1
|
Stefanov A, Brakel K, Rau J, Joseph RM, Guice C, Araguz K, Hemphill A, Madry J, Irion A, Dash S, Souza KA, Hook MA. Depression-like behavior is associated with deficits in cognition and hippocampal neurogenesis in a subset of spinally contused male, but not female, rats. Brain Behav Immun 2025; 123:270-287. [PMID: 39288895 DOI: 10.1016/j.bbi.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024] Open
Abstract
Depression and cognitive deficits present at higher rates among people with spinal cord injury (SCI) compared to the general population, yet these SCI comorbidities are poorly addressed. Sex and age appear to play roles in depression incidence, but consensus on the direction of their effects is limited. Systemic and cortical inflammation and disruptions in hippocampal neurogenesis have been identified as potential treatment targets, but a comprehensive understanding of these mechanisms remains elusive. We used a rodent SCI model to interrogate these gaps in knowledge. We examined post-injury depression-like behavior and cognitive deficits, as well as the association between affect, cognition, chronic hippocampal inflammation and hippocampal neurogenesis, in young and middle-aged male and female Sprague-Dawley rats. Depression-like behavior manifested in male and female subsets of SCI rats irrespective of age, at rates commensurate with the incidence of clinical depression. Changes in components of behavior were driven by sex and age, and affective outcomes were independent of common post-injury pathophysiological outcomes including locomotor functional deficits and spinal lesion severity. Interestingly, however, only male depression-like SCI rats exhibited deficits in hippocampal-associated spatial cognition. Neurogenesis was also disrupted in only SCI males in regions of the hippocampus responsible for affective outcomes. Decreased neurogenesis among middle-aged male subjects coincided with increases in numbers of the pro-inflammatory markers CD86 and iNOS, while middle-aged females had increased numbers of cells expressing Iba-1 and anti-inflammatory marker CD206. Overall, the present data suggest that post-SCI depression and cognition may be affected, in part, by sex- and age-dependent changes in hippocampal neurogenesis and inflammation. Hippocampal neurogenesis is a potential target to address psychological wellbeing after SCI, but therapeutic strategies must carefully consider sex and age as biological variables.
Collapse
Affiliation(s)
- Alex Stefanov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843.
| | - Kiralyn Brakel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| | - Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| | - Rose M Joseph
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Corey Guice
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Kendall Araguz
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Annebel Hemphill
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Jessica Madry
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Andrew Irion
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Swapnil Dash
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Karienn A Souza
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| |
Collapse
|
2
|
Afshari M, Gharibzadeh S, Pouretemad H, Roghani M. Promising therapeutic effects of high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) in addressing autism spectrum disorder induced by valproic acid. Front Neurosci 2024; 18:1385488. [PMID: 39238929 PMCID: PMC11374774 DOI: 10.3389/fnins.2024.1385488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a neurodevelopmental condition that affects various regions of the brain. Repetitive transcranial magnetic stimulation (rTMS) is a safe and non-invasive method utilized for stimulating different brain areas. Our objective is to alleviate ASD symptoms using high-frequency rTMS (HF-rTMS) in a rat model of ASD induced by valproic acid (VPA). Methods In this investigation, we applied HF-rTMS for ASD treatment, focusing on the hippocampus. Behavioral assessments encompassed core ASD behaviors, as well as memory and recognition tests, alongside evaluations of anxiety and stress coping strategies. Additionally, we analyzed oxidative stress and a related inflammation marker, as well as other biochemical components. We assessed brain-derived neurotrophic factor (BDNF), Microtubule-associated protein-2 (MAP-2), and synaptophysin (SYN). Finally, we examined dendritic spine density in the CA1 area of the hippocampus. Results The results demonstrated that HF-rTMS successfully mitigated ASD symptoms, reducing oxidative stress and improving various biochemical factors, along with an increase in dendritic spine density. Discussion Collectively, our data suggests that HF-rTMS may effectively alleviate ASD symptoms. These findings could be valuable in clinical research and contribute to a better understanding of the mechanisms underlying ASD.
Collapse
Affiliation(s)
- Masoud Afshari
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shahriar Gharibzadeh
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Hamidreza Pouretemad
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
3
|
Liu Z, Yu S, Hu Y, Wang D, Wang S, Tang Z, Li W. Efficacy and safety of repeated transcranial magnetic stimulation combined with escitalopram in the treatment of major depressive disorder: a meta-analysis. Front Psychiatry 2024; 14:1275839. [PMID: 38234362 PMCID: PMC10791764 DOI: 10.3389/fpsyt.2023.1275839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Objective This study was designed to systematically review the efficacy and safety of repeated transcranial magnetic stimulation (rTMS) combined with escitalopram in treating major depressive disorder (MDD). Methods Databases including PubMed, Embase, Cochrane, Web of Science, CNKI, Wanfang, VIP Journal, and China Biomedical Literature databases were electronically searched for randomized controlled trials of rTMS combined with escitalopram intervention for MDD treatment from the inception of these databases to 27 May 2023. Two reviewers independently screened the studies, extracted the data, and assessed the quality of the included studies. R 4.2.2 was then used for a meta-analysis. Results In total, 19 articles involving 1,032 patients were included. The results of the meta-analysis showed that Hamilton Depression Rating Scale (HAMD) scores were significantly lower in the group receiving rTMS combined with escitalopram (experimental group) than that in the control group [weighted mean difference (WMD) = -5.30, 95% confidence interval (95% CI): -6.44 to -4.17, p < 0.01]. The response rate of the experimental group was significantly higher than that of the control group [odds ratio (OR): 5.48; 95% CI: 3.72 to 8.07; p < 0.01]. No significant difference in the adverse reaction rate was observed between the two groups (OR: 1.04, 95% CI: 0.71 to 1.52, p = 0.82). Conclusion Our findings suggest that rTMS combined with escitalopram can benefit patients with MDD in a safe manner, which may help in guiding clinical practice. Systematic review registration DOI number: 10.37766/inplasy2023.11.0114, INPLASY2023110114.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaohui Tang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Xu Y, Peremans K, Salden S, Audenaert K, Dobbeleir A, Van Eeckhaut A, De Bundel D, Saunders JH, Baeken C. Accelerated high frequency rTMS induces time-dependent dopaminergic alterations: a DaTSCAN brain imaging study in healthy beagle dogs. Front Vet Sci 2023; 10:1154596. [PMID: 37261109 PMCID: PMC10228829 DOI: 10.3389/fvets.2023.1154596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Aim The neurobiological effects of repetitive transcranial magnetic stimulation are believed to run in part through the dopaminergic system. Accelerated high frequency rTMS (aHF-rTMS), a new form of stimuli delivery, is currently being tested for its usefulness in treating human and canine mental disorders. However, the short-and long-term neurobiological effects are still unclear, including the effects on the dopaminergic system. In aHF-rTMS, multiple sessions are delivered within 1 day instead of one session per day, not only to accelerate the time to response but also to increase clinical efficacy. To gain more insight into the neurobiology of aHF-rTMS, we investigated whether applying five sessions in 1 day has direct and/or delayed effects on the dopamine transporter (DAT), and on dopamine metabolites of cerebrospinal fluid (CSF) in beagles. Materials and methods Thirteen beagles were randomly divided into two groups: five active stimulation sessions (n = 9), and 5 sham stimulation sessions (n = 4). Using DaTSCAN, DAT binding indices (BI) were obtained at baseline, after 1 day, 1 month, and 3 months post stimulation. CSF samples were collected after each scan. Results Active aHF-rTMS significantly reduced striatal DAT BI 1 day post-active stimulation session (p < 0.01), and the effect lasted to 1 month (p < 0.01). No significant DAT BI change was found in sham group. No significant changes in dopamine metabolites of CSF were found. Conclusion Although no significant effects on CSF dopamine metabolites were observed, five sessions of active aHF-rTMS significantly decreased striatal DAT BI after 1 day and up to 1 month post stimulation, indicating immediate and delayed effects on the brain dopaminergic system. Our findings in healthy beagles further substantiate the assumption that (a)HF-rTMS affects the brain dopaminergic system and it may pave the way to apply (a)HF-rTMS treatment in behaviorally disturbed dogs.
Collapse
Affiliation(s)
- Yangfeng Xu
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kathelijne Peremans
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sofie Salden
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kurt Audenaert
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
| | - Andre Dobbeleir
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Jimmy H Saunders
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chris Baeken
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel (UZBrussel), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
5
|
Pu Z, Hou Q, Yan H, Lin Y, Guo Z. Efficacy of repetitive transcranial magnetic stimulation and agomelatine on sleep quality and biomarkers of adult patients with mild to moderate depressive disorder. J Affect Disord 2023; 323:55-61. [PMID: 36435397 DOI: 10.1016/j.jad.2022.11.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mild to moderate depressive disorder (DD), which accounts for much larger patient population, has been largely neglected in previous studies exploring the sleep quality of DD patients; in addition, most of these patients had comorbid insomnia. Thus, this study aimed to explore the effect of repetitive transcranial magnetic stimulation (rTMS) and agomelatine on sleep quality of adult patients with mild to moderate DD. METHODS 100 participants were randomly divided into high-frequency rTMS group and sham rTMS group (n = 50 each). All patients were administered agomelatine simultaneously. Hamilton Depression Scale-17 Items (HAMD-17), Pittsburgh Sleep Index (PSQI), and polysomnography were used to evaluate the efficacy. Serum norepinephrine (NE), 5-hydroxytryptamine, brain-derived neurotrophic factor (BDNF), and melatonin were also determined. RESULTS The HAMD-17 and PSQI scores in high-frequency rTMS group were lower than those in sham rTMS group at the 4th and 8th weekend after treatment (P < 0.05). Post-treatment total sleep time, sleep efficiency, and N3 percentage in high-frequency rTMS group were better than those in sham rTMS group (P < 0.05); while post-treatment sleep latency, awakening time, micro-awakening times, and N1 percentage were significantly less than those in sham rTMS group (P < 0.01). Post-treatment serum levels of NE and BDNF in high-frequency rTMS group were higher than those in sham rTMS group (P < 0.05). LIMITATIONS Small sample size and short follow-up duration. CONCLUSION The combination of high-frequency rTMS and agomelatine is effective in the treatment of mild to moderate DD, which can improve the sleep quality and increase the levels of some neurotransmitters and neurotrophic factors.
Collapse
Affiliation(s)
- Zhengping Pu
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, China; Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Xuhui 200030, Shanghai, China.
| | - Qingmei Hou
- Department of Clinical Psychology, Second Specialized Hospital of Hegang, Hegang 154102, Heilongjiang, China
| | - Hui Yan
- Department of Psychiatry, Second People's Hospital of Taizhou, Tiantai 317200, Zhejiang, China
| | - Yong Lin
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, China
| | - Zilei Guo
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, China
| |
Collapse
|
6
|
Nieminen JO, Pospelov AS, Koponen LM, Yrjölä P, Shulga A, Khirug S, Rivera C. Transcranial magnetic stimulation set-up for small animals. Front Neurosci 2022; 16:935268. [PMID: 36440290 PMCID: PMC9685557 DOI: 10.3389/fnins.2022.935268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is widely applied on humans for research and clinical purposes. TMS studies on small animals, e.g., rodents, can provide valuable knowledge of the underlying neurophysiological mechanisms. Administering TMS on small animals is, however, prone to technical difficulties, mainly due to their small head size. In this study, we aimed to develop an energy-efficient coil and a compatible experimental set-up for administering TMS on rodents. We applied a convex optimization process to develop a minimum-energy coil for TMS on rats. As the coil windings of the optimized coil extend to a wide region, we designed and manufactured a holder on which the rat lies upside down, with its head supported by the coil. We used the set-up to record TMS-electromyography, with electromyography recorded from limb muscles with intramuscular electrodes. The upside-down placement of the rat allowed the operator to easily navigate the TMS without the coil blocking their field of view. With this paradigm, we obtained consistent motor evoked potentials from all tested animals.
Collapse
Affiliation(s)
- Jaakko O. Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Biomedical Imaging Unit, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Alexey S. Pospelov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
- Department of Clinical Neurophysiology, BABA Center, Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lari M. Koponen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Pauliina Yrjölä
- BioMag Laboratory, HUS Medical Imaging Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Neurophysiology, BABA Center, Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Anastasia Shulga
- BioMag Laboratory, HUS Medical Imaging Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Stanislav Khirug
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Claudio Rivera
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- INMED (INSERM U1249), Aix-Marseille Université, Marseille, France
| |
Collapse
|
7
|
Hennessy LA, Seewoo BJ, Jaeschke LA, Mackie LA, Figliomeni A, Arena-Foster Y, Etherington SJ, Dunlop SA, Croarkin PE, Rodger J. Accelerated low-intensity rTMS does not rescue anxiety behaviour or abnormal connectivity in young adult rats following chronic restraint stress. NEUROIMAGE. REPORTS 2022; 2:100104. [PMID: 36277329 PMCID: PMC9583935 DOI: 10.1016/j.ynirp.2022.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Currently approved repetitive transcranial magnetic stimulation (rTMS) protocols for the treatment of major depressive disorder (MDD) involve once-daily (weekday) stimulation sessions, with 10 Hz or intermittent theta burst stimulation (iTBS) frequencies, over 4-6 weeks. Recently, accelerated treatment protocols (multiple daily stimulation sessions for 1-2 weeks) have been increasingly studied to optimize rTMS treatments. Accelerated protocols might confer unique advantages for adolescents and young adults but there are many knowledge gaps related to dosing in this age group. Off-label, clinical practice frequently outpaces solid evidence as rigorous clinical trials require substantial time and resources. Murine models present an opportunity for high throughput dose finding studies to focus subsequent clinical trials in humans. This project investigated the brain and behavioural effects of an accelerated low-intensity rTMS (LI-rTMS) protocol in a young adult rodent model of chronic restraint stress (CRS). Depression and anxiety-related behaviours were induced in young adult male Sprague Dawley rats using the CRS model, followed by the 3-times-daily delivery of 10 Hz LI-rTMS, for two weeks. Behaviour was assessed using the Elevated Plus Maze and Forced Swim Test, and functional, chemical, and structural brain changes measured using magnetic resonance imaging techniques. CRS induced an agitated depression-like phenotype but therapeutic effects from the accelerated protocol were not detected. Our findings suggest that the age of rodents may impact response to CRS and LI-rTMS. Future studies should also examine higher intensities of rTMS and accelerated theta burst protocols.
Collapse
Affiliation(s)
- Lauren A. Hennessy
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Bhedita J. Seewoo
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Microscopy, Characterisation & Analysis, Research Infrastructure Centres, The University of Western Australia, Perth, WA, Australia
| | - Liz A. Jaeschke
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Leah A. Mackie
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Abbey Figliomeni
- Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Yasmin Arena-Foster
- Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Sarah J. Etherington
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Sarah A. Dunlop
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Minderoo Foundation, Perth, WA, Australia
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| |
Collapse
|
8
|
Giron CG, Lin TTZ, Kan RLD, Zhang BBB, Yau SY, Kranz GS. Non-Invasive Brain Stimulation Effects on Biomarkers of Tryptophan Metabolism: A Scoping Review and Meta-Analysis. Int J Mol Sci 2022; 23:9692. [PMID: 36077088 PMCID: PMC9456364 DOI: 10.3390/ijms23179692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Abnormal activation of the kynurenine and serotonin pathways of tryptophan metabolism is linked to a host of neuropsychiatric disorders. Concurrently, noninvasive brain stimulation (NIBS) techniques demonstrate high therapeutic efficacy across neuropsychiatric disorders, with indications for modulated neuroplasticity underlying such effects. We therefore conducted a scoping review with meta-analysis of eligible studies, conforming with the PRISMA statement, by searching the PubMed and Web of Science databases for clinical and preclinical studies that report the effects of NIBS on biomarkers of tryptophan metabolism. NIBS techniques reviewed were electroconvulsive therapy (ECT), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS). Of the 564 search results, 65 studies were included with publications dating back to 1971 until 2022. The Robust Bayesian Meta-Analysis on clinical studies and qualitative analysis identified general null effects by NIBS on biomarkers of tryptophan metabolism, but moderate evidence for TMS effects on elevating serum serotonin levels. We cannot interpret this as evidence for or against the effects of NIBS on these biomarkers, as there exists several confounding methodological differences in this literature. Future controlled studies are needed to elucidate the effects of NIBS on biomarkers of tryptophan metabolism, an under-investigated question with substantial implications to clinical research and practice.
Collapse
Affiliation(s)
- Cristian G. Giron
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tim T. Z. Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Rebecca L. D. Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bella B. B. Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Suk Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Brakel K, Aceves M, Garza A, Yoo C, Escobedo G, Panchani N, Shapiro L, Hook M. Inflammation increases the development of depression behaviors in male rats after spinal cord injury. Brain Behav Immun Health 2021; 14:100258. [PMID: 34589764 PMCID: PMC8474513 DOI: 10.1016/j.bbih.2021.100258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
Following spinal cord injury, 18-26% of patients are diagnosed with depressive disorders, compared to 8-12% in the general population. As increased inflammation strongly correlates with depression in both animal and human studies, we hypothesized that the immune activation inherent to SCI could increase depression-like behavior. Thus, we proposed that reducing immune activation with minocycline, a microglial inhibitor, would decrease depression-like behavior following injury. Male Sprague-Dawley rats were given minocycline in their drinking water for 14 days following a moderate, mid-thoracic (T12) spinal contusion. An array of depression-like behaviors (social activity, sucrose preference, forced swim, open field activity) were examined prior to injury as well as on days 9-10, 19-20, and 29-30 post-injury. Peripheral cytokine levels were analyzed in serum collected prior to injury and 10 days post-injury. Hierarchical cluster analysis divided subjects into two groups based on behavior: depressed and not-depressed. Depressed subjects displayed lower levels of open field activity and social interaction relative to their not-depressed counterparts. Depressed subjects also showed significantly greater expression of pro-inflammatory cytokines both before and after injury and displayed lower levels of hippocampal neurogenesis than not-depressed subjects. Intriguingly, subjects who later showed depressive behaviors had higher baseline levels of the pro-inflammatory cytokine IL-6, which persisted throughout the duration of the experiment. Minocycline, however, did not affect serum cytokine levels and did not block the development of depression; equal numbers of minocycline versus vehicle-treated subjects appeared in both phenotypic groups. Despite this, these data overall suggest that molecular correlates of inflammation prior to injury could predict the development of depression after a physical stressor.
Collapse
Affiliation(s)
- Kiralyn Brakel
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Medical Research and Education Building, Ste. 1005 8447 Riverside Pkwy, Bryan, TX, 77807, United States
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Miriam Aceves
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Medical Research and Education Building, Ste. 1005 8447 Riverside Pkwy, Bryan, TX, 77807, United States
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
- Department of Biology, Texas A&M University, Interdisciplinary Life Sciences Building, College Station, TX, United States
| | - Aryana Garza
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Chaeyoung Yoo
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Gabriel Escobedo
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Nishah Panchani
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Lee Shapiro
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Medical Research and Education Building, Ste. 1005 8447 Riverside Pkwy, Bryan, TX, 77807, United States
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Michelle Hook
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Medical Research and Education Building, Ste. 1005 8447 Riverside Pkwy, Bryan, TX, 77807, United States
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| |
Collapse
|
10
|
Yang J, Liang R, Wang L, Zheng C, Xiao X, Ming D. Repetitive Transcranial Magnetic Stimulation (rTMS) Improves the Gait Disorders of Rats Under Simulated Microgravity Conditions Associated With the Regulation of Motor Cortex. Front Physiol 2021; 12:587515. [PMID: 33613305 PMCID: PMC7890125 DOI: 10.3389/fphys.2021.587515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/15/2021] [Indexed: 11/25/2022] Open
Abstract
In previous studies, it has been proved that repetitive transcranial magnetic stimulation (rTMS) improves dyskinesia induced by conditions such as spinal cord injury, Parkinson diseases and cerebral ischemia. However, it is still unknown whether it can be used as a countermeasure for gait disorders in astronauts during space flight. In this study, we evaluated the effects of rTMS on the rat gait function under simulated microgravity (SM) conditions. The SM procedure continued for consecutive 21 days in male Wistar rats. Meanwhile, the high-frequency rTMS (10 Hz) was applied for 14 days from the eighth day of SM procedure. The behavioral results showed that SM could cause gait disorders such as decreased walking ability and contralateral limb imbalance in rats, which could be reversed by rTMS. Furthermore, rTMS affected the neural oscillations of motor cortex, enhancing in δ (2–4 Hz) band, suppressing in θ (4–7 Hz), and α (7–12 Hz) bands. Additionally, rTMS could activate mTOR in the motor cortex. These data suggests that the improvement effects of rTMS on gait disorders in rats under SM conditions might be associated with its regulation on neural oscillations in the cerebral motor cortex and the expression of some motor-related proteins which may enhance the control of nervous system on muscle function. Based on our results, rTMS can be used as an potential effective supplement in the field of clinical and rehabilitation research to reduce gait disorders caused by the space environment.
Collapse
Affiliation(s)
- Jiajia Yang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Rong Liang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ling Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Chenguang Zheng
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Xi Xiao
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Dong Ming
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Ansari AH, Pal A, Ramamurthy A, Kabat M, Jain S, Kumar S. Fibromyalgia Pain and Depression: An Update on the Role of Repetitive Transcranial Magnetic Stimulation. ACS Chem Neurosci 2021; 12:256-270. [PMID: 33397091 DOI: 10.1021/acschemneuro.0c00785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Fibromyalgia is a musculoskeletal pain of different parts of the body, which is also associated with fatigue, lack of sleep, cognition deficits, family history, gender bias, and other disorders such as osteoarthritis and rheumatoid arthritis. It is generally initiated after trauma, surgery, infection, or stress. Fibromyalgia often coexists with several other conditions or disorders such as temporomandibular joint disorders, bowel and bladder syndrome, anxiety, depression, headaches, and interstitial cystitis. While there is no permanent cure for fibromyalgia, some interventions are available with multiple side effects. rTMS (repetitive transcranial magnetic stimulation), a noninvasive management strategy is used widely for various pain-related etiologies including fibromyalgia in both the laboratory and clinical settings. In this Review, we discuss the role and mechanism of action of rTMS in fibromyalgia patients and on associated comorbidities including anxiety, pain, depression, neurotransmitter alterations, sleep disorders, and overall quality of life of the patients suffering from this chronic problem. We also provide an update on the rTMS application in the clinical trials of fibromyalgia patients and prospective management therapy for multiple problems that these patients suffer.
Collapse
Affiliation(s)
- Abdul Haque Ansari
- Department of Physiology, College of Medicine, Texila American University, East Bank, Demerara, Guyana, South America
| | - Ajay Pal
- Department of Orthopedic Surgery, Movement Recovery Laboratory, Columbia University Medical Center, New York, New York 10032, United States
| | - Aditya Ramamurthy
- Department of Orthopedic Surgery, Movement Recovery Laboratory, Columbia University Medical Center, New York, New York 10032, United States
| | - Maciej Kabat
- Hackensack Meridian School of Medicine, Seton Hall University Interprofessional Health Sciences Campus, Kingsland Street, Nutley, New Jersey 07110, United States
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
12
|
Recovering from depression with repetitive transcranial magnetic stimulation (rTMS): a systematic review and meta-analysis of preclinical studies. Transl Psychiatry 2020; 10:393. [PMID: 33173042 PMCID: PMC7655822 DOI: 10.1038/s41398-020-01055-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has gained growing interest for the treatment of major depression (MDD) and treatment-resistant depression (TRD). Most knowledge on rTMS comes from human studies as preclinical application has been problematic. However, recent optimization of rTMS in animal models has laid the foundations for improved translational studies. Preclinical studies have the potential to help identify optimal stimulation protocols and shed light on new neurobiological-based rationales for rTMS use. To assess existing evidence regarding rTMS effects on depressive-like symptoms in rodent models, we conducted a comprehensive literature search in accordance with PRISMA guidelines (PROSPERO registration number: CRD42019157549). In addition, we conducted a meta-analysis to determine rTMS efficacy, performing subgroup analyses to examine the impact of different experimental models and neuromodulation parameters. Assessment of the depressive-like phenotype was quite homogeneous whilst rTMS parameters among the 23 included studies varied considerably. Most studies used a stress-induced model. Overall, results show a largely beneficial effect of active rTMS compared to sham stimulation, as reflected in the statistically significant recovery of both helplessness (SDM 1.34 [1.02;1.66]) and anhedonic (SDM 1.87 [1.02;2.72]) profiles. Improvement of the depressive-like phenotype was obtained in all included models and independently of rTMS frequency. Nonetheless, these results have limited predictive value for TRD patients as only antidepressant-sensitive models were used. Extending rTMS studies to other MDD models, corresponding to distinct endophenotypes, and to TRD models is therefore crucial to test rTMS efficacy and to develop cost-effective protocols, with the potential of yielding faster clinical responses in MDD and TRD.
Collapse
|
13
|
Tian L, Sun SS, Cui LB, Wang SQ, Peng ZW, Tan QR, Hou WG, Cai M. Repetitive Transcranial Magnetic Stimulation Elicits Antidepressant- and Anxiolytic-like Effect via Nuclear Factor-E2-related Factor 2-mediated Anti-inflammation Mechanism in Rats. Neuroscience 2020; 429:119-133. [PMID: 31918011 DOI: 10.1016/j.neuroscience.2019.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/03/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) treatment is widely accepted as an evidence-based treatment option for depression and anxiety. However, the underlying mechanism of this treatment maneuver has not been clearly understood. The chronic unpredictable mild stress (CUMS) procedure was used to establish depression and anxiety-like behavior in rats. The rTMS was performed with a commercially available stimulator for seven consecutive days, and then depression and anxiety-like behaviors were subsequently measured. The expression of nuclear factor-E2-related factor 2 (Nrf2) was measured by western-blot, and the level of tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and interleukin-6 (IL-6) was measured with Enzyme-linked immunesorbent assay (ELISA) analyzing kits. Furthermore, a small interfering RNA was employed to knockdown Nrf2, after which the neurobehavioral assessment, Nrf2 nuclear expression, and the amount of inflammation factors were evaluated. Application of rTMS exhibited a significant antidepressant and anxiolytic-like effect, which was associated with the increased Nrf2 nuclear translocation and reduced level of TNF-α, iNOS, IL-1β, and IL-6 in the hippocampus. Following Nrf2 silencing, the antidepressant and anxiolytic-like effect produced by rTMS was abolished. Moreover, the elevated Nrf2 nuclear translocation, and the reduced production of TNF-α, iNOS, IL-1β, and IL-6 in hippocampus mediated by rTMS, were reversed by Nrf2 knockdown. Together, these results reveal that the Nrf2-induced anti-inflammation effect is crucial in regulating antidepressant-related behaviors produced by rTMS.
Collapse
Affiliation(s)
- Li Tian
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Si-Si Sun
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China; Medical Department of Xi'an Emergency Center, the 111th of Fengcheng 4th Road, Xi'an 718900, Shaanxi, China
| | - Long-Biao Cui
- School of Medical Psychology, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Shi-Quan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Wu-Gang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
14
|
Simultaneous quantification of dopamine, serotonin, their metabolites and amino acids by LC-MS/MS in mouse brain following repetitive transcranial magnetic stimulation. Neurochem Int 2019; 131:104546. [DOI: 10.1016/j.neuint.2019.104546] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
|
15
|
Zorzo C, Higarza SG, Méndez M, Martínez JA, Pernía AM, Arias JL. High frequency repetitive transcranial magnetic stimulation improves neuronal activity without affecting astrocytes and microglia density. Brain Res Bull 2019; 150:13-20. [PMID: 31082456 DOI: 10.1016/j.brainresbull.2019.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique capable of producing changes in the electrical potential of neurons. Currently, the application of rTMS in clinical practice and as a neurophysiological tool is increasing. However, the exact cellular mechanisms underlying rTMS-based therapies are not completely clear. Additionally, glial cells have been studied less. Our aim was to investigate the effect of three days of high-frequency rTMS on neuronal metabolism and neuronal activation, in addition to its effect on glial cells. For this purpose, we performed histochemistry and immunohistochemistry procedures: the histochemistry of cytochrome oxidase (COx) to assess neuronal metabolic activity, and the immunohistochemistry of c-Fos (marker of neuronal activity), GFAP (marker of astrocytic reactivity), and Iba1 (selective marker of reactive microglia). Our results showed enhanced metabolic activity after rTMS in the retrosplenial and parietal cortex and CA1 and CA3 subfields of the hippocampus. Moreover, higher c-Fos activity was found in the agranular retrosplenial cortex. Finally, we did not find changes between groups in the induction of astrocyte and microglia reactivity in any of the immunostained regions. In conclusion, we can assume that three days of high-frequency rTMS applied in healthy rats does not alter astroglia reactivity or inflammatory responses, such as microglia proliferation. Because we have shown an upregulation of neuronal metabolic activity in many limbic brain structures, in addition to higher c-Fos levels in the nearest cortical area to the rTMS, our work provides novel insight into the effectiveness and safety of rTMS as a brain modulation therapy.
Collapse
Affiliation(s)
- Candela Zorzo
- Departamento de Psicología, Instituto de Neurociencias del Principado de Asturias (INEUROPA), Universidad de Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Spain.
| | - Sara G Higarza
- Departamento de Psicología, Instituto de Neurociencias del Principado de Asturias (INEUROPA), Universidad de Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Spain.
| | - Marta Méndez
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Spain.
| | - Juan A Martínez
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Spain; Electronic Technology Area, University of Oviedo, 33203 Gijón, Spain.
| | - Alberto M Pernía
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Spain; Electronic Technology Area, University of Oviedo, 33203 Gijón, Spain.
| | - Jorge L Arias
- Departamento de Psicología, Instituto de Neurociencias del Principado de Asturias (INEUROPA), Universidad de Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Spain.
| |
Collapse
|
16
|
Prefrontal cortex rTMS reverses behavioral impairments and differentially activates c-Fos in a mouse model of post-traumatic stress disorder. Brain Stimul 2019; 12:87-95. [DOI: 10.1016/j.brs.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/31/2022] Open
|
17
|
Medium- and high-intensity rTMS reduces psychomotor agitation with distinct neurobiologic mechanisms. Transl Psychiatry 2018; 8:126. [PMID: 29976924 PMCID: PMC6033856 DOI: 10.1038/s41398-018-0129-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/20/2017] [Accepted: 02/18/2018] [Indexed: 12/21/2022] Open
Abstract
Definitive data are lacking on the mechanism of action and biomarkers of repetitive transcranial magnetic stimulation (rTMS) for the treatment of depression. Low-intensity rTMS (LI-rTMS) has demonstrated utility in preclinical models of rTMS treatments but the effects of LI-rTMS in murine models of depression are unknown. We examined the behavioral and neurobiologic changes in olfactory bulbectomy (OB) mice with medium-intensity rTMS (MI-rTMS) treatment and fluoxetine hydrochloride. We then compared 10-Hz rTMS sessions for 3 min at intensities (measured at the cortical surface) of 4 mT (LI-rTMS), 50 mT (medium-intensity rTMS [MI-rTMS]), or 1 T (high-intensity rTMS [HI-rTMS]) 5 days per week over 4 weeks in an OB model of agitated depression. Behavioral effects were assessed with forced swim test; neurobiologic effects were assessed with brain levels of 5-hydroxytryptamine, brain-derived neurotrophic factor (BDNF), and neurogenesis. Peripheral metabolomic changes induced by OB and rTMS were monitored through enzyme-linked immunosorbent assay and ultrapressure liquid chromatography-driven targeted metabolomics evaluated with ingenuity pathway analysis (IPA). MI-rTMS and HI-rTMS attenuated psychomotor agitation but only MI-rTMS increased BDNF and neurogenesis levels. HI-rTMS normalized the plasma concentration of α-amino-n-butyric acid and 3-methylhistidine. IPA revealed significant changes in glutamine processing and glutamate signaling in the OB model and following MI-rTMS and HI-rTMS treatment. The present findings suggest that MI-rTMS and HI-rTMS induce differential neurobiologic changes in a mouse model of agitated depression. Further, α-amino-n-butyric acid and 3-methylhistidine may have utility as biomarkers to objectively monitor the response to rTMS treatment of depression.
Collapse
|
18
|
Duan X, Yao G, Liu Z, Cui R, Yang W. Mechanisms of Transcranial Magnetic Stimulation Treating on Post-stroke Depression. Front Hum Neurosci 2018; 12:215. [PMID: 29899693 PMCID: PMC5988869 DOI: 10.3389/fnhum.2018.00215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Post-stroke depression (PSD) is a neuropsychiatric affective disorder that can develop after stroke. Patients with PSD show poorer functional and recovery outcomes than patients with stroke who do not suffer from depression. The risk of suicide is also higher in patients with PSD. PSD appears to be associated with complex pathophysiological mechanisms involving both psychological and psychiatric problems that are associated with functional deficits and neurochemical changes secondary to brain damage. Transcranial magnetic stimulation (TMS) is a non-invasive way to investigate cortical excitability via magnetic stimulation of the brain. TMS is currently a valuable tool that can help us understand the pathophysiology of PSD. Although repetitive TMS (rTMS) is an effective treatment for patients with PSD, its mechanism of action remains unknown. Here, we review the known mechanisms underlying rTMS as a tool for better understanding PSD pathophysiology. It should be helpful when considering using rTMS as a therapeutic strategy for PSD.
Collapse
Affiliation(s)
- Xiaoqin Duan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Gang Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Zhongliang Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Online LI-rTMS during a Visual Learning Task: Differential Impacts on Visual Circuit and Behavioral Plasticity in Adult Ephrin-A2A5 -/- Mice. eNeuro 2018; 5:eN-NRS-0163-17. [PMID: 29464193 PMCID: PMC5815844 DOI: 10.1523/eneuro.0163-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 01/22/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) induces plasticity in normal and abnormal neural circuitries, an effect that may be influenced by intrinsic brain activity during treatment. Here, we study potential synergistic effects between low-intensity rTMS (LI-rTMS) and concurrent neural activity in promoting circuit reorganization and enhancing visual behavior. We used ephrin-A2A5–/– mice, which are known to possess visuotopic mapping errors that are ameliorated by LI-rTMS, and assessed the impact of stimulation when mice were engaged in a visual learning task. A detachable coil was affixed to each mouse, and animals underwent 2 wk of 10-min daily training in a two-choice visual discrimination task with concurrent LI-rTMS or sham stimulation. No-task controls (+LI-rTMS/sham) were placed in the task arena without visual task training. At the end of the experiment, visuomotor tracking behavior was assessed, and corticotectal and geniculocortical pathway organization was mapped by injections of fluorescent tracers into the primary visual cortex. Consistent with previous results, LI-rTMS alone improved geniculocortical and corticotectal topography, but combining LI-rTMS with the visual learning task prevented beneficial corticotectal reorganization and had no additional effect on geniculocortical topography or visuomotor tracking performance. Unexpectedly, there was a significant increase in the total number of trials completed by task + LI-rTMS mice in the visual learning task. Comparison with wild-type mice revealed that ephrin-A2A5–/– mice had reduced accuracy and response rates, suggesting a goal-directed behavioral deficit, which was improved by LI-rTMS. Our results suggest that concurrent brain activity during behavior interacts with LI-rTMS, altering behavior and different visual circuits in an abnormal system.
Collapse
|
20
|
Yang B, Liu Z, Wang Q, Chai Y, Xia P. Pharmacokinetic comparison of seven major bioactive components in normal and depression model rats after oral administration of Baihe Zhimu decoction by liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 2018; 148:119-127. [DOI: 10.1016/j.jpba.2017.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022]
|