1
|
Yawoot N, Sengking J, Govitrapong P, Tocharus C, Tocharus J. Melatonin modulates the aggravation of pyroptosis, necroptosis, and neuroinflammation following cerebral ischemia and reperfusion injury in obese rats. Biochim Biophys Acta Mol Basis Dis 2023:166785. [PMID: 37302429 DOI: 10.1016/j.bbadis.2023.166785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Obesity is well-established as a common comorbidity in ischemic stroke. The increasing evidence has revealed that it also associates with the exacerbation of brain pathologies, resulting in increasingly severe neurological outcomes following cerebral ischemia and reperfusion (I/R) damage. Mechanistically, pyroptosis and necroptosis are novel forms of regulated death that relate to the propagation of inflammatory signals in case of cerebral I/R. Previous studies noted that pyroptotic and necroptotic signaling were exacerbated in I/R brain of obese animals and led to the promotion of brain tissue injury. This study aimed to investigate the roles of melatonin on pyroptosis, necroptosis, and pro-inflammatory pathways occurring in the I/R brain of obese rats. Male Wistar rats were given a high-fat diet for 16 weeks to induce the obese condition, and then were divided into 4 groups: Sham-operated, I/R treated with vehicle, I/R treated with melatonin (10 mg/kg), and I/R treated with glycyrrhizic acid (10 mg/kg). All drugs were administered via intraperitoneal injection at the onset of reperfusion. The development of neurological deficits, cerebral infarction, histological changes, neuronal death, and glial cell hyperactivation were investigated. This study revealed that melatonin effectively improved these detrimental parameters. Furthermore, the processes of pyroptosis, necroptosis, and inflammation were all diminished by melatonin treatment. A summary of the findings is that melatonin effectively reduces ischemic brain pathology and thereby improves post-stroke outcomes in obese rats by modulating pyroptosis, necroptosis, and inflammation.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Chemical Composition, Protective Effects, and Mechanisms of Volatile Oil from Fructus Gleditsiae Abnormalis with Nasal Administration against Ischemic Injury in HFD and MCAO-Induced Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8880996. [PMID: 34760019 PMCID: PMC8575625 DOI: 10.1155/2021/8880996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Fructus Gleditsiae Abnormalis (FGA) has been used as a traditional Chinese medicine (TCM) for the treatment of stroke caused by phlegm and blood stasis. However, its substance basis and mechanism of action are currently unknown. This study is aimed to analyze the constituents of the volatile oil in FGA (VOFGA) using gas chromatography coupled with mass spectrometry (GC-MS) and explore the underlying effects and mechanisms of VOFGA in the prevention and treatment of ischemia stroke. An in vivo ischemia model was constructed by combination treatment of high-fat diet (HFD) and middle cerebral artery occlusion (MCAO) method. After administration, the cerebral infarction volume, the brain water content, hemorheology, blood lipids, inflammatory factors, oxidative stress indicators, Bax, Bcl-2, and cleaved caspase-3 and histological examination (HE) were determined and observed to explore the underlying effects and mechanisms of VOFGA against ischemia stroke. The results showed that forty components were determined after analyzed by GC-MS, and the percentage content of palmitate, paeonol, violetone, linalool, salpinol, citral, and methyleugenol were 4.69%, 5.2%, 3.56%, 3.31%, 2.42%, 2.65%, and 1.67%, respectively. The high dose of VOFGA could inhibit neurological damage; reduce the cerebral infarction volume and brain water content; improve whole blood viscosity and red blood cell aggregation index at various shear rates; reduce the levels of TG, TC, LDL-C, TNF-α, IL-1β, MDA, and NO; increase the contents of HDL-C, IL-10, and SOD; downregulate the expressions of Bax and cleaved caspase-3 in the ischemic regions; and upregulate the expressions of Bcl-2. These effects implied that VOFGA may exert neuroprotective effects via inhibiting ischemia-triggered oxidative damage-regulating blood lipid factors and reducing the production of proinflammatory mediators against cerebral I/R injury and neuronal apoptosis. The VOFGA presents a potential treatment value for cerebral ischemic stroke, and it may offer insights into discovering new active compounds for the treatment of ischemic stroke.
Collapse
|
3
|
Liu J, Yang Q, Zhang X, Lin Q, Yang Y, Guo D, Mao W, Tu J, Liu Z, Li J, Ning X, Wang J. A Sharp Decline in Burden of Stroke in Rural China During COVID-19 Pandemic. Front Neurol 2021; 11:596871. [PMID: 33569033 PMCID: PMC7868406 DOI: 10.3389/fneur.2020.596871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/28/2020] [Indexed: 01/26/2023] Open
Abstract
This study aimed to explore trends in the burden from stroke associated with home quarantine during the COVID-19 pandemic. Patients with a first-ever stroke registered between January 1 and April 20 from 2010 to 2020 were included in this study. We compared the incidence and the rates of mortality, hospitalization, and diagnosis by neuroimaging for first-ever stroke among a low-income population in rural China during the study periods. Overall, 377 first-ever stroke patients were analyzed in this study period; men accounted for 59.2%. Compared with 2019, the incidence of first-ever stroke was 73.5% lower in 2020 (P < 0.001). The incidence of first-ever stroke was lower by 64.18% in 2020 than in the previous 5 years (P = 0.002) and by 65.42% in 2020 than in the previous 10 years (P = 0.001). Mortality from first-ever stroke in 2020 was not significantly different from that in 2019, but it was noticeably lower than that for the previous 5 and 10 years. However, rates of hospitalization and diagnosis by neuroimaging remained stable across the study period. These findings suggest that the home quarantine helped reduce outdoor activities at low temperatures, restrict gatherings, reduce alcoholism and high-fat diet, and lower pollution caused by factories. These changes were advantageous for helping high-risk groups to reduce the burden of stroke.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Qiaoxia Yang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiuxing Lin
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Yuan Yang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Dandan Guo
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenjing Mao
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jun Tu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Zeping Liu
- Department of Internal Medicine, Tianjin Jizhou People's Hospital, Tianjin, China
| | - Jidong Li
- Department of Neurosurgery, Tianjin Jizhou People's Hospital, Tianjin, China
| | - Xianjia Ning
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Jinghua Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
4
|
Yawoot N, Govitrapong P, Tocharus C, Tocharus J. Ischemic stroke, obesity, and the anti-inflammatory role of melatonin. Biofactors 2021; 47:41-58. [PMID: 33135223 DOI: 10.1002/biof.1690] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Obesity is a predominant risk factor in ischemic stroke and is commonly comorbid with it. Pathologies following these conditions are associated with systemic and local inflammation. Moreover, there is increasing evidence that the susceptibility for ischemic brain damage increases substantially in experimental models of ischemic stroke with concomitant obesity. Herein, we explore the proinflammatory events that occur during ischemic stroke and obesity, and we discuss the influence of obesity on the inflammatory response and cerebral damage outcomes in experimental models of brain ischemia. In addition, because melatonin is a neurohormone widely reported to exhibit protective effects in various diseases, this study also demonstrates the anti-inflammatory role and possible mechanistic actions of melatonin in both epidemic diseases. A summary of research findings suggests that melatonin administration has great potential to exert an anti-inflammatory role and provide protection against obesity and ischemic stroke conditions. However, the efficacy of this hormonal treatment on ischemic stroke with concomitant obesity, when more serious inflammation is generated, is still lacking.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Jiraporn Tocharus
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Seo WJ, Ahn JH, Lee TK, Kim B, Lee JC, Park JH, Yoo YH, Shin MC, Cho JH, Won MH, Park Y. High fat diet accelerates and exacerbates microgliosis and neuronal damage/death in the somatosensory cortex after transient forebrain ischemia in gerbils. Lab Anim Res 2020; 36:28. [PMID: 32832423 PMCID: PMC7439675 DOI: 10.1186/s42826-020-00061-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/06/2020] [Indexed: 01/14/2023] Open
Abstract
Obesity has been known as an independent risk factor for stroke. Effects of high-fat diet (HFD)-induced obesity on neuronal damage in the somatosensory cortex of animal models of cerebral ischemia have not been studied yet. In this study, HFD-induced obesity was used to study the impact of obesity on neuronal damage/loss and microgliosis in the somatosensory cortex of a gerbil model of 5-min transient forebrain ischemia. We used gerbils fed normal diet (ND) and HFD and chronologically examined microgliosis (microglial cell activation) by ionized calcium-binding adapter molecule 1 (Iba-1) immunohistochemistry. In addition, we examined neuronal damage or death by using neuronal nuclear protein (NeuN, a neuronal marker) immunohistochemistry and Fluoro-Jade B (F-J B, a marker for neuronal degeneration) histofluorescence staining. We found that ischemia-induced microgliosis in ND-fed gerbils was increased from 2 days post-ischemia; however, ischemia-mediated microgliosis in HFD-fed gerbils increased from 1 day post-ischemia and more accelerated with time than that in the ND-fed gerbils. Ischemia-induced neuronal death/loss in the somatosensory cortex in the ND-fed gerbils was apparently found at 5 days post-ischemia. However, in the HFD-fed gerbils, neuronal death/loss was shown from 2 days post-ischemia and progressively exacerbated at 5 days post-ischemia. Our findings indicate that HFD can evoke earlier microgliosis and more detrimental neuronal death/loss in the somatosensory cortex after transient ischemia than ND evokes.
Collapse
Affiliation(s)
- Won Joo Seo
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252 Republic of Korea
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252 Republic of Korea
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Oriental Medicine, Dongguk University-Gyeongju, Gyeongju, Gyeongbuk 38066 Republic of Korea
| | - Yeon Ho Yoo
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Yoonsoo Park
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| |
Collapse
|
6
|
Liu X, Lei Q. TRIM62 knockout protects against cerebral ischemic injury in mice by suppressing NLRP3-regulated neuroinflammation. Biochem Biophys Res Commun 2020; 529:140-147. [PMID: 32703402 DOI: 10.1016/j.bbrc.2020.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Cerebral stroke is a leading global cause for mortality and disability. However, its pathogenesis is still unclear. Most tripartite motif (TRIM) family proteins, including TRIM62, have E3 ubiquitin ligase activities, and have multiple functions in regulating cellular processes. Nevertheless, the effects of TRIM62 on cerebral stroke still remain vague. Here, we reported that TRIM62 expression was markedly up-regulated in oxygen and glucose deprivation (OGD)-treated microglial cells. After cerebral ischemia, significantly elevated expression of TRIM62 was detected in peri-infarct area of wild type (WT) mice. The TRIM62 knockout (KO) mice exhibited alleviated apoptosis and neuroinflammation in the ischemic brain, eventually attenuating the stroke outcomes. Both in vitro and in vivo studies showed that nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome was dramatically activated in cerebral ischemia/reperfusion (I/R) conditions, while being ameliorated in TRIM62-KO mice, contributing to the suppression of neuroinflammatory response. Importantly, the in vitro experiments showed that OGD could induce the K63-ubiquitination of TRIM62 and the interaction between TRIM62 and NLRP3. In addition, adenovirus-regulated TRIM62 over-expression promoted the NLRP3 and nuclear factor κB (NF-κB) signaling, along with elevated interleukin-1β (IL-1β) and IL-18 transcriptional activities. Together, our results demonstrated that TRIM62 suppression was strongly protective in ischemic stroke through inhibiting NLRP3-regulated neuroinflammation.
Collapse
Affiliation(s)
- Xia Liu
- Department of Neurology, Xi'an No.3 Hospital, Xi'an, Shaanxi, 710010, China
| | - Qi Lei
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China.
| |
Collapse
|
7
|
Fifield KE, Vanderluit JL. Rapid degeneration of neurons in the penumbra region following a small, focal ischemic stroke. Eur J Neurosci 2020; 52:3196-3214. [DOI: 10.1111/ejn.14678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 01/04/2023]
|