectively; P < 0.05). The CAT level in the t3 period was significantly higher in Group P than Group C (mean ± SD, 53.04 ± 32.1 vs. 35.46 ± 17.2 µmol/formaldehyde, respectively; P < 0.05). In the t3 period, the TOS was significantly lower in Group P than Group C (mean ± SD, 11.97 ± 5 vs. 18.29 ± 9.9 pg/mL, respectively; P < 0.05). The TOS in Group P was significantly lower in the t3 period than the t2 period (mean ± SD, 11.97 ± 5 vs. 18.98 ± 10.7 pg/mL, respectively; P < 0.0001). Conclusion Pregabalin has no marked antioxidant activity, but it contributes to the antioxidant defense system of an organism.
Collapse
Affiliation(s)
- Ömer KARACA
- Department of Anesthesiology and Reanimation, Private Anıt Hospital, KonyaTurkey
- * To whom correspondence should be addressed. E-mail:
| | - Hüseyin Ulaş PINAR
- Department of Anesthesiology and Reanimation, School of Medicine, Başkent University, KonyaTurkey
| | - Ahmet Fevzi ÖZGÜR
- Department of Orthopedics and Traumatology, School of Medicine, Başkent University, KonyaTurkey
| | - Sevsen KULAKSIZOĞLU
- Department of Biochemistry, School of Medicine, Başkent University, KonyaTurkey
| | - Rafi DOĞAN
- Department of Anesthesiology and Reanimation, Çanakkale State Hospital, ÇanakkaleTurkey
| |
Collapse
|
13
|
Fingolimod (FTY720) improves the functional recovery and myelin preservation of the optic pathway in focal demyelination model of rat optic chiasm. Brain Res Bull 2019; 153:109-121. [DOI: 10.1016/j.brainresbull.2019.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/09/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022]
|
14
|
Zhang G, Liu N, Zhu C, Ma L, Yang J, Du J, Zhang W, Sun T, Niu J, Yu J. Antinociceptive effect of isoorientin against neuropathic pain induced by the chronic constriction injury of the sciatic nerve in mice. Int Immunopharmacol 2019; 75:105753. [DOI: 10.1016/j.intimp.2019.105753] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
|
15
|
Mansoor SR, Zabihi E, Ghasemi-Kasman M. The potential use of mesenchymal stem cells for the treatment of multiple sclerosis. Life Sci 2019; 235:116830. [PMID: 31487529 DOI: 10.1016/j.lfs.2019.116830] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system (CNS). In attempt to identify an appropriate treatment for improving the neurological symptoms and remyelination process, autologous and allogenic transplantation of mesenchymal stem cells (MSCs) have been introduced as an effective therapeutic strategy in MS. MSCs are a heterogeneous subset of pluripotent non-hematopoietic stromal cells that are isolated from bone marrow, adipose tissue, placenta and other sources. MSCs have considerable therapeutic effects due to their ability in differentiation, migration, immune-modulation and neuroregeneration. To date, numerous experimental and clinical studies demonstrated that MSCs therapy improves the CNS repair and modulates functional neurological symptoms. Here, we provided an overview of the current knowledge about the clinical applications of MSCs in MS. Furthermore, the major challenges and risks of MSCs therapy in MS patients have been elucidated.
Collapse
Affiliation(s)
- Sahar Rostami Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
16
|
Faissner S, Plemel JR, Gold R, Yong VW. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat Rev Drug Discov 2019; 18:905-922. [PMID: 31399729 DOI: 10.1038/s41573-019-0035-2] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that involves demyelination and axonal degeneration. Although substantial progress has been made in drug development for relapsing-remitting MS, treatment of the progressive forms of the disease, which are characterized clinically by the accumulation of disability in the absence of relapses, remains unsatisfactory. This unmet clinical need is related to the complexity of the pathophysiological mechanisms involved in MS progression. Chronic inflammation, which occurs behind a closed blood-brain barrier with activation of microglia and continued involvement of T cells and B cells, is a hallmark pathophysiological feature. Inflammation can enhance mitochondrial damage in neurons, which, consequently, develop an energy deficit, further reducing axonal health. The growth-inhibitory and inflammatory environment of lesions also impairs remyelination, a repair process that might protect axons from degeneration. Moreover, neurodegeneration is accelerated by the altered expression of ion channels on denuded axons. In this Review, we discuss the current understanding of these disease mechanisms and highlight emerging therapeutic strategies based on these insights, including those targeting the neuroinflammatory and degenerative aspects as well as remyelination-promoting approaches.
Collapse
Affiliation(s)
- Simon Faissner
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany. .,Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Jason R Plemel
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
17
|
Coutens B, Mouledous L, Stella M, Rampon C, Lapeyre-Mestre M, Roussin A, Guiard BP, Jouanjus E. Lack of correlation between the activity of the mesolimbic dopaminergic system and the rewarding properties of pregabalin in mouse. Psychopharmacology (Berl) 2019; 236:2069-2082. [PMID: 30879119 DOI: 10.1007/s00213-019-05198-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
Abstract
RATIONALE Pregabalin is a psychoactive drug indicated in the treatment of epilepsy, neuropathic pain, and generalized anxiety disorders. Pregabalin acts on different neurotransmission systems by inactivating the alpha2-delta subunit of voltage-gated calcium channels. In light of this pharmacological property, the hypothesis has been raised that pregabalin may regulate the mesolimbic dopamine pathway and thereby display a potential for misuse or abuse as recently observed in humans. Although some preclinical data support this possibility, the rewarding properties of gabapentinoid are still a matter for debate. OBJECTIVE The aim of this work was to evaluate the rewarding properties of pregabalin and to determine its putative mechanism of action in healthy mice. RESULTS Pregabalin alone (60 mg/kg; s.c.) produced a rewarding effect in the conditioned place preference (CPP) test albeit to a lower extent than cocaine (30 mg/kg; s.c.). Interestingly, when assessing locomotor activity in the CPP, the PGB60 group, similarly to the cocaine group, showed an increased locomotor activity. In vivo single unit extracellular recording showed that pregabalin had mixed effects on dopamine (DA) neuronal activity in the ventral tegmental area since it decreased the activity of 50% of neurons and increased 28.5% of them. In contrast, cocaine decreased 75% of VTA DA neuronal activity whereas none of the neurons were activated. Intracerebal microdialysis was then conducted in awake freely mice to determine to what extent such electrophysiological parameters influence the extracellular DA concentrations ([DA]ext) in the nucleus accumbens. Although pregabalin failed to modify this parameter, cocaine produced a robust increase (800%) in [DA]ext. CONCLUSIONS Collectively, these electrophysiological and neurochemical experiments suggest that the rewarding properties of pregabalin result from a different mode of action than that observed with cocaine. Further experiments are warranted to determine whether such undesirable effects can be potentiated under pathological conditions such as neuropathic pain, mood disorders, or addiction and to identify the key neurotransmitter system involved.
Collapse
Affiliation(s)
- Basile Coutens
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, Bât4R3, 118 Route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, Bât4R3, 118 Route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Manta Stella
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, Bât4R3, 118 Route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, Bât4R3, 118 Route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Maryse Lapeyre-Mestre
- Pharmacoepidemiology Research Unit, INSERM-Université Toulouse 3, UMR 1027, 31000, Toulouse, France
| | - Anne Roussin
- Pharmacoepidemiology Research Unit, INSERM-Université Toulouse 3, UMR 1027, 31000, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, Bât4R3, 118 Route de Narbonne, 31062, Toulouse, Cedex 09, France. .,Faculté de Pharmacie, Université Paris Sud, Université Paris-Saclay, 92290, Chatenay-Malabry, France. .,CNRS UMR-5169, UPS, 31000, Toulouse, France.
| | - Emilie Jouanjus
- Pharmacoepidemiology Research Unit, INSERM-Université Toulouse 3, UMR 1027, 31000, Toulouse, France
| |
Collapse
|
18
|
Ali SA, Zaitone SA, Dessouki AA, Ali AA. Pregabalin affords retinal neuroprotection in diabetic rats: Suppression of retinal glutamate, microglia cell expression and apoptotic cell death. Exp Eye Res 2019; 184:78-90. [PMID: 31002823 DOI: 10.1016/j.exer.2019.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 02/25/2019] [Accepted: 04/15/2019] [Indexed: 01/22/2023]
Abstract
Pregabalin is the first drug to receive FDA approval for treating diabetic neuropathic pain. This study investigated the neuroprotective effect of pregabalin in an experimental model of diabetic retinopathy and tested some possible mechanisms underlying the putative neuroprotective effect. Male Wistar rats received streptozotocin (45 mg/kg) to induce type 1 diabetes mellitus. After two weeks, a course of pregabalin (3, 10 and 30 mg/kg) has been launched for five consecutive weeks. Retinal expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) was estimated by real-time PCR and retinal glutamate content was also estimated. Further, retinal caspase-3 immunoblotting and DNA fragmentation assays determined the degree of apoptosis. Pregabalin improved histopathological abnormalities in diabetic retinas and suppressed the diabetes-enhanced retinal expression of IL-1β, TNF-α, CD11b (a surface marker for microglia) while attenuated expression of caspase-3 and DNA fragmentation versus the diabetic group. In addition, diabetic rats treated with pregabalin displayed reductions in retinal glutamate, nitric oxide and malondialdehyde (MDA) and enhanced reduced glutathione (GSH) content versus the diabetic controls. Furthermore, pregabalin enhanced the histopathological picture and reduced fibrosis in the optic nerve of diabetic rats in addition to suppression of the content of the glia fibrillary acidic protein. The findings provide the first evidence demonstrating that pregabalin alleviates retinal neuroinflammation, apoptosis and oxidative stress in an experimental type 1 diabetes mellitus. Therefore, pregabalin might serve as a potential therapy for retinopathy after adequate clinical research.
Collapse
Affiliation(s)
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Amina A Dessouki
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Azaa A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
19
|
Galeshi A, Ghasemi-Kasman M, Feizi F, Davoodian N, Zare L, Abedian Z. Co-administration of aspirin and adipose-derived stem cell conditioned medium improves the functional recovery of the optic pathway in a lysolecithin-induced demyelination model. Neuropsychiatr Dis Treat 2019; 15:2681-2694. [PMID: 31571884 PMCID: PMC6756276 DOI: 10.2147/ndt.s218594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Based on beneficial effects of aspirin and mesenchymal stem cells (MSCs) on myelin repair, in a preset study, effects of co-administration of aspirin and conditioned medium from adipose tissue-derived stem cells (ADSC-CM) on functional recovery of optic pathway, demyelination levels, and astrocytes' activation were evaluated in a lysolecithin (LPC)-induced demyelination model of optic chiasm. METHODS LPC (1%, 2 µL) was injected into the rat optic chiasm and animals underwent daily intraperitoneal (i.p.) injections of ADSCs-CM and oral gavage of aspirin at a dose of 25 mg/kg for 14 days post LPC injection. The conductivity of visual signals was assessed using visual evoked potential recordings (VEPs) before LPC injection and on days 7 and 14 post lesion. Immunostaining against PDGFRα as oligodendrocyte precursor cells marker, MOG as mature myelin marker, and GFAP as astrocyte marker was performed on brain sections at day 14 post LPC injection. FluoroMyelin staining was also used to measure the extent of demyelination areas. RESULTS Our results showed that administration of ADSCs-CM and aspirin significantly reduced the latency of VEP waves in LPC receiving animals. In addition, demyelination levels and GFAP expressing cells were attenuated while the number of oligodendrocyte precursor cells significantly increased in rats treated with ADSCs-CM and aspirin. CONCLUSION Overall, our results suggest that co-administration of ADSCs-CM and aspirin improves the functional recovery of optic pathway through amelioration of astrocyte activation and attenuation of demyelination level.
Collapse
Affiliation(s)
- Adel Galeshi
- Babol University of Medical Sciences, Babol, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Feizi
- Department of Anatomical Sciences, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Nahid Davoodian
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Leila Zare
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Abedian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
20
|
Baradaran S, Hajizadeh Moghaddam A, Ghasemi-Kasman M. Hesperetin reduces myelin damage and ameliorates glial activation in lysolecithin-induced focal demyelination model of rat optic chiasm. Life Sci 2018; 207:471-479. [PMID: 30056861 DOI: 10.1016/j.lfs.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022]
Abstract
Visual impairment is considered as the most common initial manifestation of multiple sclerosis (MS) patients. It has been shown that hesperetin (Hst), a flavonoid of citrus fruit, possesses anti-inflammatory and antioxidant effects both in vitro and in vivo. The present study was designed to evaluate the pharmacological/medicinal effects of Hst treatment on myelin repair and glial activation in lysolecithin (LPC)-induced focal demyelination model. In order to induce local demyelination model, LPC 1% (2 μL) was injected into the optic chiasm of rats. Animals received oral administration of Hst at dose of 20 mg/kg for 14 or 21 days post lesion induction. Visual evoked potential (VEP) recordings were conducted before and also on days 7, 14 and 21 post LPC injection. Glial activation and myelination of optic chiasm were evaluated by immunostaining on brain sections. Analysis of VEPs data revealed that oral administration of Hst effectively reduced the latency of N1 waves. Immunostaining results showed the reduced number of astrocytes and microglia in animal which were treated with Hst. Furthermore, the extent of demyelination area was decreased in animals treated by Hst. Taken together; our results suggest that Hst treatment significantly protects and repairs myelin sheath, therefore it might be regarded as effective supplementary agent in demyelinating disorders, particularly MS.
Collapse
Affiliation(s)
- Saeideh Baradaran
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
21
|
Akbari A, Khalili-Fomeshi M, Ashrafpour M, Moghadamnia AA, Ghasemi-Kasman M. Adenosine A 2A receptor blockade attenuates spatial memory deficit and extent of demyelination areas in lyolecithin-induced demyelination model. Life Sci 2018; 205:63-72. [PMID: 29730168 DOI: 10.1016/j.lfs.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/21/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
Abstract
In recent years, inactivation of A2A adenosine receptors has been emerged as a novel strategy for treatment of several neurodegenerative diseases. Although numerous studies have shown the beneficial effects of A2A receptors blockade on spatial memory, the impacts of selective adenosine A2A receptors on memory performance has not yet been examined in the context of demyelination. In the present study, we evaluated the effect of A2A receptor antagonist SCH58261 on spatial memory and myelination in an experimental model of focal demyelination in rat fimbria. Demyelination was induced by local injection of lysolecithin (LPC) 1% (2 μl) into the hippocampus fimbria. SCH58261 (20 μg/0.5 μl or 40 μg/0.5 μl) was daily injected intracerebroventricularly (i.c.v.) for 10 days post LPC injection. The Morris water maze test was used to assess the spatial learning and memory on day 6 post lesion. Myelin staining and immunostaining against astrocytes/microglia were carried out 10 days post LPC injection. The administration of adenosine A2A receptor antagonist prevented the spatial memory impairment in LPC receiving animals. Myelin staining revealed that application of SCH58261 reduces the extent of demyelination areas in the fimbria. Furthermore, the level of astrocytes and microglia activation was attenuated following administration of A2A receptor antagonist. Collectively, the results of this study suggest that A2A receptor blockade can improve the spatial memory and protect myelin sheath, which might be considered as a novel therapeutic approach for multiple sclerosis disease.
Collapse
Affiliation(s)
- Atefeh Akbari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Manouchehr Ashrafpour
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
22
|
Naeimi R, Baradaran S, Ashrafpour M, Moghadamnia AA, Ghasemi-Kasman M. Querectin improves myelin repair of optic chiasm in lyolecithin-induced focal demyelination model. Biomed Pharmacother 2018; 101:485-493. [PMID: 29501770 DOI: 10.1016/j.biopha.2018.02.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Although the beneficial effects of quercetin on oligodendrocyte precursor cell (OPCs) population has been evaluated in-vitro, there are few studies about the effects of quercetin on myelin repair in the context of demyelination. The aim of this study was to investigate the effects of querectin on functional recovery and myelin repair of optic chiasm in lysolecithin (LPC)-induced demyelination model. Demyelination was induced by local injection of LPC 1% (2 μl) into rat optic chiasm. Querectin at doses 25 or 50 mg/kg was administrated daily by oral gavage for 7 or 14 days post LPC. Visual evoked potential (VEPs) recordings were used to assess the functional property of the optic pathway. Immunostaining and myelin staining were performed on brain sections 7 or 14 days post lesion. Electrophysiological data indicated that LPC injection increased the latency of VEPs waves and quercetin effectively reduced the delay of visual signals. The level of glial activation was alleviated in animals under treatment of quercetin compared to vehicle group. Furthermore, quercetin treatment decreased the extent of demyelination areas and increased the remyelination process following LPC injection. Overall, our findings indicate that quercetin could remarkably improve the functional recovery of the optic pathway by its protective effects on myelin sheath and attenuation of glial activation.
Collapse
Affiliation(s)
- Reza Naeimi
- Student Research Committee, Babol University of Medical Sciences, Babol, IranIran
| | - Saeideh Baradaran
- Student Research Committee, Babol University of Medical Sciences, Babol, IranIran
| | - Manouchehr Ashrafpour
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
23
|
Curcumin-loaded nanoparticles ameliorate glial activation and improve myelin repair in lyolecithin-induced focal demyelination model of rat corpus callosum. Neurosci Lett 2018. [PMID: 29530814 DOI: 10.1016/j.neulet.2018.03.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin has been introduced as effective anti-inflammatory agent in treatment of several inflammatory disorders. Despite the wide range pharmacological activities, clinical application of curcumin is restricted mainly due to the low water solubility of this substance. More recently, we could remarkably improve the aqueous solubility of curcumin by its encapsulation in chitosan-alginate-sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). In this study, the anti-inflammatory and myelin protective effects of curcumin-loaded NPs were evaluated in lysolecithin (LPC)-induced focal demyelination model. Pharmacokinetic of curcumin was assessed using high performance liquid chromatography (HPLC). Local demyelination was induced by injection of LPC into corpus callosum of rats. Animals were pre-treated with intraperitoneal (i.p.) injections of curcumin or curcumin-loaded NPs at dose of 12.5 mg/kg, 10 days prior to LPC injection and the injections were continued for 7 or 14 days post lesion. Hematoxylin and eosin (H&E) staining and immunostaining against activated glial cells including astrocytes and microglia were carried out for assessment of inflammation level in lesion site. Myelin specific staining was performed to evaluate the effect of curcumin-loaded NPs on myelination of LPC receiving animals. HPLC results showed the higher plasma concentration of curcumin after administration of NPs. Histological evaluation demonstrated that, the extent of demyelination areas was reduced in animals under treatment of curcumin-loaded NPs. Furthermore, treatment with curcumin-loaded NPs effectively attenuated glial activation and inflammation in LPC-induced demyelination model compared to curcumin receiving animals. Overall; these findings indicate that treatment with curcumin-loaded NPs preserve myelinated axons through amelioration of glial activation and inflammation in demyelination context.
Collapse
|