1
|
Chang K, Lin L, Cui T, Zhao H, Li J, Liu C, Gao D, Lu S. Zinc-a2-Glycoprotein Acts as a Component of PNN to Protect Hippocampal Neurons from Apoptosis. Mol Neurobiol 2024; 61:3607-3618. [PMID: 38001359 DOI: 10.1007/s12035-023-03771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023]
Abstract
In the adult mouse brain, perineuronal net (PNN), a highly structured extracellular matrix, surrounds subsets of neurons. The AZGP1 gene encodes zinc-2-glycoprotein (ZAG) is a lipid-mobilizing factor. However, its expression and distribution in the adult brain have been controversial. Here, for the first time, we demonstrate that the secreted ZAG is localized to Wisteria floribunda agglutinin (WFA)-positive PNNs around parvalbumin (PV)-expressing interneurons in the hippocampus, cortex, and a number of other PNN-bearing neurons and co-localizes with aggrecan, one of the components of PNNs. Few ZAG-positive nets were seen in the area without WFA staining by chondroitinase ABC (ChABC) which degrades glycosaminoglycans (GAGs) from the chondroitin sulfate proteoglycans (CSPGs) in the PNN. Reanalysis of single-cell sequencing data revealed that ZAG mRNA was mainly expressed in oligodendrocyte lineages, specifically in olfactory sheathing cells. The ZAG receptor β3 adrenergic receptor (β3AR) is also selectively co-localized with PV interneurons and CA2 pyramidal neurons in the hippocampus. In addition, molecular docking provides valuable new insights on how GAGs interfere with ZAG and ZAG/β3AR complex. Finally, our results indicated that human recombinant ZAG could significantly inhibit serum derivation-induced cell apoptosis in HT22 cells. Our combined experimental and theoretical approach raises a unique hypothesis namely that ZAG may be a crucial functional attribute of PNNs in the brain to protect neuronal cell from apoptosis.
Collapse
Affiliation(s)
- Kewei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Liyan Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Tingting Cui
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hao Zhao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jiaxin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Chang Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dan Gao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| | - Shemin Lu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Liang Y, Zhao L, Dai C, Liu G, Zhong Y, Liu H, Mo L, Tan C, Liu X, Chen L. Epileptiform Discharges Reduce Neuronal ATP Production by Inhibiting F0F1-ATP Synthase Activity via A Zinc-α2-Glycoprotein-Dependent Mechanism. Mol Neurobiol 2023; 60:6627-6641. [PMID: 37468739 DOI: 10.1007/s12035-023-03508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Neuronal energy metabolism dysfunction, especially adenosine triphosphate (ATP) supply decrease, is observed in epilepsy and associated with epileptogenesis and prognosis. Zinc-α2-glycoprotein (ZAG) is known as an important modulator of energy metabolism and involved in neuronal glucose metabolism, fatty acid metabolism, and ketogenesis impairment in seizures, but its effect on neuronal ATP synthesis in seizures and the specific mechanism are unclear. In this study, we verified the localization of ZAG in primary cultured neuronal mitochondria by using double-labeling immunofluorescence, immune electron microscopy, and western blot. ZAG level in neuronal mitochondria was modulated by lentiviruses and detected by western blot. The F0F1-ATP synthase activity, ATP level, and acetyl-CoA level were measured. The binding between ZAG and F0F1-ATP synthase was determined by coimmunoprecipitation. We found that both ZAG and F0F1-ATP synthase existed in neuronal mitochondria, and there was mutual binding between them. Epileptiform discharge-induced decrease of mitochondrial ZAG level was reversed by ZAG overexpression. Epileptiform discharge or ZAG knockdown decreased F0F1-ATP synthase activity and ATP level in neurons, which were reversed by ZAG overexpression, while overexpression of ZAG along only increased F0F1-ATP synthase activity but not increased ATP level. Meanwhile, neither epileptiform discharges nor changes of ZAG level can alter the acetyl-CoA level. Moreover, epileptiform discharge did not alter F0F1-ATP synthase level. In conclusion, epileptiform discharge-induced ZAG decrease in neuronal mitochondria is correlated to F0F1-ATP synthase activity inhibition, which may possibly lead to ATP supply impairments. ZAG may be a potential therapeutic target for treating neuronal energy metabolism dysfunction in seizures with further researches.
Collapse
Affiliation(s)
- Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
3
|
He Y, Zhang H, Ma L, Li J, Wang F, Zhou H, Zhang G, Wen Y. Identification of TIMP1 as an inflammatory biomarker associated with temporal lobe epilepsy based on integrated bioinformatics and experimental analyses. J Neuroinflammation 2023; 20:151. [PMID: 37365625 DOI: 10.1186/s12974-023-02837-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Epilepsy is the second most prevalent neurological disease. Although there are many antiseizure drugs, approximately 30% of cases are refractory to treatment. Temporal lobe epilepsy (TLE) is the most common epilepsy subtype, and previous studies have reported that hippocampal inflammation is an important mechanism associated with the occurrence and development of TLE. However, the inflammatory biomarkers associated with TLE are not well defined. METHODS In our study, we merged human hippocampus datasets (GSE48350 and GSE63808) through batch correction and generally verified the diagnostic roles of inflammation-related genes (IRGs) and subtype classification according to IRGs in epilepsy through differential expression, random forest, support vector machine, nomogram, subtype classification, enrichment, protein‒protein interaction, immune cell infiltration, and immune function analyses. Finally, we detected the location and expression of inhibitor of metalloproteinase-1 (TIMP1) in epileptic patients and kainic acid-induced epileptic mice. RESULTS According to the bioinformatics analysis, we identified TIMP1 as the most significant IRG associated with TLE, and we found that TIMP1 was mainly located in cortical neurons and scantly expressed in cortical gliocytes by immunofluorescence staining. We detected decreased expression of TIMP1 by quantitative real-time polymerase chain reaction and western blotting. CONCLUSION TIMP1, the most significant IRG associated with TLE, might be a novel and promising biomarker to study the mechanism of epilepsy and guide the discovery of new drugs for its treatment.
Collapse
Affiliation(s)
- Ya He
- Department of Physical Examination Center, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Hongxia Zhang
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Limin Ma
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Jingang Li
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Fei Wang
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Hui Zhou
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Guangliang Zhang
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Yuetao Wen
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China.
| |
Collapse
|
4
|
Fang YY, Huang JM, Wen JY, Li JD, Shen JH, Zeng DT, Pan YF, Huang HQ, Huang ZG, Liu LM, Chen G. AZGP1 Up-Regulation is a Potential Target for Andrographolide Reversing Radioresistance of Colorectal Cancer. Pharmgenomics Pers Med 2022; 15:999-1017. [DOI: 10.2147/pgpm.s360147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
|
5
|
Sun H, Ma F, Chen W, Yang X. Adipokine ZAG Alters Depression-Like Behavior by Regulating Oxidative Stress in Hippocampus. Horm Metab Res 2022; 54:259-267. [PMID: 35255519 DOI: 10.1055/a-1759-3554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Zinc-α2-glycoprotein (ZAG) is an adipokine involved in body metabolism, and now it has been shown to be present in the brain and play a role in some neurological diseases such as epilepsy and Alzheimer's disease. In the present study, we employed ZAG knockout (KO) mice to investigate the effects of ZAG on behaviors after fasting and in vitro used overexpression (OV) ZAG in HT-22 cells to further clarify the possibly underlying mechanism. The results showed that ZAG exists widely in the brain tissues of mice and significantly increased during fasting. In ZAG KO group the depression-like behaviors were significantly increased after fasting for 24 hours, meanwhile the hippocampal reactive oxygen species (ROS) content was significantly increased. In vitro, serum deprivation led to the increasing of neuronal death and ROS, the reduced mitochondrial membrane potential and ATP levels, while ZAG overexpression alleviated these negative effects. The β3 adrenoreceptor (β3AR)/protein kinase A (PKA)/cAMP response element-binding (CREB) pathway possibly mediated the effects of ZAG on antioxidation. These results proposed a possible target for novel therapeutic approaches to the treatment of depression and provide potential link between adipose tissue and psychiatric disease.
Collapse
Affiliation(s)
- Huangbing Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
| | - Fuli Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
| | - Wenjing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xiaojing Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
6
|
Peng W, Liu X, Tan C, Zhou W, Jiang J, Zhou X, Du J, Mo L, Chen L. Zinc-α2-glycoprotein relieved seizure-Induced neuronal glucose uptake impairment via insulin-like growth factor 1 receptor-regulated glucose transporter 3 expression. J Neurochem 2020; 157:695-709. [PMID: 33258143 DOI: 10.1111/jnc.15254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Glucose hypometabolism is observed in epilepsy and promotes epileptogenesis. Glucose hypometabolism in epilepsy may be attributed to decreased neuronal glucose uptake, but its molecular mechanism remains unclear. Zinc-α2-glycoprotein (ZAG) is related to glucose metabolism and is reported to suppress seizures. The anti-epileptic effect of ZAG may be attributed to its regulation of neuronal glucose metabolism. This study explored the effect of ZAG on neuronal glucose uptake and its molecular mechanism via insulin-like growth factor 1 receptor (IGF1R)-regulated glucose transporter 3 (GLUT-3) expression. The ZAG level was modulated by lentivirus in primary culture neurons. Neuronal seizure models were induced by Mg2+ -free artificial cerebrospinal fluid. We assessed neuronal glucose uptake by the 2-NBDG method and Glucose Uptake Colorimetric Assay Kit. IGF1R was activated by IGF1 and blocked by AXL1717. The expression and distribution of IGF1R and GLUT-3, together with IGF1R phosphorylation, were measured by western blot. The binding between ZAG and IGF1R was determined by coimmunoprecipitation. Neuronal glucose uptake and GLUT-3 expression were significantly decreased by seizure or ZAG knockdown, whereas ZAG over-expression or IGF1 treatment reversed this decrease. The effect of ZAG on neuronal glucose uptake and GLUT-3 expression was blocked by AXL1717. ZAG increased IGF1R distribution and phosphorylation possibly by binding. Additionally, IGF1R increased GLUT-3 activity by increasing GLUT-3 expression. In epilepsy/seizure, neuronal glucose uptake suppression may be attributed to a decrease in ZAG, which suppresses neuronal GLUT-3 expression by regulating the activity of IGF1R. ZAG, IGF1R, and GLUT-3 may be novel potential therapeutic targets of glucose hypometabolism in epilepsy and seizures.
Collapse
Affiliation(s)
- Wuxue Peng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Zhou
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Zhou
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncong Du
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Berezin AE, Berezin AA, Lichtenauer M. Emerging Role of Adipocyte Dysfunction in Inducing Heart Failure Among Obese Patients With Prediabetes and Known Diabetes Mellitus. Front Cardiovasc Med 2020; 7:583175. [PMID: 33240938 PMCID: PMC7667132 DOI: 10.3389/fcvm.2020.583175] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue dysfunction is a predictor for cardiovascular (CV) events and heart failure (HF) in patient population with obesity, metabolic syndrome, and known type 2 diabetes mellitus. Previous preclinical and clinical studies have yielded controversial findings regarding the role of accumulation of adipose tissue various types in CV risk and HF-related clinical outcomes in obese patients. There is evidence for direct impact of infiltration of epicardial adipocytes into the underlying myocardium to induce adverse cardiac remodeling and mediate HF development and atrial fibrillation. Additionally, perivascular adipocytes accumulation is responsible for release of proinflammatory adipocytokines (adiponectin, leptin, resistin), stimulation of oxidative stress, macrophage phenotype switching, and worsening vascular reparation, which all lead to microvascular inflammation, endothelial dysfunction, atherosclerosis acceleration, and finally to increase in CV mortality. However, systemic effects of white and brown adipose tissue can be different, and adipogenesis including browning of adipose tissue and deficiency of anti-inflammatory adipocytokines (visfatin, omentin, zinc-α2-glycoprotein, glypican-4) was frequently associated with adipose triglyceride lipase augmentation, altered glucose homeostasis, resistance to insulin of skeletal muscles, increased cardiomyocyte apoptosis, lowered survival, and weak function of progenitor endothelial cells, which could significantly influence on HF development, as well as end-organ fibrosis and multiple comorbidities. The exact underlying mechanisms for these effects are not fully understood, while they are essential to help develop improved treatment strategies. The aim of the review is to summarize the evidence showing that adipocyte dysfunction may induce the onset of HF and support advance of HF through different biological mechanisms involving inflammation, pericardial, and perivascular adipose tissue accumulation, adverse and electrical cardiac remodeling, and skeletal muscle dysfunction. The unbalancing effects of natriuretic peptides, neprilysin, and components of renin-angiotensin system, as exacerbating cause of altered adipocytokine signaling on myocardium and vasculature, in obesity patients at high risk of HF are disputed. The profile of proinflammatory and anti-inflammatory adipocytokines as promising biomarker for HF risk stratification is discussed in the review.
Collapse
Affiliation(s)
- Alexander E. Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Alexander A. Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Division of Cardiology, Department of Internal Medicine II, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
8
|
Lin B, He H, Zhang Q, Zhang J, Xu L, Zhou L, Zheng S, Wu L. Long non-coding RNA00844 inhibits MAPK signaling to suppress the progression of hepatocellular carcinoma by targeting AZGP1. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1365. [PMID: 33313110 PMCID: PMC7723597 DOI: 10.21037/atm-20-3848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Previous data have confirmed that disordered long non-coding ribonucleic acid (lncRNA) expression is evident in many cancers and is correlated with tumor progression. The present study aimed to investigate the function of long non-coding RNA00844 (LINC00844) in hepatocellular carcinoma (HCC). Methods The expression levels of target genes were detected with real-time polymerase chain reaction (PCR) and western blotting. The biologic function of HCC cells was determined with cell viability assay, colony formation assay, cell cycle analysis, apoptosis detection, and Transwell migration assay in vitro. Tumorigenesis was performed with cell injection in vivo. The relationship between LINC00844 and survival outcomes was determined with the Cox proportional hazards model. A RNA precipitation assay was conducted to reveal the types of LINC00844 that potentially bind with proteins. Results LINC00844 was found to be significantly decreased in HCC tissue and was correlated with poor tumor characteristics, such as portal vein invasion, high α-fetoprotein (AFP), and a high rate of tumor recurrence. Exotic LINC00844 expression in HCC cell lines significantly suppressed proliferation and migration, as well as invasiveness, whereas LINC00844 deletion had the opposite effect. LINC00844 overexpression significantly inhibited HCC tumorigenesis in vivo. Mechanistic analyses indicated that the mitogen-activated protein kinase (MAPK) signaling pathway was remarkably inactivated by LINC00844. Furthermore, the immunoprecipitation assay verified that LINC00844 can bind to zinc-alpha-2-glycoprotein (AZGP1) and interfere with its translocation. LINC00844 can also promote AZGP1 expression, leading to the suppression of the transforming growth factor-β1 (TGF-β1)-extracellular signal-regulated kinase (ERK) pathway. Conclusions LINC00844 is a novel anti-oncogene in the development of HCC and a potentially promising therapeutic target in HCC.
Collapse
Affiliation(s)
- Bingyi Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Hui He
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Qijun Zhang
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, First Hospital of Jiaxing, Jiaxing University, China
| | - Liu Xu
- Department of Hepatobiliary Surgery, First Hospital of Jiaxing, Jiaxing University, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Tan C, Liu X, Peng W, Wang H, Zhou W, Jiang J, Wei X, Mo L, Chen Y, Chen L. Seizure-induced impairment in neuronal ketogenesis: Role of zinc-α2-glycoprotein in mitochondria. J Cell Mol Med 2020; 24:6833-6845. [PMID: 32340079 PMCID: PMC7299723 DOI: 10.1111/jcmm.15337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/11/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Ketone bodies (KBs) were known to suppress seizure. Untraditionally, neurons were recently reported to utilize fatty acids and produce KBs, but the effect of seizure on neuronal ketogenesis has not been researched. Zinc‐α2‐glycoprotein (ZAG) was reported to suppress seizure via unclear mechanism. Interestingly, ZAG was involved in fatty acid β‐oxidation and thus may exert anti‐epileptic effect by promoting ketogenesis. However, this promotive effect of ZAG on neuronal ketogenesis has not been clarified. In this study, we performed immunoprecipitation and mass spectrometry to identify potential interaction partners with ZAG. The mechanisms of how ZAG translocated into mitochondria were determined by quantitative coimmunoprecipitation after treatment with apoptozole, a heat shock cognate protein 70 (HSC70) inhibitor. ZAG level was modulated by lentivirus in neurons or adeno‐associated virus in rat brains. Seizure models were induced by magnesium (Mg2+)‐free artificial cerebrospinal fluid in neurons or intraperitoneal injection of pentylenetetrazole kindling in rats. Ketogenesis was determined by cyclic thio‐NADH method in supernatant of neurons or brain homogenate. The effect of peroxisome proliferator–activated receptor γ (PPARγ) on ZAG expression was examined by Western blot, quantitative real‐time polymerase chain reaction (qRT‐PCR) and chromatin immunoprecipitation qRT‐PCR. We found that seizure induced ketogenesis deficiency via a ZAG‐dependent mechanism. ZAG entered mitochondria through a HSC70‐dependent mechanism, promoted ketogenesis by binding to four β‐subunits of long‐chain L‐3‐hydroxyacyl‐CoA dehydrogenase (HADHB) and alleviated ketogenesis impairment in a neuronal seizure model and pentylenetetrazole‐kindled epileptic rats. Additionally, PPARγ activation up‐regulated ZAG expression by binding to promoter region of AZGP1 gene and promoted ketogenesis through a ZAG‐dependent mechanism.
Collapse
Affiliation(s)
- Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wuxue Peng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Zhou
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Wei
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Xiang XJ, Song L, Deng XJ, Tang Y, Min Z, Luo B, Wen QX, Li KY, Chen J, Ma YL, Zhu BL, Yan Z, Chen GJ. Mitochondrial methionine sulfoxide reductase B2 links oxidative stress to Alzheimer's disease-like pathology. Exp Neurol 2019; 318:145-156. [DOI: 10.1016/j.expneurol.2019.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 01/25/2023]
|
11
|
Association of cerebrospinal fluid zinc-α2-glycoprotein and tau protein with temporal lobe epilepsy and related white matter impairment. Neuroreport 2019; 30:586-591. [DOI: 10.1097/wnr.0000000000001252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Insulin attenuates epileptiform discharge-induced oxidative stress by increasing zinc-α2-glycoprotein in primary cultured cortical neurons. Neuroreport 2019; 30:580-585. [DOI: 10.1097/wnr.0000000000001250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Expression and Function of Zinc-α2-Glycoprotein. Neurosci Bull 2019; 35:540-550. [PMID: 30610461 DOI: 10.1007/s12264-018-00332-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
Zinc-α2-glycoprotein (ZAG), encoded by the AZGP1 gene, is a major histocompatibility complex I molecule and a lipid-mobilizing factor. ZAG has been demonstrated to promote lipid metabolism and glucose utilization, and to regulate insulin sensitivity. Apart from adipose tissue, skeletal muscle, liver, and kidney, ZAG also occurs in brain tissue, but its distribution in brain is debatable. Only a few studies have investigated ZAG in the brain. It has been found in the brains of patients with Krabbe disease and epilepsy, and in the cerebrospinal fluid of patients with Alzheimer disease, frontotemporal lobe dementia, and amyotrophic lateral sclerosis. Both ZAG protein and AZGP1 mRNA are decreased in epilepsy patients and animal models, while overexpression of ZAG suppresses seizure and epileptic discharges in animal models of epilepsy, but knowledge of the specific mechanism of ZAG in epilepsy is limited. In this review, we summarize the known roles and molecular mechanisms of ZAG in lipid metabolism and glucose metabolism, and in the regulation of insulin sensitivity, and discuss the possible mechanisms by which it suppresses epilepsy.
Collapse
|
14
|
Xiao XH, Wang YD, Qi XY, Wang YY, Li JY, Li H, Zhang PY, Liao HL, Li MH, Liao ZZ, Yang J, Xu CX, Wen GB, Liu JH. Zinc alpha2 glycoprotein protects against obesity-induced hepatic steatosis. Int J Obes (Lond) 2018; 42:1418-1430. [PMID: 30006580 DOI: 10.1038/s41366-018-0151-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/14/2018] [Accepted: 06/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, impaired insulin sensitivity, and chronic low-grade inflammation. Our previous studies indicated that zinc alpha2 glycoprotein (ZAG) alleviates palmitate (PA)-induced intracellular lipid accumulation in hepatocytes. This study is to further characterize the roles of ZAG on the development of hepatic steatosis, insulin resistance (IR), and inflammation. METHODS ZAG protein levels in the livers of NAFLD patients, high-fat diet (HFD)-induced or genetically (ob/ob) induced obese mice, and in PA-treated hepatocytes were determined by western blotting. C57BL/6J mice injected with an adenovirus expressing ZAG were fed HFD for indicated time to induce hepatic steatosis, IR, and inflammation, and then biomedical, histological, and metabolic analyses were conducted to identify pathologic alterations in these mice. The molecular mechanisms underlying ZAG-regulated hepatic steatosis were further explored and verified in mice and hepatocytes. RESULTS ZAG expression was decreased in NAFLD patient liver biopsy samples, obese mice livers, and PA-treated hepatocytes. Simultaneously, ZAG overexpression alleviated intracellular lipid accumulation via upregulating adiponectin and lipolytic genes (FXR, PPARα, etc.) while downregulating lipogenic genes (SREBP-1c, LXR, etc.) in obese mice as well as in cultured hepatocytes. ZAG improved insulin sensitivity and glucose tolerance via activation of IRS/AKT signaling. Moreover, ZAG significantly inhibited NF-ĸB/JNK signaling and thus resulting in suppression of obesity-associated inflammatory response in hepatocytes. CONCLUSIONS Our results revealed that ZAG could protect against NAFLD by ameliorating hepatic steatosis, IR, and inflammation.
Collapse
Affiliation(s)
- Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Xiao-Yan Qi
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Jiao-Yang Li
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Han Li
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Pei-Ying Zhang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Hai-Lin Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Mei-Hua Li
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Jing Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Can-Xin Xu
- Department of Pathology & Immunology, Washington University in, St. Louis, MO, 63110, USA
| | - Ge-Bo Wen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China.
| |
Collapse
|
15
|
Tang Y, Min Z, Xiang XJ, Liu L, Ma YL, Zhu BL, Song L, Tang J, Deng XJ, Yan Z, Chen GJ. Estrogen-related receptor alpha is involved in Alzheimer's disease-like pathology. Exp Neurol 2018; 305:89-96. [PMID: 29641978 DOI: 10.1016/j.expneurol.2018.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Estrogen-related receptor alpha (ERRα) is a transcriptional factor associated with mitochondrial biogenesis and energy metabolism. However, little is known about the role of ERRα in Alzheimer's disease (AD). Here, we report that in APP/PS1 mice, an animal model of AD, ERRα protein and mRNA were decreased in a region- and age-dependent manner. In HEK293 cells that stably express human full-length β-amyloid precursor protein (APP), overexpression of ERRα inhibited the amyloidogenic processing of APP and consequently reduced Aβ1-40/1-42 level. ERRα overexpression also attenuated Tau phosphorylation at selective sites, with the concomitant reduction of glycogen synthase kinase 3β (GSK3β) activity. Interestingly, alterations of APP processing and Tau phosphorylation induced by hydrogen peroxide were reversed by ERRα overexpression in HEK/APP cells. These results indicated that ERRα plays a functional role in AD pathology. By attenuating both amyloidogenesis and Tau phosphorylation, ERRα may serve as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Ying Tang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Zhuo Min
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xiao-Jiao Xiang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Lu Liu
- Thirteenth people's Hospital of Chongqing, Chongqing 400016, China
| | - Yuan-Lin Ma
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Bing-Lin Zhu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Li Song
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Jing Tang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xiao-Juan Deng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| |
Collapse
|
16
|
Liu Y, Wang T, Liu X, Wen Y, Xu T, Yu X, Wei X, Ding X, Mo L, Yin M, Tan X, Chen L. Overexpression of zinc-α2-glycoprotein suppressed seizures and seizure-related neuroflammation in pentylenetetrazol-kindled rats. J Neuroinflammation 2018; 15:92. [PMID: 29566716 PMCID: PMC5863804 DOI: 10.1186/s12974-018-1132-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/15/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Zinc-α2-glycoprotein (ZAG) is a 42-kDa protein reported as an anti-inflammatory adipocytokine. Evidences from clinical and experimental studies revealed that brain inflammation plays important roles in epileptogenesis and seizure. Interestingly, closely relationship between ZAG and many important inflammatory mediators has been proven. Our previous study identified ZAG in neurons and found that ZAG is decreased in epilepsy and interacts with TGFβ and ERK. This study aimed to investigate the role of ZAG in seizure and explore its effect on seizure-related neuroinflammation. METHODS We overexpressed AZGP1 in the hippocampus of rats via adeno-associated virus vector injection and observed their seizure behavior and EEG after pentylenetetrazol (PTZ) kindling. The level of typical inflammation mediators including TNFα, IL-6, TGFβ, ERK, and ERK phosphorylation were determined. RESULTS The overexpression of AZGP1 reduced the seizure severity, prolonged the latency of kindling, and alleviated epileptiform discharges in EEG changes induced by PTZ. Overexpression of AZGP1 also suppressed the expression of TNFα, IL-6, TGFβ, and ERK phosphorylaton in PTZ-kindled rats. CONCLUSIONS ZAG may inhibit TGFβ-mediated ERK phosphorylation and inhibit neuroinflammation mediated by TNFα and IL-6, suggesting ZAG may suppress seizure via inhibiting neuroinflammation. ZAG may be a potential and novel therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Teng Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Yuetao Wen
- Department of Neurosurgery, The University-Town Hospital of Chongqing Medical University, Chongqing, 401331 China
| | - Tao Xu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xinyuan Yu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xin Wei
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xueying Ding
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Maojia Yin
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Xinjie Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chonqing, 400010 China
| |
Collapse
|
17
|
The expression of G protein-coupled receptor kinase 5 and its interaction with dendritic marker microtubule-associated protein-2 after status epilepticus. Epilepsy Res 2017; 138:62-70. [DOI: 10.1016/j.eplepsyres.2017.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/07/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
|