1
|
Ogunsuyi OB, Olagoke OC, Famutimi ME, Olatunde DM, Souza DOG, Oboh G, Barbosa NV, Rocha JBT. Neural acetylcholinesterase and monoamine oxidase deregulation during streptozotocin-induced behavioral, metabolic and redox modification in Nauphoeta cinerea. BMC Neurosci 2024; 25:42. [PMID: 39210265 PMCID: PMC11363635 DOI: 10.1186/s12868-024-00890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Genetic and environmental factors have been linked with neurodegeneration, especially in the elderly. Yet, efforts to impede neurodegenerative processes have at best addressed symptoms instead of underlying pathologies. The gap in the understanding of neuro-behavioral plasticity is consistent from insects to mammals, and cockroaches have been proven to be effective models for studying the toxicity mechanisms of various chemicals. We therefore used head injection of 74 and 740 nmol STZ in Nauphoeta cinerea to elucidate the mechanisms of chemical-induced neurotoxicity, as STZ is known to cross the blood-brain barrier. Neurolocomotor assessment was carried out in a new environment, while head homogenate was used to estimate metabolic, neurotransmitter and redox activities, followed by RT-qPCR validation of relevant cellular signaling. STZ treatment reduced the distance and maximum speed travelled by cockroaches, and increased glucose levels while reducing triglyceride levels in neural tissues. The activity of neurotransmitter regulators - AChE and MAO was exacerbated, with concurrent upregulation of glucose sensing and signaling, and increased mRNA levels of redox regulators and inflammation-related genes. Consequently, STZ neurotoxicity is conserved in insects, with possible implications for using N. cinerea to target the multi-faceted mechanisms of neurodegeneration and test potential anti-neurodegenerative agents.
Collapse
Affiliation(s)
- Opeyemi B Ogunsuyi
- Departamento de Bioquímica e Biologia Molecular, Programa de Pos-graduacao em Bioquimica Toxicologica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Olawande C Olagoke
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Division of Translational Research and Technology Innovation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Physiology, Kampala International University, Ishaka-Bushenyi, Uganda.
| | - Mayokun E Famutimi
- Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Damilola M Olatunde
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Diogo O G Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Ganiyu Oboh
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Programa de Pos-graduacao em Bioquimica Toxicologica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pos-graduacao em Bioquimica Toxicologica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
2
|
Tian L, Tang P, Liu J, Liu Y, Hou L, Zhao J, Wang Q. Microglial gp91phox-mediated neuroinflammation and ferroptosis contributes to learning and memory deficits in rotenone-treated mice. Free Radic Biol Med 2024; 220:56-66. [PMID: 38697489 DOI: 10.1016/j.freeradbiomed.2024.04.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Apart from dopaminergic neurotoxicity, exposure to rotenone, a commonly used insecticide in agriculture, also adversely affects hippocampal and cortical neurons, resulting in cognitive impairments in mice. We recently established a role of microglia-mediated neuroinflammation in rotenone-elicited deficits of cognition, yet the mechanisms remain elusive. Here, we investigated the involvement of NADPH oxidase 2 (NOX2) catalytic subunit gp91phox in rotenone-induced cognitive deficits and the associated mechanisms. Our study demonstrated that rotenone exposure elevated expression of gp91phox and phosphorylation of the NOX2 cytosolic subunit p47phox, along with NADPH depletion in the hippocampus and cortex of mice, indicating NOX2 activation. Specific knockdown of gp91phox in microglia via adeno-associated virus delivery resulted in reduced microglial activation, proinflammatory gene expression and improved learning and memory capacity in rotenone-intoxicated mice. Genetic deletion of gp91phox also reversed rotenone-elicited cognitive dysfunction in mice. Furthermore, microglial gp91phox knockdown attenuated neuronal damage and synaptic loss in mice. This intervention also suppressed iron accumulation, disruption of iron-metabolism proteins and iron-dependent lipid peroxidation and restored the balance of ferroptosis-related parameters, including GPX4, SLC711, PTGS2, and ACSL4 in rotenone-lesioned mice. Intriguingly, pharmacological inhibition of ferroptosis with liproxstatin-1 conferred protection against rotenone-induced neurodegeneration and cognitive dysfunction in mice. In summary, our findings underscored the contribution of microglial gp91phox-dependent neuroinflammation and ferroptosis to learning and memory dysfunction in rotenone-lesioned mice. These results provided valuable insights into the pathogenesis of cognitive deficits associated with pesticide-induced Parkinsonism, suggesting potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- Lu Tian
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China; Chaoyang Center for Disease Control and Prevention, Beijing, China
| | - Peiyan Tang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jianing Liu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Yiyang Liu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Liyan Hou
- Dalian Medical University Library, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China; School of Public Health, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
3
|
Ansari MA, Al-Jarallah A, Rao MS, Babiker A, Bensalamah K. Upregulation of NADPH-oxidase, inducible nitric oxide synthase and apoptosis in the hippocampus following impaired insulin signaling in the rats: Development of sporadic Alzheimer's disease. Brain Res 2024; 1834:148890. [PMID: 38552936 DOI: 10.1016/j.brainres.2024.148890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
NADPH-oxidase (NOX) is a multi-subunit enzyme complex. The upregulation of NOX causes massive production of superoxide (O2¯), which avidly reacts with nitric oxide (NO) and increases cellular reactive oxygen/nitrogen species (ROS/RNS). Increased ROS/RNS plays pivotal role in the sporadic Alzheimer's disease (sAD) development and brain damage following impaired insulin signaling. Hence, this study aimed to examine early-time course of changes in NOX and NOS expression, and apoptotic proteins in the rats hippocampi following insulin signaling impairment [induced by STZ injection; intraperitoneal (IP) or in cerebral ventricles (ICV)]. Early effects (1, 3, or 6 weeks) on the NOX activity, translocation of NOX subunits from cytosol to the membrane, NO-synthases [neuronal-, inducible- and endothelial-NOS; nNOS, iNOS and eNOS], The Rac-1 protein expression, levels of NO and O2¯, cytochrome c release, caspase-3 and 9 activations (cleavage) were studied. STZ injection (in both models) increased NOX activity, O2¯ production, and enhanced cytosolic subunits translocation into membrane. The iNOS but not nNOS and eNOS expression and NO levels were increased in STZ treated rats. Finally, STZ injection increased cytochrome c release, caspase-3 and 9 activations in a manner that was significantly associated with levels of O2¯ and NO in the hippocampus. ICV-STZ administration resulted in significant profound changes over the IP route. In conclusion, impairment in insulin function induces early changes in ROS/RNS contents through NOX and iNOS upregulation and neuronal apoptosis in the hippocampus. Our results could mechanistically explain the role of impaired insulin function in the development of sAD.
Collapse
Affiliation(s)
- Mubeen A Ansari
- Department of Pharmacology and Toxicology, Kuwait University, Kuwait City, Safat 13110, Kuwait.
| | - Aishah Al-Jarallah
- Department of Biochemistry, Kuwait University, Kuwait City, Safat 13110, Kuwait
| | - Muddanna S Rao
- Department of Anatomy, Kuwait University, Kuwait City, Safat 13110, Kuwait
| | - Ahmed Babiker
- Faculty of Medicine, Kuwait University, Kuwait City, Safat 13110, Kuwait
| | - Khaled Bensalamah
- Faculty of Medicine, Kuwait University, Kuwait City, Safat 13110, Kuwait
| |
Collapse
|
4
|
Ansari MA, Rao MS, Al-Jarallah A, Babiker FM. Early Time Course of Oxidative Stress in Hippocampal Synaptosomes and Cognitive Loss Following Impaired Insulin Signaling in Rats: Development of Sporadic Alzheimer’s Disease. Brain Res 2022; 1798:148134. [DOI: 10.1016/j.brainres.2022.148134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
|
5
|
Abdallah HM, El Sayed NS, Sirwi A, Ibrahim SRM, Mohamed GA, Abdel Rasheed NO. Mangostanaxanthone IV Ameliorates Streptozotocin-Induced Neuro-Inflammation, Amyloid Deposition, and Tau Hyperphosphorylation via Modulating PI3K/Akt/GSK-3β Pathway. BIOLOGY 2021; 10:biology10121298. [PMID: 34943213 PMCID: PMC8698304 DOI: 10.3390/biology10121298] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 04/08/2023]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is characterized by amyloid deposition and neurofibrillary tangles formation owing to tau protein hyperphosphorylation. Intra-cerebroventricular (ICV) administration of streptozotocin (STZ) has been widely used as a model of sporadic AD as it mimics many neuro-pathological changes witnessed in this form of AD. In the present study, mangostanaxanthone IV (MX-IV)-induced neuro-protective effects in the ICV-STZ mouse model were investigated. STZ (3 mg/kg, ICV) was injected once, followed by either MX-IV (30 mg/kg/day, oral) or donepezil (2.5 mg/kg/day, oral) for 21 days. Treatment with MX-IV diminished ICV-STZ-induced oxidative stress, neuro-inflammation, and apoptosis which was reflected by a significant reduction in malondialdehyde (MDA), hydrogen peroxide (H2O2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) brain contents contrary to increased glutathione (GSH) content. Moreover, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase content and cleaved caspase-3 activity were reduced together with a marked decrement in amyloid plaques number and phosphorylated tau expression via PI3K/Akt/GSK-3β pathway modulation, leading to obvious enhancement in neuronal survival and cognition. Therefore, MX-IV is deemed as a prosperous nominee for AD management with obvious neuro-protective effects that were comparable to the standard drug donepezil.
Collapse
Affiliation(s)
- Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (G.A.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
- Correspondence: ; Tel.: +966-544-733-110
| | - Nesrine S. El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt; (N.S.E.S.); (N.O.A.R.)
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (G.A.M.)
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; or
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (G.A.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Nora O. Abdel Rasheed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt; (N.S.E.S.); (N.O.A.R.)
| |
Collapse
|
6
|
Moura ELR, Dos Santos H, Celes APM, Bassani TB, Souza LC, Vital MABF. Effects of a Nutritional Formulation Containing Caprylic and Capric Acid, Phosphatidylserine, and Docosahexaenoic Acid in Streptozotocin-Lesioned Rats. J Alzheimers Dis Rep 2020; 4:353-363. [PMID: 33163896 PMCID: PMC7592840 DOI: 10.3233/adr-200175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background It has been studied that nutrition can influence Alzheimer's disease (AD) onset and progression. Some studies on rodents using intraventricular streptozotocin (STZ) injection showed that this toxin changes cerebral glucose metabolism and insulin signaling pathways. Objective The aim of the present study was to evaluate whether a nutritional formulation could reduce cognitive impairment in STZ-induced animals. Methods The rats were randomly divided into two groups: sham and STZ. The STZ group received a single bilateral STZ-ICV injection (1 mg/kg). The sham group received a bilateral ICV injection of 0.9% saline solution. The animals were treated with AZ1 formulation (Instanth® NEO, Prodiet Medical Nutrition) (1 g/kg, PO) or its vehicle (saline solution) for 30 days, once a day starting one day after the stereotaxic surgery (n = 6-10). The rats were evaluated using the open field test to evaluate locomotor activity at day 27 after surgery. Cognitive performance was evaluated at day 28 using the object recognition test and the spatial version of the Y-maze test. At day 30, the rats were anesthetized with chloral hydrate (400 mg/kg, i.p) and euthanized in order to evaluate IBA1 in the hippocampus. The differences were analyzed using one-way ANOVA with Bonferroni's or Kruskal Wallis with Dunn's post-hoc test. Results/Conclusion STZ-lesioned rats present memory impairment besides the increased microglial activation. The treatment with AZ1 formulation reversed the memory impairment observed in the object recognition test and Y-maze and also reduced IBA1 in CA1 and DG.
Collapse
Affiliation(s)
- Eric L R Moura
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Hellin Dos Santos
- Scientific Department, Prodiet Medical Nutrition, Curitiba, PR, Brazil
| | - Ana Paula M Celes
- Scientific Department, Prodiet Medical Nutrition, Curitiba, PR, Brazil
| | - Taysa B Bassani
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Leonardo C Souza
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Maria A B F Vital
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
7
|
Bernardo TC, Beleza J, Rizo-Roca D, Santos-Alves E, Leal C, Martins MJ, Ascensão A, Magalhães J. Physical exercise mitigates behavioral impairments in a rat model of sporadic Alzheimer’s disease. Behav Brain Res 2020; 379:112358. [DOI: 10.1016/j.bbr.2019.112358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022]
|
8
|
Duggal P, Mehan S. Neuroprotective Approach of Anti-Cancer Microtubule Stabilizers Against Tauopathy Associated Dementia: Current Status of Clinical and Preclinical Findings. J Alzheimers Dis Rep 2019; 3:179-218. [PMID: 31435618 PMCID: PMC6700530 DOI: 10.3233/adr-190125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuronal microtubule (MT) tau protein provides cytoskeleton to neuronal cells and plays a vital role including maintenance of cell shape, intracellular transport, and cell division. Tau hyperphosphorylation mediates MT destabilization resulting in axonopathy and neurotransmitter deficit, and ultimately causing Alzheimer’s disease (AD), a dementing disorder affecting vast geriatric populations worldwide, characterized by the existence of extracellular amyloid plaques and intracellular neurofibrillary tangles in a hyperphosphorylated state. Pre-clinically, streptozotocin stereotaxically mimics the behavioral and biochemical alterations similar to AD associated with tau pathology resulting in MT assembly defects, which proceed neuropathological cascades. Accessible interventions like cholinesterase inhibitors and NMDA antagonist clinically provides only symptomatic relief. Involvement of microtubule stabilizers (MTS) prevents tauopathy particularly by targeting MT oriented cytoskeleton and promotes polymerization of tubulin protein. Multiple in vitro and in vivo research studies have shown that MTS can hold substantial potential for the treatment of AD-related tauopathy dementias through restoration of tau function and axonal transport. Moreover, anti-cancer taxane derivatives and epothiolones may have potential to ameliorate MT destabilization and prevent the neuronal structural and functional alterations associated with tauopathies. Therefore, this current review strictly focuses on exploration of various clinical and pre-clinical features available for AD to understand the neuropathological mechanisms as well as introduce pharmacological interventions associated with MT stabilization. MTS from diverse natural sources continue to be of value in the treatment of cancer, suggesting that these agents have potential to be of interest in the treatment of AD-related tauopathy dementia in the future.
Collapse
Affiliation(s)
- Pallavi Duggal
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
9
|
Ravelli KG, Santos GD, Dos Santos NB, Munhoz CD, Azzi-Nogueira D, Campos AC, Pagano RL, Britto LR, Hernandes MS. Nox2-dependent Neuroinflammation in An EAE Model of Multiple Sclerosis. Transl Neurosci 2019; 10:1-9. [PMID: 30984416 PMCID: PMC6455010 DOI: 10.1515/tnsci-2019-0001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/17/2019] [Indexed: 01/08/2023] Open
Abstract
Background Multiple sclerosis (MS) is an inflammatory disease of the CNS, characterized by demyelination, focal inflammatory infiltrates and axonal damage. Oxidative stress has been linked to MS pathology. Previous studies have suggested the involvement of NADPH oxidase 2 (Nox2), an enzyme that catalyzes the reduction of oxygen to produce reactive oxygen species, in the MS pathogenesis. The mechanisms of Nox2 activation on MS are unknown. The purpose of this study was to investigate the effect of Nox2 deletion on experimental autoimmune encephalomyelitis (EAE) onset and severity, on astrocyte activation as well as on pro-inflammatory and anti-inflammatory cytokine induction in striatum and motor cortex. Methodology Subcutaneous injection of MOG35-55 emulsified with complete Freund’s adjuvant was used to evaluate the effect of Nox2 depletion on EAE-induced encephalopathy. Striatum and motor cortices were isolated and evaluated by immunoblotting and RT-PCR. Results Nox2 deletion resulted in clinical improvement of the disease and prevented astrocyte activation following EAE induction. Nox2 deletion prevented EAE-induced induction of pro-inflammatory cytokines and stimulated the expression of the anti-inflammatory cytokines IL-4 and IL-10. Conclusions Our data suggest that Nox2 is involved on the EAE pathogenesis. IL-4 and IL-10 are likely to be involved on the protective mechanism observed following Nox2 deletion.
Collapse
Affiliation(s)
- Katherine G Ravelli
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Graziella D Santos
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | | | - Carolina D Munhoz
- Department of Pharmacology, University of São Paulo, São Paulo, Brazil
| | | | | | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | - Luiz R Britto
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Marina S Hernandes
- Division of Cardiology, Department of Medicine Emory University, Atlanta, GA, United States
| |
Collapse
|
10
|
Barai P, Raval N, Acharya S, Acharya N. Bergenia ciliata ameliorates streptozotocin-induced spatial memory deficits through dual cholinesterase inhibition and attenuation of oxidative stress in rats. Biomed Pharmacother 2018; 102:966-980. [DOI: 10.1016/j.biopha.2018.03.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/29/2022] Open
|
11
|
Opioid and noradrenergic contributions of tapentadol to the inhibition of locus coeruleus neurons in the streptozotocin rat model of polyneuropathic pain. Neuropharmacology 2018; 135:202-210. [PMID: 29551688 DOI: 10.1016/j.neuropharm.2018.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/23/2022]
Abstract
Tapentadol is an analgesic that acts as an agonist of µ opioid receptors (MOR) and that inhibits noradrenaline reuptake. Data from healthy rats show that tapentadol inhibits neuronal activity in the locus coeruleus (LC), a nucleus regulated by both the noradrenergic and opioid systems. Thus, we set out to investigate the effect of tapentadol on LC activity in streptozotocin (STZ)-induced diabetic rats, a model of diabetic polyneuropathy, by analyzing single-unit extracellular recordings of LC neurons. Four weeks after inducing diabetes, tapentadol dose-response curves were obtained from animals pre-treated with RX821002 or naloxone (alpha2-adrenoceptors and opioid receptors antagonists, respectively). In STZ rats, the spontaneous activity of LC neurons (0.9 ± 0.1 Hz) was lower than in naïve animals (1.5 ± 0.1 Hz), and tapentadol's inhibitory effect was also weaker. Alpha2-adrenoceptors blockade by RX821002 (100 μg/kg i.v.) in STZ animals significantly increased the spontaneous activity (from 0.8 ± 0.1 to 1.4 ± 0.2 Hz) and it dampened the inhibition of LC neurons produced by tapentadol. However, opioid receptors blockade following naloxone pre-treatment (5 mg/kg i.v.) did not alter the spontaneous firing rate (0.9 ± 0.2 vs 0.9 ± 0.2 Hz) or the inhibitory effect of tapentadol on LC neurons in STZ animals. Thus, diabetic polyneuropathy appears to exert neuroplastic changes in LC neurotransmission, enhancing the sensitivity of alpha2-adrenoceptors and dampening opioid receptors expression. Tapentadol's activity seems to be predominantly mediated through its noradrenergic effects rather than its influence on opioid receptors in the STZ model of diabetic polyneuropathy.
Collapse
|