1
|
Wu Y, Zhu Y, Zheng S, Mingxing D. Resveratrol alleviates depressive-like behavior via the activation of SIRT1/NF-κB signaling pathway in microglia. Future Sci OA 2025; 11:2463852. [PMID: 39967065 PMCID: PMC11845112 DOI: 10.1080/20565623.2025.2463852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Currently, the pathogenesis of depression remains poorly understood, leading to many patients receiving ineffective treatment. Resveratrol has demonstrated beneficial effects in the prevention and treatment of depression. However, it remains unknown whether resveratrol administration can counteract depression-like behaviors by regulating the SIRT1/NF-κB signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS Male C57BL/6 mice were randomly assigned to a control group, a depression group, and a resveratrol group. The depression model was established using chronic unpredictable mild stress (CUMS) for 5 weeks. Behavioral tests were conducted to assess depressive-like behaviors. The expression levels of SIRT1 and NF-κB in the hippocampus of mice and BV2 microglial cells were measured. After 5 weeks of modeling, the results indicated that mice in the depression group exhibited significant depressive-like behaviors and inhibited activation of the SIRT1/NF-κB signaling pathway. In contrast, resveratrol administration effectively reversed these changes. Results from in vitro experiments showed that LPS stimulation increased microglial activity and downregulated the SIRT1/NF-κB signaling pathway in microglia; however, resveratrol treatment mitigated these effects. CONCLUSIONS/SIGNIFICANCE Our findings suggested that resveratrol can alleviate CUMS-induced depression-like behaviors via the activation of the Sirt1/NF-κB pathway in microglia.
Collapse
Affiliation(s)
- Yuehong Wu
- Psychiatry department, Jinhua Second Hospital, Jinhua, Zhejiang Province, China
| | - Yixia Zhu
- Psychiatry department, Jinhua Second Hospital, Jinhua, Zhejiang Province, China
| | - Shun Zheng
- Psychiatry department, Jinhua Second Hospital, Jinhua, Zhejiang Province, China
| | - Ding Mingxing
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang Province, China
| |
Collapse
|
2
|
Ping J, Liu X, Lu Y, Quan C, Fan P, Lu H, Li Q, Wang C, Zhang Z, Liu M, Chen S, Chang L, Jiang Y, Huang Q, Liu J, Wuren T, Liu H, Hao Y, Kang L, Liu G, Lu H, Wei X, Wang Y, Li Y, Guo H, Cui Y, Zhang H, Zhang Y, Zhai Y, He Y, Zheng W, Qi X, Ouzhuluobu, Ma H, Yang L, Wang X, Jin W, Cui Y, Ge R, Wu S, Wei Y, Su B, He F, Zhang H, Zhou G. A highland-adaptation variant near MCUR1 reduces its transcription and attenuates erythrogenesis in Tibetans. CELL GENOMICS 2025; 5:100782. [PMID: 40043709 PMCID: PMC11960549 DOI: 10.1016/j.xgen.2025.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
To identify genomic regions subject to positive selection that might contain genes involved in high-altitude adaptation (HAA), we performed a genome-wide scan by whole-genome sequencing of Tibetan highlanders and Han lowlanders. We revealed a collection of candidate genes located in 30 genomic loci under positive selection. Among them, MCUR1 at 6p23 was a novel pronounced candidate. By single-cell RNA sequencing and comprehensive functional studies, we demonstrated that MCUR1 depletion leads to impairment of erythropoiesis under hypoxia and normoxia. Mechanistically, MCUR1 knockdown reduced mitochondrial Ca2+ uptake and then concomitantly increased cytosolic Ca2+ levels, which thereby reduced erythropoiesis via the CAMKK2-AMPK-mTOR axis. Further, we revealed rs61644582 at 6p23 as an expression quantitative trait locus for MCUR1 and a functional variant that confers an allele-specific transcriptional regulation of MCUR1. Overall, MCUR1-mediated mitochondrial Ca2+ homeostasis is highlighted as a novel regulator of erythropoiesis, deepening our understanding of the genetic mechanism of HAA.
Collapse
Affiliation(s)
- Jie Ping
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xinyi Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yiming Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Cheng Quan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Pengcheng Fan
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Hao Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Qi Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Cuiling Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Zheng Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Mengyu Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Shunqi Chen
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Lingle Chang
- Medical College of Guizhou University, Guiyang City 550025, P.R. China
| | - Yuqing Jiang
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China
| | - Qilin Huang
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China
| | - Jie Liu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China; Qinghai Provincial People's Hospital, Xining City 810001, P.R. China
| | - Tana Wuren
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Huifang Liu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Ying Hao
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High-Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang City 712082, P.R. China; Key Laboratory of High-Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang City 712082, P.R. China
| | - Guanjun Liu
- Henan Provincial People's Hospital, Zhengzhou City 450000, P.R. China; Affiliated Cancer Hospital of Guangxi Medical University, Nanning City 530021, P.R. China
| | - Hui Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaojun Wei
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yuting Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yuanfeng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hao Guo
- No. 945 Hospital of Joint Logistic Support Force of Chinese PLA, Ya'an City 625000, P.R. China
| | - Yongquan Cui
- No. 945 Hospital of Joint Logistic Support Force of Chinese PLA, Ya'an City 625000, P.R. China
| | - Haoxiang Zhang
- No. 954 Hospital of Joint Logistic Support Force of Chinese PLA, Shannan City 856000, P.R. China
| | - Yang Zhang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yujia Zhai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Xuebin Qi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China; Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Huiping Ma
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Linpeng Yang
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Xin Wang
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Wanjun Jin
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Ying Cui
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning City 530021, P.R. China
| | - Rili Ge
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Shizheng Wu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China; Qinghai Provincial People's Hospital, Xining City 810001, P.R. China
| | - Yuan Wei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Hongxing Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China.
| | - Gangqiao Zhou
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China; Medical College of Guizhou University, Guiyang City 550025, P.R. China; Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China.
| |
Collapse
|
3
|
Zheng S, Yang L, Dai Q, Li X, Masuoka T, Lv J. Role of sirtuin 1 in depression‑induced coronary heart disease: Molecular pathways and therapeutic potential (Review). Biomed Rep 2025; 22:46. [PMID: 39882335 PMCID: PMC11775641 DOI: 10.3892/br.2025.1924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Depression and coronary heart disease (CHD) are two interconnected diseases that profoundly impact global health. Depression is both a complex psychiatric disorder and an established risk factor for CHD. Sirtuin 1 (SIRT1) is an enzyme that requires the cofactor nicotinamide adenine dinucleotide (NAD+) to perform its deacetylation function, and its involvement is crucial in reducing cardiovascular risks that are associated with depression. SIRT1 exerts its cardioprotective effects via modulating oxidative stress, inflammation and metabolic processes, all of which are central to the pathogenesis of CHD in individuals with depression. Through influencing these pathways, SIRT1 helps to reduce endothelial dysfunction, prevent the formation of atherosclerotic plaques and stabilize existing plaques, thereby decreasing the overall risk of CHD. The present review underscores the important role of SIRT1 in serving as a therapeutic intervention molecule for tackling cardiovascular complications stemming from depression. Furthermore, it highlights the need for further studies to clarify how SIRT1 influences both depression and CHD at the molecular level. The ultimate goal of this research will be to translate these findings into practical clinical intervention strategies.
Collapse
Affiliation(s)
- Shijie Zheng
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Linlin Yang
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Qiuting Dai
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Xiangyan Li
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Jianfeng Lv
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| |
Collapse
|
4
|
Yu H, Li X, Ning B, Feng L, Ren Y, Li S, Kang Y, Ma J, Zhao M. SIRT1: a potential therapeutic target for coronary heart disease combined with anxiety or depression. J Drug Target 2025; 33:328-340. [PMID: 39470049 DOI: 10.1080/1061186x.2024.2422882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Coronary heart disease (CHD) combined with anxiety or depression is increasingly receiving attention in the clinical field of cardiology, and exploring the comorbidity pathological mechanisms of cardiovascular disease combined with psychological disorders is a hot research topic for scholars in this field. Current research suggests that Silent Information Regulatory Factor 1 (SIRT1) may serve as a potential biomarker for the comorbidity mechanism and treatment of CHD with anxiety or depression. SIRT1 is considered a promising therapeutic target for CHD combined with anxiety or depression, with the ability to regulate inflammatory cytokine levels, alleviate oxidative stress damage, activate multiple signalling pathways, reduce platelet hyperresponsiveness, and exert neuroprotective and cardioprotective effects. In this comprehensive review, we deeply studied the structure, function, and mechanism of SIRT1, and discussed its protective effects in the cardiovascular and nervous system. The latest progress in the mechanism of SIRT1's role in CHD combined with anxiety or depression was emphasised, including its specific mechanisms in regulating inflammatory response, alleviating oxidative stress, and mediating various signalling pathways. In addition, this article also summarises the therapeutic potential of SIRT1 as a potential biomarker in patients with CHD combined with anxiety or depression.
Collapse
Affiliation(s)
- Hubin Yu
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xinping Li
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Bo Ning
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lanshuan Feng
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yaolong Ren
- Department of Cardiology, Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shilin Li
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yalong Kang
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Ma
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Mingjun Zhao
- Department of Cardiology, Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
5
|
Huang Z, Liu Q, Guo Q, Gao J, Zhang L, Li L. Effects and mechanisms of Apelin in treating central nervous system diseases. Neuroscience 2025; 566:177-189. [PMID: 39681256 DOI: 10.1016/j.neuroscience.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Apelin, an endogenous ligand of G protein-coupled receptor APJ, is widely distributed in the central nervous system (CNS). It can be divided into such subtypes as Apelin-13, Apelin-17, and Apelin-36 as they have different amino acid structures. All Apelin is widely studied as an adipokine, showing a significant protective effect through regulating apoptosis, autophagy, oxidative stress, angiogenesis, inflammation, and other pathophysiological processes. As an adipokine, Apelin has been found to play a crucial role in cardiovascular disease development. In this paper, we reviewed the effects and mechanisms of Apelin in treating CNS diseases, such as neurotrauma, stroke, spinal cord injury, primary tumors, neurodegenerative diseases, psychiatric diseases, epilepsy, and pain.
Collapse
Affiliation(s)
- Zimeng Huang
- Medicine School, Qingdao University, 308 Ningxia Road, Shinan District, Qingdao 266071, China
| | - Qing Liu
- Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong, 250021, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Qixuan Guo
- Department of Human Anatomy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences and Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Luping Zhang
- Department of Human Anatomy, Binzhou Medical University, Yantai, Shandong, 264003, China.
| | - Liming Li
- Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| |
Collapse
|
6
|
Kamal S, Babar S, Ali W, Rehman K, Hussain A, Akash MSH. Sirtuin insights: bridging the gap between cellular processes and therapeutic applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9315-9344. [PMID: 38976046 DOI: 10.1007/s00210-024-03263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
The greatest challenges that organisms face today are effective responses or detection of life-threatening environmental changes due to an obvious semblance of stress and metabolic fluctuations. These are associated with different pathological conditions among which cancer is most important. Sirtuins (SIRTs; NAD+-dependent enzymes) are versatile enzymes with diverse substrate preferences, cellular locations, crucial for cellular processes and pathological conditions. This article describes in detail the distinct roles of SIRT isoforms, unveiling their potential as either cancer promoters or suppressors and also explores how both natural and synthetic compounds influence the SIRT function, indicating promise for therapeutic applications. We also discussed the inhibitors/activators tailored to specific SIRTs, holding potential for diseases lacking effective treatments. It may uncover the lesser-studied SIRT isoforms (e.g., SIRT6, SIRT7) and their unique functions. This article also offers a comprehensive overview of SIRTs, linking them to a spectrum of diseases and highlighting their potential for targeted therapies, combination approaches, disease management, and personalized medicine. We aim to contribute to a transformative era in healthcare and innovative treatments by unraveling the intricate functions of SIRTs.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Sharon Babar
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Waqas Ali
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | | |
Collapse
|
7
|
Tseilikman VE, Tseilikman OB, Yegorov ON, Brichagina AA, Karpenko MN, Tseilikman DV, Shatilov VA, Zhukov MS, Novak J. Resveratrol: A Multifaceted Guardian against Anxiety and Stress Disorders-An Overview of Experimental Evidence. Nutrients 2024; 16:2856. [PMID: 39275174 PMCID: PMC11396965 DOI: 10.3390/nu16172856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The medicinal properties of resveratrol have garnered increasing attention from researchers. Extensive data have been accumulated on its use in treating cardiovascular diseases, immune system disorders, cancer, neurological diseases, and behavioral disorders. The protective mechanisms of resveratrol, particularly in anxiety-related stress disorders, have been well documented. However, less attention has been given to the side effects of resveratrol. This review explores not only the mechanisms underlying the anxiolytic effects of resveratrol but also the mechanisms that may lead to increased anxiety following resveratrol treatment. Understanding these mechanisms is crucial for enhancing the efficacy of resveratrol in managing anxiety disorders associated with stress and PTSD.
Collapse
Affiliation(s)
- Vadim E Tseilikman
- Scientific and Educational Center 'Biomedical Technologies', School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Zelman Institute of Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Olga B Tseilikman
- Scientific and Educational Center 'Biomedical Technologies', School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Oleg N Yegorov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Alina A Brichagina
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Marina N Karpenko
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - David V Tseilikman
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Vladislav A Shatilov
- Scientific and Educational Center 'Biomedical Technologies', School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Maxim S Zhukov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Jurica Novak
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
8
|
Calado CMSDS, Manhães-de-Castro R, da Conceição Pereira S, da Silva Souza V, Barbosa LNF, Dos Santos Junior OH, Lagranha CJ, Juárez PAR, Torner L, Guzmán-Quevedo O, Toscano AE. Resveratrol Reduces Neuroinflammation and Hippocampal Microglia Activation and Protects Against Impairment of Memory and Anxiety-Like Behavior in Experimental Cerebral Palsy. Mol Neurobiol 2024; 61:3619-3640. [PMID: 38001357 DOI: 10.1007/s12035-023-03772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023]
Abstract
Cerebral palsy (CP) is a neurodevelopmental disorder characterized by motor and postural impairments. However, early brain injury can promote deleterious effects on the hippocampus, impairing memory. This study aims to investigate the effects of resveratrol treatment on memory, anxiety-like behavior, and neuroinflammation markers in rats with CP. Male Wistar rats were subjected to perinatal anoxia (P0-P1) and sensory-motor restriction (P2-P28). They were treated with resveratrol (10 mg/kg, 0.1 ml/100 g) or saline from P3-P21, being divided into four experimental groups: CS (n = 15), CR (n = 15), CPS (n = 15), and CPR (n = 15). They were evaluated in the tests of novel object recognition (NORT), T-Maze, Light-Dark Box (LDB), and Elevated Plus Maze (EPM). Compared to the CS group, the CPS group has demonstrated a reduced discrimination index on the NORT (p < 0.0001) and alternation on the T-Maze (p < 0.01). In addition, the CPS group showed an increase in permanence time on the dark side in LDB (p < 0.0001) and on the close arms of the EPM (p < 0.001). The CPR group demonstrated an increase in the object discrimination index (p < 0.001), on the alternation (p < 0.001), on the permanence time on the light side (p < 0.0001), and on the open arms (p < 0.001). The CPR group showed a reduction in gene expression of IL-6 (p = 0.0175) and TNF-α (p = 0.0007) and an increase in Creb-1 levels (p = 0.0020). The CPS group showed an increase in the activated microglia and a reduction in cell proliferation in the hippocampus, while CPR animals showed a reduction of activated microglia and an increase in cell proliferation. These results demonstrate promising effects of resveratrol in cerebral palsy behavior impairment through reduced neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Caio Matheus Santos da Silva Calado
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Sabrina da Conceição Pereira
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Vanessa da Silva Souza
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Leticia Nicoly Ferreira Barbosa
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Osmar Henrique Dos Santos Junior
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Claudia Jacques Lagranha
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro Alberto Romero Juárez
- Laboratory of Experimental Neuronutrition and Food Engineering, Tecnológico Nacional de México (TECNM), Instituto Tecnológico Superior de Tacámbaro, 61651, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Omar Guzmán-Quevedo
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Laboratory of Experimental Neuronutrition and Food Engineering, Tecnológico Nacional de México (TECNM), Instituto Tecnológico Superior de Tacámbaro, 61651, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Rua Do Alto Do Reservatório S/N, Bela Vista, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil.
| |
Collapse
|
9
|
Kamińska K, Borzuta H, Buczma K, Cudnoch-Jędrzejewska A. Neuroprotective effect of apelin-13 and other apelin forms-a review. Pharmacol Rep 2024; 76:439-451. [PMID: 38568371 DOI: 10.1007/s43440-024-00587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024]
Abstract
Neurodegenerative diseases, which occur when neurons begin to deteriorate, affect millions of people worldwide. These age-related disorders are becoming more common partly because the elderly population has increased in recent years. While no treatments are accessible, every year an increasing number of therapeutic and supportive options become available. Various substances that may have neuroprotective effects are currently being researched. One of them is apelin. This review aims to illustrate the results of research on the neuroprotective effect of apelin amino acid oligopeptide which binds to the apelin receptor and exhibits neuroprotective effects in the central nervous system. The collected data indicate that apelin can protect the central nervous system against injury by several mechanisms. More studies are needed to thoroughly investigate the potential neuroprotective effects of this peptide in neurodegenerative diseases and various other types of brain damage.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| | - Hubert Borzuta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Kasper Buczma
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| |
Collapse
|
10
|
Liu F, Yan W, Chen C, Zeng Y, Kong Y, He X, Pei P, Wang S, Zhang T. Acetylome analyses provide novel insights into the effects of chronic intermittent hypoxia on hippocampus-dependent cognitive impairment. Front Mol Neurosci 2024; 17:1324458. [PMID: 38455734 PMCID: PMC10917988 DOI: 10.3389/fnmol.2024.1324458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Chronic intermittent hypoxia (CIH) can negatively affect hippocampal function through various molecular mechanisms. Protein acetylation, a frequently occurring modification, plays crucial roles in synaptic plasticity and cognitive processes. However, the global protein acetylation induced by CIH in the hippocampus and its specific effects on hippocampal function and behavior remain poorly understood. Methods To address this gap, we conducted a study using liquid chromatography-tandem mass spectrometry to analyze the lysine acetylome and proteome of the hippocampus in healthy adult mice exposed to intermittent hypoxia for 4 weeks (as a CIH model) compared to normoxic mice (as a control). Results We identified and quantified a total of 2,184 lysine acetylation sites in 1,007 proteins. Analysis of these acetylated proteins revealed disturbances primarily in oxidative phosphorylation, the tricarboxylic acid (TCA) cycle, and glycolysis, all of which are localized exclusively to mitochondria. Additionally, we observed significant changes in the abundance of 21 proteins, some of which are known to be associated with cognitive impairments. Discussion This study helps to elucidate the molecular mechanisms underlying CIH-induced changes in protein acetylation in the hippocampus. By providing valuable insights into the pathophysiological processes associated with CIH and their impacts on hippocampal function, our findings contribute to a better understanding of the consequences of CIH-induced changes in protein acetylation in the hippocampus and the potential role of CIH in cognitive impairment.
Collapse
Affiliation(s)
- Fan Liu
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Weiheng Yan
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Chen
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Yubing Zeng
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Yaru Kong
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuejia He
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Pei Pei
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Shan Wang
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Ting Zhang
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| |
Collapse
|
11
|
Shentu Y, Chen M, Wang H, Du X, Zhang W, Xie G, Zhou S, Ding L, Zhu Y, Zhu M, Zhang N, Du C, Ma J, Chen R, Yang J, Fan X, Gong Y, Zhang H, Fan J. Hydrogen sulfide ameliorates lipopolysaccharide-induced anxiety-like behavior by inhibiting checkpoint kinase 1 activation in the hippocampus of mice. Exp Neurol 2024; 371:114586. [PMID: 37898396 DOI: 10.1016/j.expneurol.2023.114586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, exhibits the anxiolytic roles through its anti-inflammatory effects, although its underlying mechanisms remain largely elusive. Emerging evidence has documented that cell cycle checkpoint kinase 1 (Chk1)-regulated DNA damage plays an important role in the neurodegenerative diseases; however, there are few relevant reports on the research of Chk1 in neuropsychiatric diseases. Here, we aimed to investigate the regulatory role of H2S on Chk1 in lipopolysaccharide (LPS)-induced anxiety-like behavior focusing on inflammasome activation in the hippocampus. Cystathionine γ-lyase (CSE, a H2S-producing enzyme) knockout (CSE-/-) mice displayed anxiety-like behavior and activation of inflammasome-mediated inflammatory responses, manifesting by the increase levels of interleukin-1β (IL-1β), IL-6, and ionized calcium-binding adaptor molecule-1 (Iba-1, microglia marker) expression in the hippocampus. Importantly, expression of p-Chk1 and γ-H2AX (DNA damage marker) levels were also increased in the hippocampus of CSE-/- mice. LPS treatment decreased the expression of CSE and CBS while increased p-Chk1 and γ-H2AX levels and inflammasome-activated neuroinflammation in the hippocampus of mice. Moreover, p-Chk1 and γ-H2AX protein levels and cellular immunoactivity were significantly increased while CSE and CBS were markedly decreased in cultured BV2 cells followed by LPS treatment. Treatment of mice with GYY4137, a donor of H2S, inhibited LPS-induced increased in p-Chk1 and γ-H2AX levels, mitigated inflammasome activation and inflammatory responses as well as amelioration of anxiety-like behavior. Notably, SB-218078, a selective Chk1 inhibitor treatment attenuated the effect of LPS on inflammasome activation and inflammatory responses and the induction of anxiety-like behavior. Finally, STAT3 knockdown with AAV-STAT3 shRNA alleviated LPS-induced anxiety-like behavior and inhibited inflammasome activation in the hippocampus, and blockade of NLRP3 with MCC950 attenuated neuroinflammation induction and ameliorated LPS-induced anxiety-like behavior. Overall, this study indicates that downregulation of Chk1 activity by H2S activation may be considered as a valid strategy for preventing the progression of LPS-induced anxiety-like behavior.
Collapse
Affiliation(s)
- Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengfan Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hui Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaotong Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Zhejiang 315302, China
| | - Wenjing Zhang
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guizhen Xie
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shaoyan Zhou
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lu Ding
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yun Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Min Zhu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Nan Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Congkuo Du
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ran Chen
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinge Yang
- Department of Medical Technology, Jiangxi Medical College, Shangrao, Jiangxi 334709, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Zhejiang 315302, China.
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Zhejiang 315302, China.
| |
Collapse
|
12
|
Chen H, Deng J, Gao H, Song Y, Zhang Y, Sun J, Zhai J. Involvement of the SIRT1-NLRP3 pathway in the inflammatory response. Cell Commun Signal 2023; 21:185. [PMID: 37507744 PMCID: PMC10375653 DOI: 10.1186/s12964-023-01177-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 07/30/2023] Open
Abstract
The silent information regulator 2 homolog 1-NACHT, LRR and PYD domains-containing protein 3 (SIRT1-NLRP3) pathway has a crucial role in regulation of the inflammatory response, and is closely related to the occurrence and development of several inflammation-related diseases. NLRP3 is activated to produce the NLRP3 inflammasome, which leads to activation of caspase-1 and cleavage of pro-interleukin (IL)-1β and pro-IL-18 to their active forms: IL-1β and IL-18, respectively. They are proinflammatory cytokines which then cause an inflammatory response.SIRT1 can inhibit this inflammatory response through nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B pathways. This review article focuses mainly on how the SIRT1-NLRP3 pathway influences the inflammatory response and its relationship with melatonin, traumatic brain injury, neuroinflammation, depression, atherosclerosis, and liver damage. Video Abstract.
Collapse
Affiliation(s)
- Huiyue Chen
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
| | - Jiayu Deng
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Huan Gao
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Yanqing Song
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yueming Zhang
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Jingmeng Sun
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China.
| |
Collapse
|
13
|
Wei RM, Zhang YM, Feng YZ, Zhang KX, Zhang JY, Chen J, Luo BL, Li XY, Chen GH. Resveratrol ameliorates maternal separation-induced anxiety- and depression-like behaviors and reduces Sirt1-NF-kB signaling-mediated neuroinflammation. Front Behav Neurosci 2023; 17:1172091. [PMID: 37273278 PMCID: PMC10233157 DOI: 10.3389/fnbeh.2023.1172091] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Maternal separation in early life has a detrimental effect on the physiological and biochemical functions of the brains of offspring and can lead to anxiety- and depression-like behaviors later in life. Resveratrol possesses a variety of pharmacological properties, including anti-inflammatory, anxiolytic, and anti-depressive effects. In rodents, resveratrol can attenuate anxiety- and depression-like behaviors induced by chronic unpredictable mild stress, estrogen deficiency, and lipopolysaccharide. However, whether resveratrol administration during adolescence can counteract these behaviors when they result from maternal separation is unknown. In this study, male C57BL/6J mice were separated from their mothers for 4 h per day from postnatal day 2 (PND 2) to PND 21; starting on PND 61, resveratrol was administered intraperitoneally at 40 mg/(kg/day-1) for 4 weeks. At 3 months of age, anxiety and depression-like behaviors were assessed in the male offspring using a series of tasks consisting of an open field test, an elevated plus maze test, a forced swimming test, and a tail suspension test. The hippocampal levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) were measured by ELISA, while those of sirtuin 1 (Sirt1) and nuclear factor kappa B (NF-κB) p65 were determined by western blotting and PCR. The results showed that maternal separation led to increased anxiety- and depression-like behaviors, enhanced the levels of pro-inflammatory cytokines, and downregulated the Sirt1/NF-κB signaling pathway in the male offspring; however, these effects could be reversed by treatment with resveratrol. Our findings suggested that resveratrol can ameliorate inflammation and anxiety- and depression-like behaviors induced by maternal separation via the activation of the Sirt1/NF-κB pathway.
Collapse
|
14
|
Zhang Y, Jiang W, Sun W, Guo W, Xia B, Shen X, Fu M, Wan T, Yuan M. Neuroprotective Roles of Apelin-13 in Neurological Diseases. Neurochem Res 2023; 48:1648-1662. [PMID: 36745269 DOI: 10.1007/s11064-023-03869-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/24/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Apelin is a natural ligand for the G protein-coupled receptor APJ, and the apelin/APJ system is widely distributed in vivo. Among the apelin family, apelin-13 is the major apelin isoform in the central nervous system and cardiovascular system, and is involved in the regulation of various physiopathological mechanisms such as apoptosis, neuroinflammation, angiogenesis, and oxidative stress. Apelin is currently being extensively studied in the nervous system, and apelin-13 has been shown to be associated with the onset and progression of a variety of neurological disorders, including stroke, neurodegenerative diseases, epilepsy, spinal cord injury (SCI), and psychiatric diseases. This study summarizes the pathophysiological roles of apelin-13 in the development and progression of neurological related diseases.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiwei Jiang
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjie Sun
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiming Guo
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Beibei Xia
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Xiangru Shen
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Teng Wan
- Department of Neurology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China. .,Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| | - Mei Yuan
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
15
|
Keskin-Aktan A, Kutlay Ö. Exogenous Apelin-13 Administration Ameliorates Cyclophosphamide- Induced Oxidative Stress, Inflammation, and Apoptosis in Rat Lungs. Protein Pept Lett 2023; 30:743-753. [PMID: 37622713 DOI: 10.2174/0929866530666230824142516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/04/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Apelin-13 is an endogenous adipocytokine known for its antioxidant, antiinflammatory, and antiapoptotic properties. OBJECTIVE We aimed to investigate the possible protective effects of exogenous Apelin-13 administration on oxidative stress, inflammation, and apoptosis induced by the cytotoxic agent cyclophosphamide (CP) in the lungs. METHODS Twenty-four male Wistar albino rats were divided into four groups: Control (saline), CP (200 mg/kg), Apelin-13 (10 μg/kg/day), and CP+Apelin-13. CP was administered as a single dose on the fifth day, and apelin-13 was administered intraperitoneally for five days. Total oxidant status (TOS), total antioxidant status (TAS), and lipid peroxidation were determined with spectrophotometry, TNFα and IL1β were determined with ELISA, APJ, Sirt1, NF-κB, and p53 mRNA expressions were determined with qRT-PCR, cytochrome (Cyt) C and caspase-3 protein expressions were studied with western blotting in lung tissues. The oxidative stress index (OSI) was also calculated. Furthermore, serum surfactant protein-D (SP-D) and Krebs von den Lungen-6 (KL-6) levels were measured with ELISA. RESULTS Compared to the control group, TOS, OSI, lipid peroxidation, TNFα, IL1β, cyt C, caspase-3, APJ, NF-κB, and p53 were higher, and Sirt1 was lower in the lung tissue of rats in the CP group. Serum KL-6 and SP-D levels were higher in the CP group. Co-administration of CP with Apelin-13 completely reversed the changes induced by CP administration. CONCLUSION Exogenous Apelin-13 treatment protected lung tissue against injury by inhibiting cyclophosphamide-induced oxidative stress, inflammation, and apoptosis. This protective effect of apelin-13 was accompanied by upregulation of the Sirt1 and downregulation of NF-κB/p53 in the lungs.
Collapse
Affiliation(s)
- Arzu Keskin-Aktan
- Department of Physiology, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Özden Kutlay
- Department of Physiology, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
16
|
Chen B, Wu J, Hu S, Liu Q, Yang H, You Y. Apelin-13 Improves Cognitive Impairment and Repairs Hippocampal Neuronal Damage by Activating PGC-1α/PPARγ Signaling. Neurochem Res 2022; 48:1504-1515. [PMID: 36512295 DOI: 10.1007/s11064-022-03844-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that is prevalent around the world. Both Apelin-13 and proliferator-activated receptor-γ (PPARγ)/PPARγ co-activator 1α (PGC-1α) are regarded as candidate targets for treating AD. The investigation examined whether Apelin-13 exerts neuroprotective effects via PGC-1α/PPARγ signaling. In this study, Apelin-13 improved cognitive deficits in AD mice, while SR-18,292 (a PGC-1α inhibitor) interfered with the therapeutic effects of Apelin-13. Mechanistically, Apelin-13, PGC-1α and PPARγ were decreased in AD mice and oxygen-glucose deprivation (OGD)-induced neuronal cells. Apelin-13 bound to PGC-1α and negatively regulated the expression of PGC-1α and PPARγ. In turn, PGC-1α accelerated the accumulation of Apelin-13 and PPARγ. Additionally, neuronal apoptosis was inhibited, and the abundance of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase 3) was induced. The content of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) fluctuated. The level of inflammatory factors (interleukin-6, IL-6, IL-10, tumor necrosis factor-α, TNF-α) was regulated. In short, Apelin-13 exerted anti-apoptosis, anti-oxidant stress and anti-inflammatory effects. Interestingly, PGC-1α silencing promoted neuronal apoptosis, oxidant stress and inflammation, and overexpression of PGC-1α exhibited the opposite. More importantly, inhibition of PGC-1α attenuated Apelin-13-enhanced cognitive impairment and neuronal damage. Therefore, our findings suggested that Apelin-13 exerted neuroprotective effects in part via the PGC-1α/PPARγ pathway.
Collapse
Affiliation(s)
- Bin Chen
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China.,Hainan Medical University, 571199, Haikou, China.,Key Laboratory of Brain Science Research & Transformation In Tropical Environment of Hainan Province, 571199, Haikou, China.,International Center for Aging and Cancer (ICAC), 571199, Haikou, China
| | - Jingwei Wu
- Department of Radiology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China
| | - Sheng Hu
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China.,Hainan Medical University, 571199, Haikou, China
| | - Qingli Liu
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China.,Hainan Medical University, 571199, Haikou, China
| | - Hui Yang
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China.,Hainan Medical University, 571199, Haikou, China
| | - Yong You
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China. .,Hainan Medical University, 571199, Haikou, China. .,Key Laboratory of Brain Science Research & Transformation In Tropical Environment of Hainan Province, 571199, Haikou, China. .,International Center for Aging and Cancer (ICAC), 571199, Haikou, China.
| |
Collapse
|
17
|
Sabry MM, Ahmed MM, Maksoud OMA, Rashed L, Morcos MA, El-Maaty AA, Maher Galal A, Sharawy N. Carnitine, apelin and resveratrol regulate mitochondrial quality control (QC) related proteins and ameliorate acute kidney injury: role of hydrogen peroxide. Arch Physiol Biochem 2022; 128:1391-1400. [PMID: 32538173 DOI: 10.1080/13813455.2020.1773504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondrial impairment is recognised as a prominent feature in kidney diseases. Therefore, we investigated whether the effects of resveratrol, L-carnitine, and apelin in the acute kidney injury model were associated with modulation of mitochondrial quality control (QC) related proteins, intra-renal renin-angiotensin (RAS) activity, adenosine triphosphate (ATP) and Na+-K+ ATPase gene expression. Rats were randomly assigned to 7 groups: Distilled water injected control group, DMSO injected control group, distilled water injected lipopolysaccharide (LPS) group, DMSO injected LPS group, resveratrol injected LPS group, L-carnitine injected LPS group and apelin 13 injected LPS group. We observed that resveratrol, L-carnitine, and apelin treatments altered mitochondrial (QC) related protein levels (Pink1, Parkin, BNIP-3, Drp1, and PGC1α), decreased intra-renal RAS parameters, increased ATP level and upregulated Na+-K+ ATPase gene expression in renal tissue. Our results provide new insight into the role of mitochondrial quality control and how different antioxidants exert beneficial effects on acute kidney injury.
Collapse
Affiliation(s)
- Maha Mohamed Sabry
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona Mohamed Ahmed
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mary Attia Morcos
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amal Abo El-Maaty
- Department of Animal Reproduction and Artificial Insemination, Veterinary Division, National Research Centre, Cairo, Egypt
| | - Amr Maher Galal
- Department of Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nivin Sharawy
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of physiology, Cairo University Hospitals, Cairo, Egypt
| |
Collapse
|
18
|
Wang H, Cong L, Yin X, Zhang N, Zhu M, Sun T, Fan J, Xue F, Fan X, Gong Y. The Apelin-APJ axis alleviates LPS-induced pulmonary fibrosis and endothelial mesenchymal transformation in mice by promoting Angiotensin-Converting Enzyme 2. Cell Signal 2022; 98:110418. [PMID: 35882286 DOI: 10.1016/j.cellsig.2022.110418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Fibrotic alterations resulting from abnormal tissue repair after lung injury are responsible for the high mortality observed after acute respiratory distress syndrome. Therefore, the prevention and treatment of pulmonary fibrosis has been widely concerned. The Apelin-APJ axis plays an important role in the prevention and treatment of respiratory diseases and organ fibrosis. However, its underlying mechanism remains to be further studied. The aim of this study was to investigate whether the anti-pulmonary fibrosis effect of apelin-APJ axis is related to the activation of angiotensin-converting Enzyme 2 (ACE2). Here, we found that exogenous activation of the Apelin-APJ axis alleviates lipopolysaccharide (LPS)-induced pulmonary fibrosis in mice. In vitro studies revealed that Apelin-13 inhibited LPS-induced endothelial mesenchymal transition in lung microvascular endothelial cells, whereas [Ala13]-Apelin-13 (Apelin-APJ axis inhibitor) accelerated LPS-induced endothelial interstitial transformation in lung microvascular endothelial cells. Notably, angiotensin-converting enzyme 2 (ACE2) inhibitor blocks the beneficial effect of the Apelin-APJ axis activation on LPS-induced pulmonary fibrosis. This finding suggests that the Apelin-APJ axis inhibits pulmonary fibrosis by activating ACE2. Simultaneously, accumulating evidence suggests that ubiquitination may contribute to pulmonary fibrosis. Our study found that LPS increased the ubiquitination of ACE2 protein, whereas Apelin-13 inhibited it. In conclusion, exogenous activation of the Apelin-APJ axis improves LPS-induced pulmonary fibrosis in mice and may be a viable therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences,Wenzhou Medical University, Wenzhou, China
| | - Linjing Cong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences,Wenzhou Medical University, Wenzhou, China
| | - Xianghong Yin
- Institute of Hypoxia Medicine, School of Basic Medical Sciences,Wenzhou Medical University, Wenzhou, China
| | - Nan Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences,Wenzhou Medical University, Wenzhou, China
| | - Min Zhu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences,Wenzhou Medical University, Wenzhou, China
| | - Tingting Sun
- Institute of Hypoxia Medicine, School of Basic Medical Sciences,Wenzhou Medical University, Wenzhou, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences,Wenzhou Medical University, Wenzhou, China
| | - Feng Xue
- Institute of Hypoxia Medicine, School of Basic Medical Sciences,Wenzhou Medical University, Wenzhou, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences,Wenzhou Medical University, Wenzhou, China.
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences,Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
19
|
Eid M, Dzreyan V, Demyanenko S. Sirtuins 1 and 2 in the Acute Period After Photothrombotic Stroke: Expression, Localization and Involvement in Apoptosis. Front Physiol 2022; 13:782684. [PMID: 35574497 PMCID: PMC9092253 DOI: 10.3389/fphys.2022.782684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sirtuins (SIRTs) are NAD+- dependent histone deacetylases. They are involved in a variety of biological pathways and are thought to be a promising target for treating several human disorders. Although evidence is piling up to support the neuroprotective role of SIRTs in ischemic stroke, the role of different sirtuin isoforms needs further investigation. We studied the effects of photothrombotic stroke (PTS) on the expression and localization of sirtuins SIRT1 and SIRT2 in neurons and astrocytes of the penumbra and tested the activity of their selective and non-selective inhibitors. SIRT1 levels significantly decreased in the penumbra cells nuclei and increased in their cytoplasm. This indicated a redistribution of SIRT1 from the nucleus to the cytoplasm after PTS. The expression and intracellular distribution of SIRT1 were also observed in astrocytes. Photothrombotic stroke caused a sharp increase in SIRT2 levels in the cytoplasmic fraction of the penumbra neurons. SIRT2 was not expressed in the penumbra astrocytes. SIRT1 and SIRT2 did not co-localize with TUNEL-positive apoptotic cells. Mice were injected with EX-527, a selective SIRT1 inhibitor; SirReal2, selective SIRT2 inhibitor or salermide, a nonspecific inhibitor of SIRT1 and SIRT2. These inhibitors did not demonstrate any change in the infarction volume or the apoptotic index, compared to the control samples. The studies presented indicate the involvement of these sirtuins in the response of brain cells to ischemia in the first 24 h, but the alterations in their expression and change in the localization of SIRT1 are not related to the regulation of penumbra cell apoptosis in the acute period after PTS.
Collapse
Affiliation(s)
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | | |
Collapse
|
20
|
Hu Y, Zhao M, Zhao T, Qi M, Yao G, Dong Y. The Protective Effect of Pilose Antler Peptide on CUMS-Induced Depression Through AMPK/Sirt1/NF-κB/NLRP3-Mediated Pyroptosis. Front Pharmacol 2022; 13:815413. [PMID: 35401226 PMCID: PMC8984150 DOI: 10.3389/fphar.2022.815413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/01/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Pilose antler peptide (PAP), prepared from the pilose antler of Cervus nippon Temminck, is widely used in traditional Chinese medicine (TCM) against various inflammatory disorders. TCM prescriptions containing pilose antler are often prescribed clinically to treat depression. However, the pharmacological mechanisms of how PAP, against inflammation, prevents and treats depression remain poorly understood. Methods: PAP was identified by de novo sequencing and database searching. Then, behavioral tests were conducted to investigate the effect of PAP on CUMS-exposed mice. In parallel, Nissl staining and Golgi-Cox staining were used for exploring the effect of PAP on neural cells and dendritic spine density. Additionally, the expression of key proteins of the AMPK/Sirt1/NF-κB/NLRP3 pathway was analyzed by Western blot. Finally, the CUMS procedure was conducted for 6 weeks. At the 5th week, PAP and fluoxetine (Flu) were intragastrically treated for 2 weeks. The silencing information regulator-related enzyme 1 (Sirt1) inhibitor EX-527 and the AMP-activated protein kinase (AMPK) inhibitor dorsomorphin were employed to investigate the effects of Sirt1 and AMPK on PAP-mediated depression. Results: PAP attenuated the behavior alteration caused by CUMS stimulation, decreased the number of neurons, and restored the dendritic spine density. PAP treatment effectively upregulated the expressions of p-AMPK and Sirt1 and suppressed the expressions of Ac-NF-κB, NLRP3, Ac-Caspase-1, GSDMD-N, Cleaved-IL-1β, and Cleaved-IL-18. Moreover, selectively inhibited Sirt1 and AMPK were able to compromise the therapeutic effect of PAP on depression. Conclusion: The present work indicated that PAP has a protective effect on CUMS-induced depression. In addition, AMPK and Sirt1 played critical roles in the PAP-relieved depression. PAP might be a potential therapeutic option for treating depression.
Collapse
Affiliation(s)
- Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingming Qi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangda Yao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Dong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
21
|
Rajkhowa B, Mehan S, Sethi P, Prajapati A. Activation of SIRT-1 Signalling in the Prevention of Bipolar Disorder and Related Neurocomplications: Target Activators and Influences on Neurological Dysfunctions. Neurotox Res 2022; 40:670-686. [PMID: 35156173 DOI: 10.1007/s12640-022-00480-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/30/2022]
Abstract
SIRT-1 (silent mating-type information regulation 2 homolog-1) is a protein found in neuronal nuclei, microglia, and astrocyte cells of the brain. It is sometimes referred to as NAD + -dependent deacetylase (nicotinamide adenine dinucleotide). The activation of sirtuins (SIRT-1-7) has been shown to protect against a wide range of disorders, including neurodegenerative and neuropsychiatric disorders. SIRT-1 has gained considerable interest from these families because of its early link to long-life expansion and calorie restriction involvement. SIRT-1 is necessary for gene silencing, cell cycle regulation, fat and glucose metabolism, oxidative stress, ageing, and memory formation. In this review, we investigate the role of SIRT-1 downregulation in the progression of bipolar disorder (BD) and neurological abnormalities, as well as related neurological alterations such as genetic dysfunction, neurotransmitter imbalance, oxidative stress-induced apoptosis, and mitochondrial dysfunction. BD is a psychiatric disease distinguished by extreme mood fluctuations that range from depressive lows to manic highs. BD is a complicated disorder with numerous clinical signs and neurocomplications that produce significant behavioural problems. SIRT-1 deficiency in the brain has been demonstrated to affect the activity of its transcription factors and molecular changes, including genetic defects. SIRT-1 is now being studied as a potential therapeutic target for a range of brain disorders. A recent study also found that activating SIRT-1 signalling performs a protective effect in avoiding depression and mania-like behaviours. Furthermore, this review investigates the potential mechanisms by which SIRT-1 regulates neuronal transmission and neurogenesis. As a result of our review, we revealed that SIRT-1 activators have neuroprotective potential in BD and related neurological dysfunctions.
Collapse
Affiliation(s)
- Bidisha Rajkhowa
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| | - Pranshul Sethi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Aradhana Prajapati
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
22
|
Wan T, Fu M, Jiang Y, Jiang W, Li P, Zhou S. Research Progress on Mechanism of Neuroprotective Roles of Apelin-13 in Prevention and Treatment of Alzheimer's Disease. Neurochem Res 2022; 47:205-217. [PMID: 34518975 PMCID: PMC8436866 DOI: 10.1007/s11064-021-03448-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Currently, more than 50 million people live with dementia worldwide, and this number is expected to increase. Some of the typical pathological changes of AD include amyloid plaque, hyperphosphorylation of tau protein, secretion of inflammatory mediators, and neuronal apoptosis. Apelin is a neuroprotective peptide that is widely expressed in the body. Among members of apelin family, apelin-13 is the most abundant with a high neuroprotective function. Apelin-13/angiotensin domain type 1 receptor-associated proteins (APJ) system regulates several physiological and pathophysiological cell activities, such as apoptosis, autophagy, synaptic plasticity, and neuroinflammation. It has also been shown to prevent AD development. This article reviews the research progress on the relationship between apelin-13 and AD to provide new ideas for prevention and treatment of AD.
Collapse
Affiliation(s)
- Teng Wan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Mingyuan Fu
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Yan Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Xiangnan University, Chenzhou, 423043, China
| | - Weiwei Jiang
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Peiling Li
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China.
- Department of Physiology, Basic Medical College, Guilin, 541199, Guangxi, China.
| |
Collapse
|
23
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
24
|
Kang X, Jiang L, Lan F, Tang YY, Zhang P, Zou W, Chen YJ, Tang XQ. Hydrogen sulfide antagonizes sleep deprivation-induced depression- and anxiety-like behaviors by inhibiting neuroinflammation in a hippocampal Sirt1-dependent manner. Brain Res Bull 2021; 177:194-202. [PMID: 34624463 DOI: 10.1016/j.brainresbull.2021.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 02/04/2023]
Abstract
Increasing evidence confirms that sleep deprivation (SD), which induces hippocampal neuroinflammation, is a risk factor for depression. Hydrogen sulfide (H2S) is a novel neuromodulator that plays antidepressant-like role. Silent mating type information regulation 2 homolog 1 (Sirt1) is well-characterized as a regulator of mood disorder. Furthermore, we have previously reported that H2S upregulates Sirt1 expression in the hippocampus of SD-exposed rats. Here, we explored whether H2S ameliorates depression- and anxiety-like behaviors as well as hippocampal neuroinflammatory in SD-exposed rats and whether Sirt1 mediates these protective roles of H2S. In the present work, we showed that NaHS (a donor of H2S) significantly alleviated depression- and anxiety-like behaviors in the SD-exposed rats tested by novelty-suppressed feeding test (NST), forced swim test (FST), tail suspension test (TST), and elevated plus maze test (EPMT) and that NaHS attenuates neuroinflammatory in the hippocampus of SD-exposed rats, as evidenced by reducing the levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and chemokine CCL2, as well as increasing the levels of anti-inflammatory cytokines (IL-4 and IL-10) in the hippocampus. However, Sirt1 inhibitor reversed the protective effects of H2S against SD-induced depression- and anxiety-like behaviors as well as hippocampal neuroinflammatory. In conclusion, H2S antagonizes SD-induced depression- and anxiety-like behaviors and neuroinflammation, which is required hippocampal Sirt1. These findings suggested that H2S is a novel approach to prevent SD-induced depression and anxiety.
Collapse
Affiliation(s)
- Xuan Kang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China; Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Li Jiang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China; The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Fang Lan
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China; Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Yi-Yun Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Ping Zhang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China; The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Wei Zou
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China; The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Yong-Jun Chen
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China; The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Xiao-Qing Tang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China; Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
25
|
Chen L, Ren SY, Li RX, Liu K, Chen JF, Yang YJ, Deng YB, Wang HZ, Xiao L, Mei F, Wang F. Chronic Exposure to Hypoxia Inhibits Myelinogenesis and Causes Motor Coordination Deficits in Adult Mice. Neurosci Bull 2021; 37:1397-1411. [PMID: 34292513 PMCID: PMC8490606 DOI: 10.1007/s12264-021-00745-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/06/2021] [Indexed: 12/18/2022] Open
Abstract
Exposure to chronic hypoxia is considered to be a risk factor for deficits in brain function in adults, but the underlying mechanisms remain largely unknown. Since active myelinogenesis persists in the adult central nervous system, here we aimed to investigate the impact of chronic hypoxia on myelination and the related functional consequences in adult mice. Using a transgenic approach to label newly-generated myelin sheaths (NG2-CreERTM; Tau-mGFP), we found that myelinogenesis was highly active in most brain regions, such as the motor cortex and corpus callosum. After exposure to hypoxia (10% oxygen) 12 h per day for 4 weeks, myelinogenesis was largely inhibited in the 4-month old brain and the mice displayed motor coordination deficits revealed by the beam-walking test. To determine the relationship between the inhibited myelination and functional impairment, we induced oligodendroglia-specific deletion of the transcription factor Olig2 by tamoxifen (NG2-CreERTM; Tau-mGFP; Olig2 fl/fl) in adult mice to mimic the decreased myelinogenesis caused by hypoxia. The deletion of Olig2 inhibited myelinogenesis and consequently impaired motor coordination, suggesting that myelinogenesis is required for motor function in adult mice. To understand whether enhancing myelination could protect brain functions against hypoxia, we treated hypoxic mice with the myelination-enhancing drug-clemastine, which resulted in enhanced myelogenesis and improved motor coordination. Taken together, our data indicate that chronic hypoxia inhibits myelinogenesis and causes functional deficits in the brain and that enhancing myelinogenesis protects brain functions against hypoxia-related deficits.
Collapse
Affiliation(s)
- Lin Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Shu-Yu Ren
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Rui-Xue Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Kun Liu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Jing-Fei Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Yu-Jian Yang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Yong-Bin Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University, Chongqing, 400014, China
| | - Han-Zhi Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Feng Mei
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China.
| | - Fei Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
26
|
Apelin-13 attenuates injury following ischemic stroke by targeting matrix metalloproteinases (MMP), endothelin- B receptor, occludin/claudin-5 and oxidative stress. J Chem Neuroanat 2021; 118:102015. [PMID: 34454018 DOI: 10.1016/j.jchemneu.2021.102015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Oxidative stress, an adverse consequence of brain ischemia-reperfusion injury (IRI), activates matrix metalloproteinase enzymes which cause to destruction of extracellular matrix and tight junction proteins. Oxidative stress during stroke increases serum endothelin-1 and endothelin B receptor (ETBR) expression. Apelin-13, an endogenous peptide, is expressed in numerous tissues that regulate diverse physiological and pathological processes. This study aimed to investigate the effect of intravenous (IV) injection of apelin-13 on cerebral vasogenic edema due to brain IRI. Animals were divided into sham, ischemia, and treat groups. IRI model was induced by middle cerebral artery occlusion (MCAO) for 60 min followed by 23 h reperfusion. Apelin-13 was injected into the tail vein 5 min before reperfusion. Neurological defects were evaluated with longa test. Brain water content and BBB permeability were assessed according to cerebral dry-wet weight and brain Evans blue extraction. Malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were measured using the colorimetric method. Expression of occludin and claudin-5, matrix metalloproteinase- 2 and 9 (MMP-2 & 9) and, ETBR were evaluated using Western blot. Brain IRI was associated with BBB breakdowns and vasogenic edema. Apelin-13 significantly reduced BBB permeability and vasogenic edema. Apelin-13 significantly attenuated IRI-related oxidative stress. Apelin-13 decreased expression of mmp-2, 9 and ETBR, prevented from decrement of occludin and claudin-5 expersion, which protected BBB integrity and reduced vasogenic edema. In conclusion, our results have suggested that an IV injection of apelin-13 could somehow reduce vasogenic edema via targeting oxidative stress and ETBR expression.
Collapse
|
27
|
Tian Q, Fan X, Ma J, Li D, Han Y, Yin X, Wang H, Huang T, Wang Z, Shentu Y, Xue F, Du C, Wang Y, Mao S, Fan J, Gong Y. Critical role of VGLL4 in the regulation of chronic normobaric hypoxia-induced pulmonary hypertension in mice. FASEB J 2021; 35:e21822. [PMID: 34314061 DOI: 10.1096/fj.202002650rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
Pulmonary hypertension (PH), a rare but deadly cardiopulmonary disorder, is characterized by extensive remodeling of pulmonary arteries resulting from enhancement of pulmonary artery smooth muscle cell proliferation and suppressed apoptosis; however, the underlying pathophysiological mechanisms remain largely unknown. Recently, epigenetics has gained increasing prominence in the development of PH. We aimed to investigate the role of vestigial-like family member 4 (VGLL4) in chronic normobaric hypoxia (CNH)-induced PH and to address whether it is associated with epigenetic regulation. The rodent model of PH was established by CNH treatment (10% O2 , 23 hours/day). Western blot, quantitative reverse transcription polymerase chain reaction, immunofluorescence, immunoprecipitation, and adeno-associated virus tests were performed to explore the potential mechanisms involved in CNH-induced PH in mice. VGLL4 expression was upregulated and correlated with CNH in PH mouse lung tissues in a time-dependent manner. VGLL4 colocalized with α-smooth muscle actin in cultured pulmonary arterial smooth muscle cells (PASMCs), and VGLL4 immunoactivity was increased in PASMCs following hypoxia exposure in vitro. VGLL4 knockdown attenuated CNH-induced PH and pulmonary artery remodeling by blunting signal transducer and activator of transcription 3 (STAT3) signaling; conversely, VGLL4 overexpression exacerbated the development of PH. CNH enhanced the acetylation of VGLL4 and increased the interaction of ac-H3K9/VGLL4 and ac-H3K9/STAT3 in the lung tissues, and levels of ac-H3K9, p-STAT3/STAT3, and proliferation-associated protein levels were markedly up-regulated, whereas apoptosis-related protein levels were significantly downregulated, in the lung tissues of mice with CNH-induced PH. Notably, abrogation of VGLL4 acetylation reversed CNH-induced PH and pulmonary artery remodeling and suppressed STAT3 signaling. Finally, STAT3 knockdown alleviated CNH-induced PH. In conclusion, VGLL4 acetylation upregulation could contribute to CNH-induced PH and pulmonary artery remodeling via STAT3 signaling, and abrogation of VGLL4 acetylation reversed CNH-induced PH. Pharmacological or genetic deletion of VGLL4 might be a potential target for therapeutic interventions in CNH-induced PH.
Collapse
Affiliation(s)
- Qiuyun Tian
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dantong Li
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yujiao Han
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xianghong Yin
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tingting Huang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenglu Wang
- Renji College, Wenzhou Medical University, Wenzhou, China
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Xue
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Congkuo Du
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sunzhong Mao
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Cong L, Lei MY, Liu ZQ, Liu ZF, Ma Z, Liu K, Li J, Deng Y, Liu W, Xu B. Resveratrol attenuates manganese-induced oxidative stress and neuroinflammation through SIRT1 signaling in mice. Food Chem Toxicol 2021; 153:112283. [PMID: 34029668 DOI: 10.1016/j.fct.2021.112283] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022]
Abstract
Exposure to excess levels of manganese (Mn) leads to neurotoxicity. Increasing evidence demonstrates that oxidative stress and neuroinflammation are important pathological causes of neurotoxicity. Resveratrol (Rsv), a sirtuin-1 (SIRT1) activator, plays an important role in neuroprotection. However, the molecular mechanisms of Rsv alleviating Mn-induced oxidative stress and neuroinflammation are not fully understood. To evaluate whether Rsv treatment relieves the oxidative stress and neuroinflammation in the hippocampus after Mn exposure through SIRT1 signaling, C57BL/6 adult mice were exposed to MnCl2 (200 μmol/kg), Rsv (30 mg/kg), and EX527 (5 mg/kg). Our results showed that administering MnCl2 for 6 weeks caused behavioral impairment and nerve cell injury in hippocampal tissue, which was related to oxidative stress and neuroinflammation. Activating Mn-induced JNK and inhibiting SIRT1 increased the phosphorylated and acetylated levels of NF-κB and STAT3, respectively. However, Rsv reduced the phosphorylated and acetylated levels of NF-κB and STAT3, and attenuated Mn-induced oxidative stress and inflammatory cytokines by activating SIRT1 signaling. Most importantly, EX527, a potent SIRT1 inhibitor, inactivated SIRT1, which prevented Rsv from exerting its beneficial effects. Taken together, our findings revealed that Rsv alleviated Mn-induced oxidative stress and neuroinflammation in adult mice by activating SIRT1.
Collapse
Affiliation(s)
- Lin Cong
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Meng-Yu Lei
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Zhi-Qi Liu
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Zhuo-Fan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Jing Li
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China.
| |
Collapse
|
29
|
Zhou JX, Shuai NN, Wang B, Jin X, Kuang X, Tian SW. Neuroprotective gain of Apelin/APJ system. Neuropeptides 2021; 87:102131. [PMID: 33640616 DOI: 10.1016/j.npep.2021.102131] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Apelin is an endogenous ligand of G protein-coupled receptor APJ. In recent years, many studies have shown that the apelin/APJ system has neuroprotective properties, such as anti-inflammatory, anti-oxidative stress, anti-apoptosis, and regulating autophagy, blocking excitatory toxicity. Apelin/APJ system has been proven to play a role in various neurological diseases and may be a promising therapeutic target for nervous system diseases. In this paper, the neuroprotective properties of the apelin/APJ system and its role in neurologic disorders are reviewed. Further understanding of the pathophysiological effect and mechanism of the apelin/APJ system in the nervous system will help develop new therapeutic interventions for various neurological diseases.
Collapse
Affiliation(s)
- Jia-Xiu Zhou
- Department of Anesthesiology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong 518109, PR China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Nian-Nian Shuai
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Bo Wang
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Jin
- Department of Anesthesiology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Kuang
- Department of Anesthesiology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong 518109, PR China.
| | - Shao-Wen Tian
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, PR China.
| |
Collapse
|
30
|
Damián JP, Vázquez Alberdi L, Canclini L, Rosso G, Bravo SO, Martínez M, Uriarte N, Ruiz P, Calero M, Di Tomaso MV, Kun A. Central Alteration in Peripheral Neuropathy of Trembler-J Mice: Hippocampal pmp22 Expression and Behavioral Profile in Anxiety Tests. Biomolecules 2021; 11:biom11040601. [PMID: 33921657 PMCID: PMC8074002 DOI: 10.3390/biom11040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) type 1 disease is the most common human hereditary demyelinating neuropathy. Mutations in pmp22 cause about 70% of all CMT1. Trembler-J (TrJ/+) mice are an animal model of CMT1E, having the same spontaneous pmp22 mutation that is found in humans. We compared the behavior profile of TrJ/+ and +/+ (wild-type) in open-field and elevated-plus-maze anxiety tests. In these tests, TrJ/+ showed an exclusive head shake movement, a lower frequency of rearing, but a greater frequency of grooming. In elevated-plus-maze, TrJ/+ defecate more frequently, performed fewer total entries, and have fewer entries to closed arms. These hippocampus-associated behaviors in TrJ/+ are consistent with increased anxiety levels. The expression of pmp22 and soluble PMP22 were evaluated in E17-hippocampal neurons and adult hippocampus by in situ hybridization and successive immunohistochemistry. Likewise, the expression of pmp22 was confirmed by RT-qPCR in the entire isolated hippocampi of both genotypes. Moreover, the presence of aggregated PMP22 was evidenced in unmasked granular hippocampal adult neurons and shows genotypic differences. We showed for the first time a behavior profile trait associated with anxiety and a differential expression of pmp22/PMP22 in hippocampal neurons of TrJ/+ and +/+ mice, demonstrating the involvement at the central level in an animal model of peripheral neuropathy (CMT1E).
Collapse
Affiliation(s)
- Juan Pablo Damián
- Unidad de Bioquímica, Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, 11600 Montevideo, Uruguay;
| | - Lucia Vázquez Alberdi
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.V.A.); (M.M.)
| | - Lucía Canclini
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.C.); (M.V.D.T.)
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light, Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany;
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Silvia Olivera Bravo
- Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay;
| | - Mariana Martínez
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.V.A.); (M.M.)
| | - Natalia Uriarte
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay;
| | - Paul Ruiz
- Unidad de Biofísica, Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, 11600 Montevideo, Uruguay;
| | - Miguel Calero
- Unidad de Encefalopatías Espongiformes, UFIEC, CIBERNED, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Instituto de Salud Carlos III, 28031 Madrid, Spain;
| | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.C.); (M.V.D.T.)
| | - Alejandra Kun
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay; (L.V.A.); (M.M.)
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Correspondence: ; Tel.: +598-2487-1616; Fax: +598-2487-5461
| |
Collapse
|
31
|
Shentu Y, Tian Q, Yang J, Liu X, Han Y, Yang D, Zhang N, Fan X, Wang P, Ma J, Chen R, Li D, Liu S, Wang Y, Mao S, Gong Y, Du C, Fan J. Upregulation of KDM6B contributes to lipopolysaccharide-induced anxiety-like behavior via modulation of VGLL4 in mice. Behav Brain Res 2021; 408:113305. [PMID: 33865886 DOI: 10.1016/j.bbr.2021.113305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Histone H3K27me3 demethylase KDM6B (also known as Jumonji domain-containing protein D3, JMJD3) plays vital roles in the etiology of inflammatory responses; however, little is known about the role of KDM6B in neuroinflammation-induced anxiety-like behavior. The present study aimed to investigate the potential role of KDM6B in lipopolysaccharide (LPS)-induced anxiety-like behavior and to evaluate whether it is associated with the modulation of vestigial-like family member 4 (VGLL4). The elevated plus maze, light-dark box, and open-field test were performed to test the anxiety-like behavior induced by LPS in C57BL/6 J male mice. Levels of relative protein expression in the hippocampus were quantified by western blotting. KDM6B inhibitor GSK-J4 and microglia inhibitor minocycline as well as adeno-associated virus of Vgll4 shRNA were used to explore the underlying mechanisms. We found that KDM6B, VGLL4, interleukin-1β (IL-1β), and ionized calcium-binding adaptor molecule-1 (Iba-1, microglia marker) protein levels were increased in LPS-dose dependent manner in the hippocampus but not in prefrontal cortex. GSK-J4 treatment attenuated LPS-induced VGLL4, the signal transducer and activator of transcription 3 (STAT3), IL-1β and Iba-1 upregulation and anxiety-like behavior. Knockdown VGLL4 with Vgll4 shRNA prevented the increase of anxiety-like behavior and levels of STAT3, IL-1β, and Iba-1 expression in the hippocampus of LPS-treated mice. Moreover, minocycline, an inhibitor of microglia treatment blunted LPS-induced anxiety-like behavior. Collectively, these results demonstrate that the induction of neuroinflammation by LPS promotes KDM6B activation in the hippocampus, and LPS-induced anxiety-like behavior is associated with upregulation of VGLL4 by KDM6B in the hippocampus.
Collapse
Affiliation(s)
- Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qiuyun Tian
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jinge Yang
- Department of Medical Technology, Jiangxi Medical College, Shangrao, Jiangxi, 334709, China
| | - Xiaoyuan Liu
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yujiao Han
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Dichen Yang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Nan Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ping Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ran Chen
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Dantong Li
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shouting Liu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Sunzhong Mao
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Congkuo Du
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
32
|
Promotion of Momordica Charantia polysaccharides on neural stem cell proliferation by increasing SIRT1 activity after cerebral ischemia/reperfusion in rats. Brain Res Bull 2021; 170:254-263. [PMID: 33647420 DOI: 10.1016/j.brainresbull.2021.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/22/2021] [Accepted: 02/16/2021] [Indexed: 11/24/2022]
Abstract
The deacetylase SIRT1 has been reported to play a critical role in regulating neurogenesis, which may be an adaptive processes contributing to recovery after stroke. Our previous work showed that the antioxidant capacity of Momordica charantia polysaccharides (MCPs) could protect against cerebral ischemia/reperfusion (I/R) after stroke. However, whether the protective effect of MCPs on I/R injury is related to neural stem cell (NSC) proliferation remains unclear. In the present study, we designed invivo and invitro experiments to elucidate the underlying mechanisms by which MCPs promote endogenous NSC proliferation during cerebral I/R. Invivo results showed that MCPs rescued the memory and learning abilities of rats after I/R damage and enhanced NSC proliferation in the rat subventricular zone (SVZ) and subgrannular zone (SGZ) during I/R. Invitro experiments demonstrated that MCPs could stimulate the proliferation of C17.2 cells under oxygen-glucose deprivation (OGD) conditions. Further studies revealed that the proliferation-promoting mechanism of MCPs relied on increasing the activity of SIRT1, decreasing the level of acetylation of β-catenin in the cytoplasm, and then triggering the translocation of β-catenin into the nucleus. These data provide experimental evidence that the up-regulation of SIRT1 activity by MCPs led to an increased cytoplasmic deacetylation of β-catenin, which promoted translocation of β-catenin to the nucleus to participate in the signaling pathway involved in NSC proliferation. The present study reveals that MCPs function as a therapeutic drug to promote stroke recovery by increasing the activity of SIRT1, decreasing the level of acetylated β-catenin, promoting the nuclear translocation of β-catenin and thereby increasing endogenous NSC proliferation.
Collapse
|
33
|
Du S, Shen S, Ding S, Wang L. Suppression of microRNA-323-3p restrains vascular endothelial cell apoptosis via promoting sirtuin-1 expression in coronary heart disease. Life Sci 2021; 270:119065. [PMID: 33460661 DOI: 10.1016/j.lfs.2021.119065] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 01/22/2023]
Abstract
AIMS Coronary heart disease (CHD), a chronic inflammatory condition of vascular endothelial cells (VECs), poses a serious threat to human health. Previous studies have found that microRNAs (miRNAs) are closely related to the occurrence and development of cardiac diseases. Therefore, this study focused on the regulation by miR-323-3p on the progression of CHD. METHODS Initially, we employed microarray-based gene expression profiling of CHD to identify differentially expressed miRNAs. Next, the expression of miR-323-3p and SIRT1 was detected by RT-qPCR in a rat model of CHD generated by feeding with a high-fat diet. The interaction between miR-323-3p and SIRT1 was identified using bioinformatics analysis and dual luciferase reporter gene assay. The expressions of miR-323-3p and SIRT1 were altered in CHD rats and vascular endothelial cells (VECs) to examine the specific effects on CHD. RESULTS miR-323-3p was observed to be highly-expressed in blood samples from patients with CHD or with mild atherosclerosis and in the rat model of CHD. SIRT1 was a target gene of miR-323-3p, which could downregulate SIRT1 expression. miR-323-3p overexpression or SIRT1 inhibition resulted in increased apoptosis of VECs, elevated ac-p65 protein expression and ratio of ac-p65/p65, and upregulated expression of NF-κB signaling pathway-related proteins. Besides, miR-323-3p inhibition or SIRT1 upregulation in the CHD rat model was found to significantly alleviate symptoms and decrease levels of proteins related to the ac-p65 and NF-κB signaling pathways. CONCLUSION Overall, the experimental data provide evidence that miR-323-3p suppression may restrain VEC apoptosis and prevent the resultant CHD progression via SIRT1-inactivatedNF-κB signaling pathway.
Collapse
Affiliation(s)
- Song Du
- Department of Cardiology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, PR China
| | - Shuxin Shen
- Department of Cardiology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, PR China
| | - Shoukun Ding
- Department of Cardiology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, PR China
| | - Lixia Wang
- Department of Cardiology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, PR China.
| |
Collapse
|
34
|
From Obesity to Hippocampal Neurodegeneration: Pathogenesis and Non-Pharmacological Interventions. Int J Mol Sci 2020; 22:ijms22010201. [PMID: 33379163 PMCID: PMC7796248 DOI: 10.3390/ijms22010201] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
High-caloric diet and physical inactivity predispose individuals to obesity and diabetes, which are risk factors of hippocampal neurodegeneration and cognitive deficits. Along with the adipose-hippocampus crosstalk, chronically inflamed adipose tissue secretes inflammatory cytokine could trigger neuroinflammatory responses in the hippocampus, and in turn, impairs hippocampal neuroplasticity under obese and diabetic conditions. Hence, caloric restriction and physical exercise are critical non-pharmacological interventions to halt the pathogenesis from obesity to hippocampal neurodegeneration. In response to physical exercise, peripheral organs, including the adipose tissue, skeletal muscles, and liver, can secret numerous exerkines, which bring beneficial effects to metabolic and brain health. In this review, we summarized how chronic inflammation in adipose tissue could trigger neuroinflammation and hippocampal impairment, which potentially contribute to cognitive deficits in obese and diabetic conditions. We also discussed the potential mechanisms underlying the neurotrophic and neuroprotective effects of caloric restriction and physical exercise by counteracting neuroinflammation, plasticity deficits, and cognitive impairments. This review provides timely insights into how chronic metabolic disorders, like obesity, could impair brain health and cognitive functions in later life.
Collapse
|
35
|
Tian Q, Fan X, Ma J, Han Y, Li D, Jiang S, Zhang F, Guang H, Shan X, Chen R, Wang P, Wang Q, Yang J, Wang Y, Hu L, Shentu Y, Gong Y, Fan J. Resveratrol ameliorates lipopolysaccharide-induced anxiety-like behavior by attenuating YAP-mediated neuro-inflammation and promoting hippocampal autophagy in mice. Toxicol Appl Pharmacol 2020; 408:115261. [PMID: 33010263 DOI: 10.1016/j.taap.2020.115261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Resveratrol, a type of natural polyphenol mainly extracted from the skin of grapes, has been reported to protect against inflammatory responses and exert anxiolytic effect. Yes-associated protein (YAP), a major downstream effector of the Hippo signaling pathway, plays a critical role in inflammation. The present study aimed to explore whether YAP pathway was involved in the anxiolytic effect of resveratrol in lipopolysaccharide (LPS)-treated C57BL/6J male mice. LPS treatment induced anxiety-like behavior and decreased sirtuin 1 while increased YAP expression in the hippocampus. Resveratrol attenuated LPS-induced anxiety-like behavior, which was blocked by EX-527 (a sirtuin 1 inhibitor). Mechanistically, the anxiolytic effects of resveratrol were accompanied by a marked decrease in YAP, interleukin-1β and ionized calcium binding adaptor molecule 1 (Iba-1) while a significant increase in autophagic protein expression in the hippocampus. Pharmacological study using XMU-MP-1, a YAP activator, showed that activating YAP could induce anxiety-like behavior and neuro-inflammation as well as decrease hippocampal autophagy. Moreover, activation of YAP by XMU-MP-1 treatment attenuated the ameliorative effects of resveratrol on LPS-induced anxiety-like behavior, while blockade of YAP activation with verteporfin, a YAP inhibitor, attenuated LPS-induced anxiety-like behavior and neuro-inflammation as well as hippocampal autophagy. Finally, rapamycin-mediated promotion of autophagy attenuated LPS-induced anxiety-like behavior and decreased interleukin-1β and Iba-1 expression in the hippocampus. Collectively, these results indicate that amelioration by resveratrol in LPS-induced anxiety-like behavior is through attenuating YAP-mediated neuro-inflammation and promoting hippocampal autophagy, and suggest that inhibition of YAP pathway could be a potential therapeutic target for anxiety-like behavior induced by neuro-inflammation.
Collapse
Affiliation(s)
- Qiuyun Tian
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yujiao Han
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dantong Li
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shan Jiang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fukun Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hui Guang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoqiong Shan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ran Chen
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ping Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qing Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinge Yang
- Department of Medical Technology, Jiangxi Medical College, Shangrao, Jiangxi 334709, China
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lianggang Hu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
36
|
Lv S, Zhang X, Feng Y, Zhou Y, Cui B, Yang Y, Wang X. Intravenous Administration of Pyroglutamyl Apelin-13 Alleviates Murine Inflammatory Pain via the Kappa Opioid Receptor. Front Neurosci 2020; 14:929. [PMID: 33013308 PMCID: PMC7506098 DOI: 10.3389/fnins.2020.00929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Apelin is an endogenous neuropeptide, which has wide distribution in central nervous system and peripheral tissues. Pyroglutamyl apelin-13 [(pyr)apelin-13] is the major apelin isoform in human plasma. However, the role of peripheral (pyr)apelin-13 in pain regulation is unknown. The aim of this study was to investigate the effect of the peripheral injection of (pyr)apelin-13 on inflammatory pain using the formalin test as well as to evaluate the mechanistic basis for the effect. Results showed intravenous (i.v.) injection of (pyr)apelin-13 (10, 20 mg/kg) to significantly decrease licking/biting time during the second phase of the mouse formalin test. In contrast, i.v. injection of apelin-13 had no influence on such effect. Intramuscular injection of (pyr)apelin-13 reduced licking/biting time during the second phase only at a dose of 20 mg/kg. The antinociception of i.v. (pyr)apelin-13 was antagonized by the apelin receptor (APJ, angiotensin II receptor-like 1) antagonist, apelin-13(F13A). (pyr)apelin-13 (i.v. 20 mg/kg) markedly upregulated Aplnr and Adcy2 gene expression in the prefrontal cortex, whereas Fos gene expression was downregulated. The antinociception of i.v. (pyr)apelin-13 was blocked by the opioid receptor antagonist naloxone and the specific kappa opioid receptor (KOR) antagonist nor-binaltorphimine (nor-BNI). (pyr)Apelin-13 upregulated the dynorphin and KOR gene expression and protein levels in the mouse prefrontal cortex, not in striatum. (pyr)Apelin-13 did not influence the motor behavior. Our results demonstrate that i.v. injection of (pyr)apelin-13 induces antinociception via the KOR in the inflammatory pain mouse model.
Collapse
Affiliation(s)
- Shuangyu Lv
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaomei Zhang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yu Feng
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yuchen Zhou
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Binbin Cui
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yanjie Yang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xinchun Wang
- Key Laboratory of Clinical Resources Translation, The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
37
|
Zhou Y, Tian Q, Zheng C, Yang J, Fan J, Shentu Y. Myocardial infarction-induced anxiety-like behavior is associated with epigenetic alterations in the hippocampus of rat. Brain Res Bull 2020; 164:172-183. [PMID: 32871241 DOI: 10.1016/j.brainresbull.2020.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 01/01/2023]
Abstract
Epidemiological and experimental animal studies indicate that there is a high risk for the incidence of neuropsychiatric disorders suffering from cardiovascular diseases such as myocardial infarction (MI). However, the potential mechanism of this association remains largely unknown. This study sought to evaluate whether epigenetic alterations in the hippocampus is associated with MI-induced anxiety-like behavior in rats. MI was induced by occlusion of the left anterior descending artery in adult female rats. Anxiety-like behavior was examined by elevated plus maze, light-dark box, and open field test. Relative gene and protein levels expression in the hippocampus were tested by qRT-PCR and western blotting, respectively. We found that MI rats exhibited anxiety-like behavior compared with those in controls, and there is a positive correlation between MI and anxiety-like behavior. We also found that MI decreased KDM6B while increased SIRT1 expression in the hippocampus of MI rats relative to those in controls. In addition, MI not only increased levels of IL-1β, bax, and cleaved-caspase 3, but also increased Iba-1 and GFAP expression in the hippocampus, as compared to those in controls, suggesting a promotion of neuro-inflammation and apoptosis in hippocampus. Co-immunoprecipitation assay illustrated that H3K27me3 functioned by counteracting with YAP activation in the hippocampus of MI rats relative to those in controls. Together, these results suggest a potential role of hippocampal epigenetic signaling in MI-induced anxiety-like behavior in rats, and pharmacological targeting KDM6B or SIRT1 could be a strategy to ameliorate anxiety-like behavior induced by MI.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuyun Tian
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chenfei Zheng
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jinge Yang
- Department of Medical Technology, Jiangxi Medical College, Shangrao, Jiangxi, 334709, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
38
|
Lv S, Zhang X, Zhou Y, Feng Y, Yang Y, Wang X. Intrathecally Administered Apelin-13 Alleviated Complete Freund's Adjuvant-Induced Inflammatory Pain in Mice. Front Pharmacol 2020; 11:1335. [PMID: 32982745 PMCID: PMC7485460 DOI: 10.3389/fphar.2020.01335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
Apelin is the endogenous ligand for APJ, a G-protein-coupled receptor. Apelin gene and protein are widely distributed in the central nervous system and peripheral tissues. The role of apelin in chronic inflammatory pain is still unclear. In the present study, a mouse model of complete Freund’s adjuvant (CFA)-induced inflammatory pain was utilized, and the paw withdrawal latency/threshold in response to thermal stimulation and Von Frey filament stimulation were recorded after intrathecal (i.t.) injection of apelin-13 (0.1, 1, and 10 nmol/mouse). The mRNA and protein expression, concentration of glutamic acid (Glu), and number of c-Fos immunol staining in lumbar spinal cord (L4/5) were determined. The results demonstrated that Apln gene expression in the lumbar spinal cord was down-regulated in the CFA pain model. Apelin-13 (10 nmol/mouse, i.t.) alleviated CFA-induced inflammatory pain, and it exhibited a more potent antinociceptive effect than apelin-36 and (pyr)apelin-13. The antinociception of apelin-13 could be blocked by APJ antagonist apelin-13(F13A). I.T. apelin-13 attenuated the increased levels of Aplnr, Grin2b, Camk2d, and c-Fos genes expression, Glu concentration, and NMDA receptor 2B (GluN2B) protein expression caused by CFA. Apelin-13 significantly reduced the number of Fos-positive cells in laminae III and IV/V of the dorsal horn. This study indicated that i.t. apelin-13 exerted an analgesic effect against inflammatory pain, which was mediated by activation of APJ, and inhibition of Glu/GluN2B function and neural activity of the spinal dorsal horn.
Collapse
Affiliation(s)
- Shuangyu Lv
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaomei Zhang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yuchen Zhou
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yu Feng
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yanjie Yang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xinchun Wang
- Key Laboratory of Clinical Resources Translation, The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
39
|
Moraes DS, Moreira DC, Andrade JMO, Santos SHS. Sirtuins, brain and cognition: A review of resveratrol effects. IBRO Rep 2020; 9:46-51. [PMID: 33336103 PMCID: PMC7733131 DOI: 10.1016/j.ibror.2020.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/20/2020] [Indexed: 02/08/2023] Open
Abstract
Sirtuins (SIRTs) are a protein family with high preservation degree among evolutionary scale. SIRTs are histone deacetylases regulatory enzymes of genetic material deeply involved in numerous physiological tasks including metabolism, brain function and aging. Mammals sirtuins comprise seven enzymatic components (SIRT1–SIRT7). The highest studied sirtuin is SIRT1, which plays an essential position in the prevention and evolution of neuro-disorders. Resveratrol (3,5,4-trihydroxystylbene) (RSV) is a polyphenol, which belongs to a family compounds identified as stilbenes, predominantly concentrated in grapes and red wine. RSV is the must studied Sirtuin activator and is used as food supplementary compound. Resveratrol exhibits strong antioxidant activity, reducing free radicals, diminishing quinone-reductase-2 activity and exerting positive regulation of several endogenous enzymes. Resveratrol is also able to inhibit pro-inflammatory factors, reducing the stimulation of the nuclear factor kB (NF-kB) and the release of endogenous cytokines. Resveratrol treatment can modulate multiple signaling pathway effectors related to programmed cell death, cell survival, and synaptic plasticity. In this context, the present review looks over news and the role of Sirtuins activation and resveratrol effects on modulating target genes, cognition and neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel Silva Moraes
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Daniele Cristina Moreira
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil.,Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
40
|
Braidy N, Villalva MD, van Eeden S. Sobriety and Satiety: Is NAD+ the Answer? Antioxidants (Basel) 2020; 9:antiox9050425. [PMID: 32423100 PMCID: PMC7278809 DOI: 10.3390/antiox9050425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that has garnered considerable interest in the last century due to its critical role in cellular processes associated with energy production, cellular protection against stress and longevity. Research in NAD+ has been reinvigorated by recent findings that components of NAD+ metabolism and NAD-dependent enzymes can influence major signalling processes associated with the neurobiology of addiction. These studies implicate raising intracellular NAD+ levels as a potential target for managing and treating addictive behaviour and reducing cravings and withdrawal symptoms in patients with food addiction and/or substance abuse. Since clinical studies showing the use of NAD+ for the treatment of addiction are limited, this review provides literature evidence that NAD+ can influence the neurobiology of addiction and may have benefits as an anti-addiction intervention.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia;
- Correspondence:
| | - Maria D. Villalva
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Sam van Eeden
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
41
|
Lv SY, Chen WD, Wang YD. The Apelin/APJ System in Psychosis and Neuropathy. Front Pharmacol 2020; 11:320. [PMID: 32231577 PMCID: PMC7082832 DOI: 10.3389/fphar.2020.00320] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Apelin, an endogenous neuropeptide, has been identified as the cognate ligand for the G-protein-coupled receptor APJ. Apelin, APJ messenger RNA, and protein are widely expressed in the central nervous system and peripheral tissues of humans and animals. The apelin/APJ system has been implicated in diverse physiological and pathological processes. The present article reviews the progress of the latest research investigating the apelin/APJ system in pain, depression, anxiety, memory, epilepsy, neuroprotection, stroke, and brain injury and protection, and highlights its promising potential as a therapeutic target for treatment of psychosis and neuropathy.
Collapse
Affiliation(s)
- Shuang-Yu Lv
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China.,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
42
|
Fan J, Fan X, Guang H, Shan X, Tian Q, Zhang F, Chen R, Ye F, Quan H, Zhang H, Ding L, Gan Z, Xue F, Wang Y, Mao S, Hu L, Gong Y. Upregulation of miR-335-3p by NF-κB Transcriptional Regulation Contributes to the Induction of Pulmonary Arterial Hypertension via APJ during Hypoxia. Int J Biol Sci 2020; 16:515-528. [PMID: 32015687 PMCID: PMC6990898 DOI: 10.7150/ijbs.34517] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a cardiopulmonary disease that can lead to heart failure and eventually death. MicroRNAs (miRs) play essential roles during PAH progression; however, their exact mechanism of action remains unclear. Apelin is a small bioactive peptide with a key protective function in the pathogenesis of PAH mediated by binding to the APJ gene. The aim of the present study was to investigate the role of miR-335-3p in chronic normobaric hypoxia (CNH)-induced PAH in mice and the potential underlying regulatory mechanism. Adult male C57BL/6 mice were exposed to normoxia (~21% O2) or CNH (~10% O2, 23 h/d) for 5 weeks. MiR-335-3p was significantly increased in lung tissue of CNH-induced PAH mice. Blocking miR-335-3p attenuated CNH-induced PAH and alleviated pulmonary vascular remodeling. Bioinformatics analysis and luciferase reporter assay indicated that nuclear factor-kappa beta (NF-κB) acted as a transcriptional regulator upstream of miR-335-3p. Pyrrolidine dithiocarbamate treatment reversed the CNH-induced increase in miR-335-3p expression and diminished CNH-induced PAH. Moreover, p50-/- mice were resistant to CNH-induced PAH. Finally, APJ was identified as a direct targeting gene downstream of miR-335-3p, and pharmacological activation of APJ by its ligand apelin-13 reduced CNH-induced PAH and improved pulmonary vascular remodeling. Our results indicate that NF-κB-mediated transcriptional upregulation of miR-335-3p contributes to the inhibition of APJ and induction of PAH during hypoxia; hence, miR-335-3p could be a potential therapeutic target for hypoxic PAH.
Collapse
Affiliation(s)
- Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hui Guang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoqiong Shan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qiuyun Tian
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fukun Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ran Chen
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fangzhou Ye
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hui Quan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Haizeng Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lu Ding
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhuohui Gan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Feng Xue
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Sunzhong Mao
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lianggang Hu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
43
|
Domazetovic V, Bonanomi AG, Stio M, Vincenzini MT, Iantomasi T. Resveratrol decreases TNFα-induced ICAM-1 expression and release by Sirt-1-independent mechanism in intestinal myofibroblasts. Exp Cell Res 2019; 382:111479. [DOI: 10.1016/j.yexcr.2019.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023]
|
44
|
Zhou S, Guo X, Chen S, Xu Z, Duan W, Zeng B. Apelin-13 regulates LPS-induced N9 microglia polarization involving STAT3 signaling pathway. Neuropeptides 2019; 76:101938. [PMID: 31255353 DOI: 10.1016/j.npep.2019.101938] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/13/2019] [Accepted: 06/16/2019] [Indexed: 12/20/2022]
Abstract
The process of neurodegenerative diseases has always been accompanied by neuroinflammatory response characterized by microglia activation. Two phenotypes of microglial polarization: the classically activated M1 type and the alternative activated M2 type, have been described. Although apelin-13 has been shown to have neuroprotective effects, its specific mechanism of anti-neuritis is still unclear. The aim of this study was to investigate whether apelin-13 can exert anti-neuroinflammatory effects by regulating the polarization of N9 microglia. MTT assay showed that 0.1 μM apelin-13 (24 h) and 2 μg/mL LPS (6 h) treatment had no significant effect on cell viability of N9 microglia. The combined treatment of Apelin-13 and LPS did not affect the viability of N9 microglia. N9 microglia were pretreated with 0.1 μM apelin-13 for 24 h, followed by incubation with LPS for 6 h. Morphological results indicated that apelin-13 (0.1 μM) inhibited LPS-induced N9 microglial activation as observed by smaller soma and slender process compared to LPS-treated group. Western blot confirmed that apelin-13 decreased the level of proinflammatory factor iNOS, IL-6 and up-regulated the level of anti-inflammatory factor arg-1 and IL-10 in N9 microglia. Flow cytometry revealed that apelin-13 inhibited the expression of M1 microglia activation marker CD86 and up-regulated the expression of M2 marker CD206. Furthermore, the data displayed that apelin-13 decreased the expression of p-STAT3 and the radio of p-STAT3/t-STAT3 in M1-type N9 microglia induced by LPS. In conclusion, our results indicated apelin-13 ameliorated neuroinflammation by shifting N9 microglial M1 polarization toward the M2 phenotype, the underlying mechanism of which may be related to STAT3 signals.
Collapse
Affiliation(s)
- Shouhong Zhou
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Xiaoxiao Guo
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Shanshan Chen
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Ziwei Xu
- Department of Gastroenterology, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Wuxia Duan
- Department of Gastroenterology, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Bin Zeng
- Department of Gastroenterology, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
45
|
Le K, Chibaatar Daliv E, Wu S, Qian F, Ali AI, Yu D, Guo Y. SIRT1-regulated HMGB1 release is partially involved in TLR4 signal transduction: A possible anti-neuroinflammatory mechanism of resveratrol in neonatal hypoxic-ischemic brain injury. Int Immunopharmacol 2019; 75:105779. [PMID: 31362164 DOI: 10.1016/j.intimp.2019.105779] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
Neonatal hypoxic-ischemic brain injury (HIBI) is a knotty disease that lacks appropriate treatment. Inflammation is an important contributor to brain damage, and microglia are responsible for eliciting early and pronounced inflammatory reactions in the immature brain after hypoxic-ischemic (HI) insult. Acetylated HMGB1 can be released from immune cells into the extracellular space, where it acts as a danger-associated molecular pattern molecule to activate TLR4 signalling-mediated inflammatory responses. Resveratrol has neuroprotective and anti-inflammatory effects against HIBI, but whether these effects involve the regulation of the TLR4 signalling pathway and whether HMGB1 participates in this process is still unclear. We investigated the anti-inflammatory effects of resveratrol in HIBI and the molecular mechanisms potentially involved in the effect. The in vivo and in vitro results indicated that the level of cytoplasmic HMGB1 in microglia increased after insult and that treating experimental animals or mouse BV2 microglial cells with resveratrol attenuated HI insult-induced neuroinflammation, which was characterized by improved behavioural defects, reduced microglial activation and TLR4/MyD88/NF-κB signalling, and attenuated primary neuronal damage; this was accompanied by the inhibition of HMGB1 nucleoplasmic transfer and extracellular release. EX527 pretreatment reversed these effects. In addition, co-immunoprecipitation confirmed that SIRT1 was directly involved in the HMGB1 acetylation process in BV2 cells after oxygen glucose deprivation. These data demonstrate that resveratrol plays a neuroprotective role in neonatal HIBI by activating SIRT1 to inhibit HMGB1/TLR4/MyD88/NF-κB signalling and subsequent neuroinflammatory responses.
Collapse
Affiliation(s)
- Kai Le
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China; School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Enkhmurun Chibaatar Daliv
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China; School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Shanshan Wu
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China; School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Fangyuan Qian
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China; School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Abdoulaye Idriss Ali
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China; School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Dafan Yu
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China; School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Yijing Guo
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China.
| |
Collapse
|
46
|
Liu T, Ma Y, Zhang R, Zhong H, Wang L, Zhao J, Yang L, Fan X. Resveratrol ameliorates estrogen deficiency-induced depression- and anxiety-like behaviors and hippocampal inflammation in mice. Psychopharmacology (Berl) 2019; 236:1385-1399. [PMID: 30607478 DOI: 10.1007/s00213-018-5148-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE Resveratrol (RSV) has been indicated to exhibit beneficial effects on depression and anxiety treatment by suppression of inflammatory processes. Depression triggered by deficiency of estrogen and anxiety-like behaviors are associated with inflammation. The role of RSV in ovariectomized mice is unclear. OBJECTIVES We examine whether the RSV, a Sirt1 activator, alleviates ovariectomy-induced anxiety- and depression-like behaviors through the inhibition of inflammatory processes. METHODS Female C57BL/6J mice (6-8 weeks of age, 17-20 g) were ovariectomized and treated with RSV at a dose of 20 mg/kg for 2 weeks. Depression- and anxiety-like behaviors were compared with vehicle-injected control animals. Immunohistochemistry and qPCR were used to detect inflammation in the hippocampal region. RESULTS Ovariectomized mice were observed to suffer from anxiety- and depression-like behaviors. These effects were attenuated by treatment with RSV. Immunohistochemical staining results showed that RSV could reverse the increase of microglial activation in the hippocampal dentate gyrus. At a molecular level, RSV inhibited the activation of NLRP3 and NF-κB in the hippocampal region caused by deficiency of estrogen. CONCLUSIONS RSV suppressed the production of inflammatory cytokines by enhancing Sirt1 levels. Our findings indicated that RSV-induced Sirt1 activation counteracted estrogen deficiency-induced psychobehavioral changes via inhibition of inflammatory processes in the hippocampus. In anxiety and depression disorders, RSV is supposed to be an effective treatment for postmenopausal changes.
Collapse
Affiliation(s)
- Tianyao Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Yuanyuan Ma
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Ruiyu Zhang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Hongyu Zhong
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Lian Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Jinghui Zhao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Ling Yang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
47
|
On the Relationships between LncRNAs and Other Orchestrating Regulators: Role of the Circadian System. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2020009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|