1
|
Dai Y, Cheng Y, Ge R, Chen K, Yang L. Exercise-induced adaptation of neurons in the vertebrate locomotor system. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:160-171. [PMID: 37914153 PMCID: PMC10980905 DOI: 10.1016/j.jshs.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli. In particular, how these neurons respond to physical exercise has long been an area of active research. Studies of the vertebrate locomotor system's adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise. In this brief review, we highlight recent results and insights from the field with a focus on the following mechanisms: (a) alterations in neuronal excitability during acute exercise; (b) alterations in neuronal excitability after chronic exercise; (c) exercise-induced changes in neuronal membrane properties via modulation of ion channel activity; (d) exercise-enhanced dendritic plasticity; and (e) exercise-induced alterations in neuronal gene expression and protein synthesis. Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.
Collapse
Affiliation(s)
- Yue Dai
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China.
| | - Yi Cheng
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| | - Renkai Ge
- School of Physical Education and Health Care, East China Jiaotong University, Nanchang 330013, China
| | - Ke Chen
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing 100871, China
| | - Liming Yang
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Shimizu N, Saito T, Wada N, Hashimoto M, Shimizu T, Kwon J, Cho KJ, Saito M, Karnup S, de Groat WC, Yoshimura N. Molecular Mechanisms of Neurogenic Lower Urinary Tract Dysfunction after Spinal Cord Injury. Int J Mol Sci 2023; 24:7885. [PMID: 37175592 PMCID: PMC10177842 DOI: 10.3390/ijms24097885] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
This article provides a synopsis of current progress made in fundamental studies of lower urinary tract dysfunction (LUTD) after spinal cord injury (SCI) above the sacral level. Animal models of SCI allowed us to examine the effects of SCI on the micturition control and the underlying neurophysiological processes of SCI-induced LUTD. Urine storage and elimination are the two primary functions of the LUT, which are governed by complicated regulatory mechanisms in the central and peripheral nervous systems. These neural systems control the action of two functional units in the LUT: the urinary bladder and an outlet consisting of the bladder neck, urethral sphincters, and pelvic-floor striated muscles. During the storage phase, the outlet is closed, and the bladder is inactive to maintain a low intravenous pressure and continence. In contrast, during the voiding phase, the outlet relaxes, and the bladder contracts to facilitate adequate urine flow and bladder emptying. SCI disrupts the normal reflex circuits that regulate co-ordinated bladder and urethral sphincter function, leading to involuntary and inefficient voiding. Following SCI, a spinal micturition reflex pathway develops to induce an overactive bladder condition following the initial areflexic phase. In addition, without proper bladder-urethral-sphincter coordination after SCI, the bladder is not emptied as effectively as in the normal condition. Previous studies using animal models of SCI have shown that hyperexcitability of C-fiber bladder afferent pathways is a fundamental pathophysiological mechanism, inducing neurogenic LUTD, especially detrusor overactivity during the storage phase. SCI also induces neurogenic LUTD during the voiding phase, known as detrusor sphincter dyssynergia, likely due to hyperexcitability of Aδ-fiber bladder afferent pathways rather than C-fiber afferents. The molecular mechanisms underlying SCI-induced LUTD are multifactorial; previous studies have identified significant changes in the expression of various molecules in the peripheral organs and afferent nerves projecting to the spinal cord, including growth factors, ion channels, receptors and neurotransmitters. These findings in animal models of SCI and neurogenic LUTD should increase our understanding of pathophysiological mechanisms of LUTD after SCI for the future development of novel therapies for SCI patients with LUTD.
Collapse
Affiliation(s)
- Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
- Pelvic Floor Center, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Tetsuichi Saito
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Mamoru Hashimoto
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Takahiro Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Joonbeom Kwon
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Kang Jun Cho
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Chen K, Dai Y. Chronic exercise increases excitability of lamina X neurons through enhancement of persistent inward currents and dendritic development in mice. J Physiol 2022; 600:3775-3793. [PMID: 35848453 DOI: 10.1113/jp283037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Chronic exercise alters adaptability of spinal motor system in rodents. Multiple mechanisms are responsible for the adaptation, including regulation of neuronal excitability and change in dendritic morphology. Spinal interneurons in lamina X are a cluster of heterogeneous neurons playing multifunctional roles in the spinal cord, especially in regulating locomotor activity. Chronic exercise in juvenile mice increased excitability of these interneurons and facilitated dendritic development. Mechanisms underlying these changes remain unknown. Lamina X neurons expressed persistent inward currents (PICs) composed of calcium (Ca-PIC) and sodium (Na-PIC) components. The exercise-increased excitability of lamina X neurons was mediated by enhancing Ca-PIC and Na-PIC components and facilitating dendritic length. Na-PIC contributed more to lowering of PIC onset and Ca-PIC to increase of PIC amplitude. This study unveiled novel morphological and ionic mechanisms underlying adaptation of lamina X neurons in rodents during chronic exercise. ABSTRACT Chronic exercise has been shown to enhance excitability of spinal interneurons in rodents. However, the mechanisms underlying this enhancement remain unclear. In this study we investigated adaptability of lamina X neurons with three-week treadmill exercise in mice of P21-P24. Whole-cell path-clamp recording was performed on the interneurons from slices of T12-L4. The experimental results included: (1) Treadmill exercise reduced rheobase by 7.4±2.2 pA (control: 11.3±6.1 pA, n = 12; exercise: 3.8±4.6 pA, n = 13; P = 0.002) and hyperpolarized voltage threshold by 7.1±1.5 mV (control: -36.6±4.6 mV, exercise: -43.7±2.7 mV; P = 0.001). (2) Exercise enhanced persistent inward currents (PICs) with increase of amplitude (control: 140.6±56.3 pA, n = 25; exercise: 225.9±62.5 pA, n = 17; P = 0.001) and hyperpolarization of onset (control: -50.3±3.6 mV, exercise: -56.5±5.5 mV; P = 0.001). (3) PICs consisted of dihydropyridine-sensitive calcium (Ca-PIC) and tetrodotoxin-sensitive sodium (Na-PIC) components. Exercise increased amplitude of both components but hyperpolarized onset of Na-PIC only. (4) Exercise reduced derecruitment current of repetitive firing evoked by current bi-ramp and prolonged firing in falling phase of the bi-ramp. The derecruitment reduction was eliminated by bath application of 3 μM riluzole or 25 μM nimodipine, suggesting that both Na-PIC and Ca-PIC contributed to the exercise-prolonged hysteresis of firing. (5) Exercise facilitated dendritic development with significant increase in dendritic length by 285.1±113 μm (control: 457.8±171.8 μm, n = 12; exercise: 742.9±357 μm, n = 14; P = 0.019). We concluded that three-week treadmill exercise increased excitability of lamina X interneurons through enhancement of PICs and increase of dendritic length. This study provided insight into cellular and channel mechanisms underlying adaptation of the spinal motor system in exercise. Abstract figure legend A. B6 mice were randomly divided into control group and exercise group. Control group mice remained sedentary in the cage; exercise group mice completed 60 min treadmill runs each day (6 days/week) for a period of 3 weeks. B. Whole-cell patch clamp recordings were made from lumbar lamina X neurons after three-weeks exercise. C. Exercise facilitated development of dendrites of lamina X neurons. D. Exercise enhanced persistent inward currents. E. Exercise increased excitability of lamina X neurons by hyperpolarizing voltage threshold for action potential generation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ke Chen
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China
| | - Yue Dai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, 200241, China.,Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
4
|
Wada N, Karnup S, Kadekawa K, Shimizu N, Kwon J, Shimizu T, Gotoh D, Kakizaki H, de Groat W, Yoshimura N. Current knowledge and novel frontiers in lower urinary tract dysfunction after spinal cord injury: Basic research perspectives. UROLOGICAL SCIENCE 2022; 33:101-113. [PMID: 36177249 PMCID: PMC9518811 DOI: 10.4103/uros.uros_31_22] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
This review article aims to summarize the recent advancement in basic research on lower urinary tract dysfunction (LUTD) following spinal cord injury (SCI) above the sacral level. We particularly focused on the neurophysiologic mechanisms controlling the lower urinary tract (LUT) function and the SCI-induced changes in micturition control in animal models of SCI. The LUT has two main functions, the storage and voiding of urine, that are regulated by a complex neural control system. This neural system coordinates the activity of two functional units in the LUT: the urinary bladder and an outlet including bladder neck, urethra, and striated muscles of the pelvic floor. During the storage phase, the outlet is closed and the bladder is quiescent to maintain a low intravesical pressure and continence, and during the voiding phase, the outlet relaxes and the bladder contracts to promote efficient release of urine. SCI impairs voluntary control of voiding as well as the normal reflex pathways that coordinate bladder and sphincter function. Following SCI, the bladder is initially areflexic but then becomes hyperreflexic due to the emergence of a spinal micturition reflex pathway. However, the bladder does not empty efficiently because coordination between the bladder and urethral sphincter is lost. In animal models of SCI, hyperexcitability of silent C-fiber bladder afferents is a major pathophysiological basis of neurogenic LUTD, especially detrusor overactivity. Reflex plasticity is associated with changes in the properties of neuropeptides, neurotrophic factors, or chemical receptors of afferent neurons. Not only C-fiber but also Aδ-fiber could be involved in the emergence of neurogenic LUTD such as detrusor sphincter dyssynergia following SCI. Animal research using disease models helps us to detect the different contributing factors for LUTD due to SCI and to find potential targets for new treatments.
Collapse
|
5
|
Lee JH, Kim W. Involvement of Serotonergic System in Oxaliplatin-Induced Neuropathic Pain. Biomedicines 2021; 9:970. [PMID: 34440174 PMCID: PMC8394518 DOI: 10.3390/biomedicines9080970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Oxaliplatin is a chemotherapeutic agent widely used against colorectal and breast cancers; however, it can also induce peripheral neuropathy that can rapidly occur even after a single infusion in up to 80-90% of treated patients. Numerous efforts have been made to understand the underlying mechanism and find an effective therapeutic agent that could diminish pain without damaging its anti-tumor effect. However, its mechanism is not yet clearly understood. The serotonergic system, as part of the descending pain inhibitory system, has been reported to be involved in different types of pain. The malfunction of serotonin (5-hydroxytryptamine; 5-HT) or its receptors has been associated with the development and maintenance of pain. However, its role in oxaliplatin-induced neuropathy has not been clearly elucidated. In this review, 16 in vivo studies focused on the role of the serotonergic system in oxaliplatin-induced neuropathic pain were analyzed. Five studies analyzed the involvement of 5-HT, while fourteen studies observed the role of its receptors in oxaliplatin-induced allodynia. The results show that 5-HT is not involved in the development of oxaliplatin-induced allodynia, but increasing the activity of the 5-HT1A, 5-HT2A, and 5-HT3 receptors and decreasing the action of 5-HT2C and 5-HT6 receptors may help inhibit pain.
Collapse
Affiliation(s)
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
| |
Collapse
|
6
|
Saito T, Gotoh D, Wada N, Tyagi P, Minagawa T, Ogawa T, Ishizuka O, Yoshimura N. Time-dependent progression of neurogenic lower urinary tract dysfunction after spinal cord injury in the mouse model. Am J Physiol Renal Physiol 2021; 321:F26-F32. [PMID: 33969698 DOI: 10.1152/ajprenal.00622.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the time-course changes in bladder and external urinary sphincter (EUS) activity and the expression of mechanosensitive channels in lumbosacral dorsal root ganglia (DRG) after spinal cord injury (SCI). Female C57BL/6N mice in the SCI group underwent transection of the Th8/9 spinal cord. Spinal intact mice and SCI mice at 2, 4, and 6 wk post-SCI were evaluated by single-filling cystometry and EUS-electromyography (EMG). In another set of mice, the bladder and L6-S1 DRG were harvested for protein and mRNA analyses. In SCI mice, nonvoiding contractions were confirmed at 2 wk post-SCI and did not increase over time to 6 wk. In 2-wk SCI mice, EUS-EMG measurements revealed detrusor sphincter dyssynergia, but periodic EMG reductions during bladder contraction were hardly observed. At 4 wk, SCI mice showed increases of EMG activity reduction time with increased voiding efficiency. At 6 wk, SCI mice exhibited a further increase in EMG reduction time. RT-PCR of L6-S1 DRG showed increased mRNA levels of transient receptor potential vanilloid 1 and acid-sensing ion channels (ASIC1-ASIC3) in SCI mice with a decrease of ASIC2 and ASIC3 at 6 wk compared with 4 wk, whereas Piezo2 showed a slow increase at 6 wk. Protein assay showed SCI-induced overexpression of bladder brain-derived neurotrophic factor with a time-dependent decrease post-SCI. These results indicate that detrusor overactivity is established in the early phase, whereas detrusor sphincter dyssynergia is completed later at 4 wk with an improvement at 6 wk post-SCI, and that mechanosensitive channels may be involved in the time-dependent changes.NEW & NOTEWORTHY This is the first paper to evaluate the time-course changes of bladder dysfunction associated with mechanosensitive channels in a mouse model.
Collapse
Affiliation(s)
- Tetsuichi Saito
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Daisuke Gotoh
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tomonori Minagawa
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Teruyuki Ogawa
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Osamu Ishizuka
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Deng SY, Tang XC, Chang YC, Xu ZZ, Chen QY, Cao N, Kong LJY, Wang Y, Ma KT, Li L, Si JQ. Improving NKCC1 Function Increases the Excitability of DRG Neurons Exacerbating Pain Induced After TRPV1 Activation of Primary Sensory Neurons. Front Cell Neurosci 2021; 15:665596. [PMID: 34113239 PMCID: PMC8185156 DOI: 10.3389/fncel.2021.665596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background Our aim was to investigate the effects of the protein expression and the function of sodium, potassium, and chloride co-transporter (NKCC1) in the dorsal root ganglion (DRG) after activation of transient receptor potential vanilloid 1 receptor (TRPV1) in capsaicin-induced acute inflammatory pain and the possible mechanism of action. Methods Male Sprague–Dawley rats were randomly divided into control, capsaicin, and inhibitor groups. The expression and distribution of TRPV1 and NKCC1 in rat DRG were observed by immunofluorescence. Thermal radiation and acetone test were used to detect the pain threshold of heat and cold noxious stimulation in each group. The expressions of NKCC1 mRNA, NKCC1 protein, and p-NKCC1 in the DRG were detected by PCR and western blotting (WB). Patch clamp and chloride fluorescent probe were used to observe the changes of GABA activation current and intracellular chloride concentration. After intrathecal injection of protein kinase C (PKC) inhibitor (GF109203X) or MEK/extracellular signal-regulated kinase (ERK) inhibitor (U0126), the behavioral changes and the expression of NKCC1 and p-ERK protein in L4–6 DRG were observed. Result: TRPV1 and NKCC1 were co-expressed in the DRG. Compared with the control group, the immunofluorescence intensity of NKCC1 and p-NKCC1 in the capsaicin group was significantly higher, and the expression of NKCC1 in the nuclear membrane was significantly higher than that in the control group. The expression of NKCC1 mRNA and protein of NKCC1 and p-NKCC1 in the capsaicin group were higher than those in the control group. After capsaicin injection, GF109203X inhibited the protein expression of NKCC1 and p-ERK, while U0126 inhibited the protein expression of NKCC1. In the capsaicin group, paw withdrawal thermal latency (WTL) was decreased, while cold withdrawal latency (CWL) was prolonged. Bumetanide, GF109203X, or U0126 could reverse the effect. GABA activation current significantly increased in the DRG cells of the capsaicin group, which could be reversed by bumetanide. The concentration of chloride in the DRG cells of the capsaicin group increased, but decreased after bumetanide, GF109203X, and U0126 were administered. Conclusion Activation of TRPV1 by exogenous agonists can increase the expression and function of NKCC1 protein in DRG, which is mediated by activation of PKC/p-ERK signaling pathway. These results suggest that DRG NKCC1 may participate in the inflammatory pain induced by TRPV1.
Collapse
Affiliation(s)
- Shi-Yu Deng
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,Department of Anesthesia, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xue-Chun Tang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Cardiology, First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Yue-Chen Chang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Medical Teaching Experimental Center, Shihezi University Medical College, Shihezi, China
| | - Zhen-Zhen Xu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin-Yi Chen
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Xiangyang Central Hospital, China
| | - Nan Cao
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Liang-Jing-Yuan Kong
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yang Wang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ke-Tao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Li Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Physiology, Medical College of Jiaxing University, Jiaxing, China
| | - Jun-Qiang Si
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
8
|
Ferrarini EG, Gonçalves ECD, Ferrareis Menegasso J, Rabelo BD, Felipetti FA, Dutra RC. Exercise Reduces Pain and Deleterious Histological Effects in Fibromyalgia-like Model. Neuroscience 2021; 465:46-59. [PMID: 33945796 DOI: 10.1016/j.neuroscience.2021.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Fibromyalgia (FM) is characterized by chronic pain and associated comorbidities such as fatigue, anxiety, depression, and sleep disorders. There is a large amount of evidence regarding the benefits of physical exercise in controlling chronic pain. However, there is no consensus on which exercise modality is most suitable and the real benefits of this intervention to treat FM symptoms. The present study investigated the analgesic and antidepressant effects and morphophysiological responses induced by different physical exercise (aerobic and strength protocols) during the experimental model of FM. Spontaneous pain, mechanical hyperalgesia, thermal allodynia, depression-related behavior, and locomotor activity were evaluated weekly, as well as the morphological evaluation of the spinal cord and dorsal root ganglion. Aerobic and strength training protocols consistently abolished nociceptive behaviors, reducing spontaneous pain scores, cold allodynia, and frequency of response to mechanical hyperalgesia. The strength exercise modulated the depressive-like behavior. Finally, our data demonstrated that physical exercise performed for two weeks increased the number of glial cells in the dorsal root horn. However, it was not sufficient to control the other deleterious effects of the reserpine model on the spinal cord and the dorsal root. Together, these results demonstrated that different physical exercise modalities, when performed regularly in mice, proved to be effective and safe non-pharmacological alternatives for the treatment of FM. However, some gaps have yet to be studied regarding the neuroadaptive effects of physical exercise.
Collapse
Affiliation(s)
- Eduarda Gomes Ferrarini
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Elaine Cristina Dalazen Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Jaíne Ferrareis Menegasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil
| | - Bruna Daniel Rabelo
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil
| | - Francielly Andressa Felipetti
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil.
| |
Collapse
|
9
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
10
|
Domocos D, Selescu T, Ceafalan LC, Iodi Carstens M, Carstens E, Babes A. Role of 5-HT1A and 5-HT3 receptors in serotonergic activation of sensory neurons in relation to itch and pain behavior in the rat. J Neurosci Res 2020; 98:1999-2017. [PMID: 32537854 DOI: 10.1002/jnr.24633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/29/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) released by platelets, mast cells, and immunocytes is a potent inflammatory mediator which modulates pain and itch sensing in the peripheral nervous system. The serotonergic receptors expressed by primary afferent neurons involved in these sensory functions are not fully identified and appear to be to a large extent species dependent. Moreover, the mechanisms through which 5-HT receptor activation is coupled to changes in neuronal excitability have not been completely revealed. Using a combination of in vitro (calcium and voltage imaging and patch-clamp) and in vivo behavioral methods, we used both male and female Wistar rats to provide evidence for the involvement of two 5-HT receptor subtypes, 5-HT1A and 5-HT3, in mediating the sustained and transient effects, respectively, of 5-HT on rat primary afferent neurons involved in pain and itch processing. In addition, our results are consistent with a model in which sustained serotonergic responses triggered via the 5-HT1A receptor are due to closure of background potassium channels, followed by membrane depolarization and action potentials, during which the activation of voltage-gated calcium channels leads to calcium entry. Our results may provide a better understanding of mammalian serotonergic itch signaling.
Collapse
Affiliation(s)
- Dan Domocos
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Tudor Selescu
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Laura Cristina Ceafalan
- Cell Biology, Neuroscience and Experimental Myology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania.,Department of Cellular & Molecular Biology and Histology, School of Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Mirela Iodi Carstens
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Earl Carstens
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Alexandru Babes
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
11
|
Wada N, Yoshimura N, Kurobe M, Saito T, Tyagi P, Kakizaki H. The early, long‐term inhibition of brain‐derived neurotrophic factor improves voiding, and storage dysfunctions in mice with spinal cord injury. Neurourol Urodyn 2020; 39:1345-1354. [DOI: 10.1002/nau.24385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Naoki Wada
- Department of Renal and Urologic SurgeryAsahikawa Medical UniversityAsahikawa Japan
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburgh Pennsylvania
| | - Naoki Yoshimura
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburgh Pennsylvania
| | - Masahiro Kurobe
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburgh Pennsylvania
| | - Tetsuichi Saito
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburgh Pennsylvania
| | - Pradeep Tyagi
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburgh Pennsylvania
| | - Hidehiro Kakizaki
- Department of Renal and Urologic SurgeryAsahikawa Medical UniversityAsahikawa Japan
| |
Collapse
|
12
|
Wada N, Shimizu T, Shimizu N, Kurobe M, de Groat WC, Tyagi P, Kakizaki H, Yoshimura N. Therapeutic effects of inhibition of brain-derived neurotrophic factor on voiding dysfunction in mice with spinal cord injury. Am J Physiol Renal Physiol 2019; 317:F1305-F1310. [PMID: 31566429 DOI: 10.1152/ajprenal.00239.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated the involvement of brain-derived neurotrophic factor (BDNF) in bladder and urethral dysfunction using spinal cord-injured mice. We evaluated bladder and urethral function of female mice with 4-wk spinal cord injury (SCI) by filling cystometry and electromyography (EMG) of the external urethral sphincter (EUS) under a conscious condition. Anti-BDNF antibodies (10 μg·kg-1·h-1) were administered in some mice for 1 wk before the evaluation. Bladder and spinal (L6-S1) BDNF protein levels were examined by ELISA. Transcript levels of transient receptor potential channels or acid-sensing ion channels (Asic) in L6-S1 dorsal root ganglia were evaluated by RT-PCR. Voided volume and voiding efficiency were significantly increased without any changes in nonvoiding contractions, and the duration of reduced EMG activity during the voiding phase was significantly prolonged in anti-BDNF antibody-treated SCI mice. Compared with spinal cord-intact mice, SCI mice showed increased concentrations of bladder and spinal BDNF. Anti-BDNF antibody treatment decreased bladder and spinal BDNF protein concentrations of SCI mice. Asic2 and Asic3 transcripts were significantly increased after SCI but decreased after anti-BDNF antibody administration. These results indicate that upregulated expression of bladder and spinal BDNF is involved in the emergence of inefficient voiding in SCI mice. Thus, BDNF-targeting treatment could be an effective modality for the treatment of voiding problems, including inefficient voiding and detrusor sphincter dyssynergia after SCI.
Collapse
Affiliation(s)
- Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takahiro Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Masahiro Kurobe
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hidehiro Kakizaki
- Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Three-week treadmill training changes the electrophysiological properties of spinal interneurons in the mice. Exp Brain Res 2019; 237:2925-2938. [PMID: 31494682 DOI: 10.1007/s00221-019-05647-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
It was shown in previous studies that endurance training enhanced excitability of rat spinal motoneurons. However, the influence of the training on the spinal interneurons remains unclear. In this study, we investigated the training effects on spinal interneurons in dorsal and ventromedial area in mice (P42-P50). The electrophysiological properties of the interneurons were recorded from spinal cord slices (T13-L6) by whole-cell patch-clamp recording. The interneurons could be classified into three types based on their response to step currents: single spike (type 1), phasic firing (type 2), and tonic firing (type 3) in both control and trained mice. Interneurons collected from control mice possessed rheobase of 11.3 ± 6.0 pA and voltage threshold (Vth) of - 37.3 ± 4.7 mV. Treadmill training reduced the rheobase by 4.8 ± 1.5 pA and Vth by 3.1 ± 1.2 mV (P < 0.05). Furthermore, the training effects were dependent on the distribution and types of the interneurons. Treadmill training hyperpolarized Vth and decreased rheobase in ventromedial interneurons, while the significant change was observed only in the action potation height of the interneurons in dorsal horn. Treadmill training also hyperpolarized Vth and increased input resistance in type 3 interneurons, but none of these changes was shown in type 1 and 2 interneurons. Bath application of 5-HT (10-20 μM) increased the neuronal excitability in both control and trained mice. Serotonin had similar effect on membrane properties of the interneurons collected from both groups. This study suggested that treadmill training increased excitability of spinal interneurons of the mice and thus would make the spinal motor system easier to generate locomotion.
Collapse
|
14
|
Chariker JH, Gomes C, Brabazon F, Harman KA, Ohri SS, Magnuson DSK, Whittemore SR, Petruska JC, Rouchka EC. Transcriptome of dorsal root ganglia caudal to a spinal cord injury with modulated behavioral activity. Sci Data 2019; 6:83. [PMID: 31175296 PMCID: PMC6555821 DOI: 10.1038/s41597-019-0088-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/29/2019] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating clinical condition resulting in significant disabilities. Apart from local injury within the spinal cord, SCI patients develop a myriad of complications including multi-organ dysfunction. Some of the dysfunctions may be directly or indirectly related to the sensory neurons of the dorsal root ganglia (DRG), which signal to both the spinal cord and the peripheral organs. After SCI, some classes of DRG neurons exhibit sensitization and undergo axonal sprouting both peripherally and centrally. Such physiological and anatomical re-organization after SCI contributes to both adaptive and maladaptive plasticity processes, which may be modulated by activity and exercise. In this study, we collected comprehensive gene expression data in whole DRG below the levels of the injury to compare the effects of SCI with and without two different forms of exercise in rats.
Collapse
Affiliation(s)
- Julia H Chariker
- Department of Neuroscience Training, University of Louisville, 522 East Gray Street, Louisville, Kentucky, 40202, USA
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, 522 East Gray Street, Louisville, Kentucky, 40202, USA
| | - Cynthia Gomes
- Department of Anatomical Sciences and Neurobiology, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
| | - Fiona Brabazon
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Suite 1500, Louisville, KY, 40202, USA
- Wiley Publishing, Hoboken, NJ, 07030, USA
| | - Kathryn A Harman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
- Department of Health & Sport Sciences, University of Louisville, 2100 South Floyd Street, Louisville, KY, 40208, USA
| | - Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Suite 1500, Louisville, KY, 40202, USA
| | - David S K Magnuson
- Department of Anatomical Sciences and Neurobiology, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Suite 1500, Louisville, KY, 40202, USA
| | - Scott R Whittemore
- Department of Anatomical Sciences and Neurobiology, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Suite 1500, Louisville, KY, 40202, USA
| | - Jeffrey C Petruska
- Department of Anatomical Sciences and Neurobiology, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Suite 1500, Louisville, KY, 40202, USA.
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, 522 East Gray Street, Louisville, Kentucky, 40202, USA.
- Department of Computer Engineering and Computer Science, Speed School of Engineering, University of Louisville, Duthie Center for Engineering, 2301 South 3rd St., Louisville, Kentucky, 40292, USA.
| |
Collapse
|