1
|
Almaguer-Melian W, Mercerón-Martínez D, Alacán-Ricardo L, Piña AEV, Hsieh C, Bergado-Rosado JA, Sacktor TC. Amygdala stimulation transforms short-term memory into remote memory by persistent activation of atypical protein kinase C in the anterior cingulate cortex. Neuroscience 2025; 569:288-297. [PMID: 39900220 DOI: 10.1016/j.neuroscience.2025.01.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Although many studies have addressed the role of the amygdala in modulating long-term memory, it is not known whether weak training plus amygdala stimulation can transform a short-term memory into a remote memory. Object place recognition (OPR) memory after strong training remains hippocampus-dependent through the persistent action of protein kinase Mzeta (PKMζ) for at least 6 days, but it is unknown whether weak training plus amygdala stimulation can transform short-term memory into an even longer memory, and whether such memory is stored through more persistent action of PKMζ in hippocampus. We trained male rats (150 total in our study) to acquire OPR and 15 min or 5 h later induced a brief pattern of electrical stimulation in basolateral amygdala (BLA). Our results reveal that a short-term memory lasting < 4h can be converted into remote memory lasting at least 3 weeks if the BLA is activated 15 min, but not 5 h after learning. To examine how this remote memory is maintained, we injected ZIP, an inhibitor of atypical protein kinase Cs (aPKCs), PKMζ and PKCι/λ, into either hippocampal CA1, dentate gyrus (DG), or anterior cingulate cortex (ACC). Our data reveal amygdala stimulation produces consolidation into remote memory, not by persistent aPKC activation in the hippocampal formation, but in ACC. Our data establish a powerful modulating role of the BLA in forming remote memory and open a path in the search for neurological restoration of memory, based on enhancing synaptic plasticity in aging or neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- William Almaguer-Melian
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica CIREN La Habana Cuba
| | - Daymara Mercerón-Martínez
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica CIREN La Habana Cuba
| | - Laura Alacán-Ricardo
- Facultad de Medicina Victoria de Girón Universidad Médica de La Habana La Habana Cuba
| | | | - Changchi Hsieh
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University NY USA
| | | | - Todd Charlton Sacktor
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University NY USA; Departments of Neurology and Anesthesiology, State University of New York Downstate Health Sciences University NY USA.
| |
Collapse
|
2
|
Naseem M, Khan H, Parvez S. TrkB-BDNF Signalling and Arc/Arg3.1 Immediate Early Genes in the Anterior Cingulate Cortex and Hippocampus: Insights into Novel Memory Milestones Through Behavioural Tagging. Mol Neurobiol 2024; 61:8307-8319. [PMID: 38485841 DOI: 10.1007/s12035-024-04071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 09/21/2024]
Abstract
In recent years, there has been a surge in interest in investigating the mechanisms underlying memory consolidation. However, our understanding of the behavioural tagging (BT) model and its establishment in diverse brain regions remains limited. This study elucidates the contributions of the anterior cingulate cortex (ACC) and hippocampus in the formation of long-term memory (LTM) employing behaviour tagging as a model for studying the underlying mechanism of LTM formation in rats. Existing knowledge highlights a protein synthesis-dependent phase as imperative for LTM. Brain-derived neurotrophic factor (BDNF) stands as a pivotal plasticity-related protein (PRP) in mediating molecular alterations crucial for long-term synaptic plasticity and memory consolidation. Our study offers evidence suggesting that tropomyosin receptor kinase B (TrkB), the receptor of BDNF, may act as a combined "behavioural tag/PRP". Interfering with the expression of these molecules resulted in impaired LTM after 24 h. Furthermore, augmenting BDNF expression led to an elevation in Arc protein levels in both the ACC and hippocampus regions. Introducing novelty around weak inhibitory avoidance (IA) training resulted in heightened step-down latencies and expression of these molecules, respectively. We also demonstrate that the increase in Arc expression relies on BDNF synthesis, which is vital for the memory consolidation process. Additionally, inhibiting BDNF using an anti-BDNF function-blocking antibody impacted Arc expression in both the ACC and hippocampus regions, disrupting the transformations from labile to robust memory. These findings mark the initial identification of a "behavioural tag/PRP" combination and underscore the involvement of the TrkB-BDNF-Arc cascade in the behavioural tagging model of learning and memory.
Collapse
Affiliation(s)
- Mehar Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
3
|
Pei X, Li B, Xu X, Zhang H. Spinal Caspase-6 Contributes to Intrathecal Morphine-induced Acute Itch and Contact Dermatitis-induced Chronic Itch Through Regulating the Phosphorylation of Protein Kinase Mζ in Mice. Neuroscience 2024; 539:21-34. [PMID: 38176610 DOI: 10.1016/j.neuroscience.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/08/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Patients receiving neuraxial treatment with morphine for pain relief often experience a distressing pruritus. Neuroinflammation-mediated plasticity of sensory synapses in the spinal cord is critical for the development of pain and itch. Caspase-6, as an intracellular cysteine protease, is capable of inducing central nociceptive sensitization through regulating synaptic transmission and plasticity. Given the tight interaction between protein kinase Mζ (PKMζ) and excitatory synaptic plasticity, this pre-clinical study investigates whether caspase-6 contributes to morphine-induced itch and chronic itch via PKMζ. Intrathecal morphine and contact dermatitis were used to cause pruritus in mice. Morphine antinociception, itch-induced scratching behaviors, spinal activity of caspase-6, and phosphorylation of PKMζ and ERK were examined. Caspase-6 inhibitor Z-VEID-FMK, exogenous caspase-6 and PKMζ inhibitor ZIP were utilized to reveal the mechanisms and prevention of itch. Herein, we report that morphine induces significant scratching behaviors, which is accompanied by an increase in spinal caspase-6 cleavage and PKMζ phosphorylation (but not expression). Intrathecal injection of Z-VEID-FMK drastically reduces morphine-induced scratch bouts and spinal phosphorylation of PKMζ, without abolishing morphine analgesia. Moreover, intrathecal strategies of ZIP dose-dependently reduce morphine-induced itch-like behaviors. Spinal phosphorylation of ERK following neuraxial morphine is down-regulated by ZIP therapy. Recombinant caspase-6 directly exhibits scratching behaviors and spinal phosphorylation of ERK, which is compensated by PKMζ inhibition. Also, spinal inhibition of caspase-6 and PKMζ reduces the generation and maintenance of dermatitis-induced chronic itch. Together, these findings demonstrate that spinal caspase-6 modulation of PKMζ phosphorylation is important in the development of morphine-induced itch and dermatitis-induced itch in mice.
Collapse
Affiliation(s)
- Xuxing Pei
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Bing Li
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaodong Xu
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Hui Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
4
|
Budriesi P, Tintorelli R, Correa J, Villar ME, Marchal P, Giurfa M, Viola H. A behavioral tagging account of kinase contribution to memory formation after spaced aversive training. iScience 2023; 26:107278. [PMID: 37520708 PMCID: PMC10372744 DOI: 10.1016/j.isci.2023.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/14/2022] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Long-term memory (LTM) can be induced by repeated spaced training trials. Using the weak inhibitory avoidance (wIA) task, we showed that one wIA session does not lead to a 24-h LTM, whereas two identical wIA sessions spaced by 15 min to 6 h induce a 24-h LTM. This LTM promotion depends both on hippocampal protein synthesis and the activity of several kinases. In agreement with the behavioral tagging (BT) hypothesis, our results suggest that the two training sessions induce transient learning tags and lead, via a cooperative effect, to the synthesis of plasticity-related proteins (PRPs) that become available and captured by the tag from the second session. Although ERKs1/2 are needed for PRPs synthesis and CaMKs are required for tag setting, PKA participates in both processes. We conclude that the BT mechanism accounts for the molecular constraints underlying the classic effect of spaced learning on LTM formation.
Collapse
Affiliation(s)
- Pablo Budriesi
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ramiro Tintorelli
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julieta Correa
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Eugenia Villar
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Paul Marchal
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Poe Lab, Integrative Biology and Physiology department, University of California Los Angeles, Los Angeles, CA, USA
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France
- Institut Universitaire de France (IUF), Paris, France
| | - Haydee Viola
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular “Dr. Héctor Maldonado” (FBMC), Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
5
|
Kaushik M, Kaushik P, Parvez S. Memory related molecular signatures: The pivots for memory consolidation and Alzheimer's related memory decline. Ageing Res Rev 2022; 76:101577. [PMID: 35104629 DOI: 10.1016/j.arr.2022.101577] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Age-related cognitive decline is the major cause of concern due to its 70% more incidence than dementia cases worldwide. Moreover, aging is also the major risk factor of Alzheimer's disease (AD), associated with progressive memory loss. Approx. 13 million people will have Alzheimer-related memory decline by 2050. Learning and memory is the fundamental process of brain functions. However, the mechanism for the same is still under investigation. Thus, it is critical to understand the process of memory consolidation in the brain and extrapolate its understanding to the memory decline mechanism. Research on learning and memory has identified several molecular signatures such as Protein kinase M zeta (PKMζ), Calcium/calmodulin-dependent protein kinase II (CaMKII), Brain-derived neurotrophic factor (BDNF), cAMP-response element binding protein (CREB) and Activity-regulated cytoskeleton-associated protein (Arc) crucial for the maintenance and stabilization of long-term memory in the brain. Interestingly, memory decline in AD has also been linked to the abnormality in expressing these memory-related molecular signatures. Hence, in the present consolidated review, we explored the role of these memory-related molecular signatures in long-term memory consolidation. Additionally, the effect of amyloid-beta toxicity on these molecular signatures is discussed in detail.
Collapse
Affiliation(s)
- Medha Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
6
|
Correa J, Tintorelli R, Budriesi P, Viola H. Persistence of spatial memory induced by spaced training involves a behavioral-tagging process. Neuroscience 2022; 497:215-227. [PMID: 35276307 DOI: 10.1016/j.neuroscience.2022.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/04/2022] [Accepted: 02/26/2022] [Indexed: 11/27/2022]
Abstract
Spaced training, which involves long inter-trial intervals, has positive effects on memories. One of the main attributes of long-term memories (LTM) is persistence. Here, to identify the process that promotes LTM persistence by spaced learning, we used the spatial object recognition (SOR) task. The protocol consisted of a first strong training session that induced LTM formation (tested 1 day after training), but not LTM persistence (tested 7 or 14 days after training); and a second weak training session that promoted memory persistence when applied 1 day, but not 7 days, after the first training. We propose that the promotion of memory persistence is based on the Behavioral Tagging (BT) mechanism operating when the memory trace is retrieved. BT involves the setting of a tag induced by learning which gives rise to input selectivity, and the use of plasticity-related proteins (PRPs) to establish the mnemonic trace. We postulate that retraining will mainly retag the sites initially activated by the original learning, where the PRPs needed for memory expression and/or induced by retrieval would be used to maintain a persistent mnemonic trace. Our results suggest that the mechanism of memory expression, but not those of memory reinforcement or reconsolidation, is necessary to promote memory persistence after retraining. The molecular mechanisms involve ERKs1/2 activity to set the SOR learning tag, and the availability of GluA2-containing AMPA receptor. In conclusion, both the synthesis of PRPs and the setting of a learning tag are key processes triggered by retraining that allow SOR memory persistence.
Collapse
Affiliation(s)
- J Correa
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - R Tintorelli
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - P Budriesi
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - H Viola
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina; Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Rocha-Gomes A, Teixeira AE, Santiago CMO, Oliveira DGD, Silva AAD, Lacerda ACR, Riul TR, Mendonça VA, Rocha-Vieira E, Leite HR. Prenatal LPS exposure increases hippocampus IL-10 and prevents short-term memory loss in the male adolescent offspring of high-fat diet fed dams. Physiol Behav 2022; 243:113628. [PMID: 34695488 DOI: 10.1016/j.physbeh.2021.113628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Lipopolysaccharide (LPS) tolerance can reduce the neuroinflammation caused by high fat maternal diets; however, there are no reports that have evaluated the effects of prenatal LPS exposure on the memories of the offspring of high-fat diet fed dams. This study evaluated the effects of prenatal LPS exposure on the inflammatory parameters and redox status in the brain, as well as the object recognition memory of adolescent offspring of Wistar rat dams that were treated with a high-fat diet during gestation and lactation. Female pregnant Wistar rats randomly received a standard diet (17.5% fat) or a high-fat diet (45.0% fat) during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitoneally treated with LPS (0.1 mg.kg-1). After weaning, the male offspring were placed in cages in standard conditions, and at 6 weeks old, animals underwent the novel object recognition test (for short- and long-term memory). The offspring of the high-fat diet fed dams showed increased hippocampus IL-6 levels (21-days-old) and impaired short-term memories. These effects were avoided in the offspring of high-fat diet fed dams submitted to prenatal LPS exposure, which showed greater hippocampus IL-10 levels (at 21- and 50-days-old), increased antioxidant activity (50-days-old) in the hippocampus and prefrontal cortex, without memory impairments (short- and long-term memory). IL-6 has been consistently implicated in memory deficits and as an endogenous mechanism for limiting plasticity, while IL-10 regulates glial activation and has a strong association with improvements in cognitive function. Prenatal LPS exposure preventing the increase of IL-6 in the hippocampus and the impairment to short-term object recognition memory caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901 Brasil.
| |
Collapse
|
8
|
Kaushik P, Ali M, Salman M, Tabassum H, Parvez S. Harnessing the mitochondrial integrity for neuroprotection: Therapeutic role of piperine against experimental ischemic stroke. Neurochem Int 2021; 149:105138. [PMID: 34284077 DOI: 10.1016/j.neuint.2021.105138] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/13/2023]
Abstract
Ischemic stroke (IS) is a rapidly increasing global burden and is associated with severe neurological decline and mortality. There is urgent requirement of the efforts, aimed to identify therapeutic strategies that are effective in clinic to promote significant recovery from IS. Studies have shown that mitochondria mediated neuroprotection can be a competent target against ischemic damage. Therefore, we examined whether mitochondrial impairment is regulated by Piperine (PIP), an alkaloid of Piper Longum, which has neuroprotective activity against ischemic brain injury. In this study, transient middle cerebral artery occlusion (tMCAO) surgery was performed on male Wistar rats for 90 min followed by 22.5 h of reperfusion for mimicking the IS condition. This study consisted of three groups: sham, tMCAO and tMCAO + PIP (10 mg/kg b.wt., p.o/day for 15 days), and studied for behavioral tests, infarct volume, brain pathological changes, mitochondrial dysfunction, inflammation alongwith cell survival status. PIP pre-treatment showed reduction in neurological alterations and infarct volume. In addition, PIP pre-treatment suppressed the mitochondrial dysfunction and might have anti-apoptotic potential by preventing Cytochrome c (Cyt c) release from mitochondria to cytoplasm and caspase 3 activation. It also regulates pro-apoptotic, Bax and anti-apoptotic, Bcl-2 proteins accompanied by glial fibrillary acidic protein (GFAP) positive cells in cortex region. Quantitative Reverse transcription-polymerase chain reaction (qRT-PCR) results also showed that PIP reduced the expression of pro-inflammatory protein, interleukin-1 β (IL-1β) and enhanced cell survival by restoring the activity of brain derived neurotrophic factor (BDNF) and its transcription protein, cAMP response element binding protein (CREB). Taken together, PIP reduced the mitochondrial dysfunction, neurological impairment, and enhanced neuronal survival. In conclusion, our findings reinforce PIP as an effective neuroprotective agent and provide important evidence about its role as a potential target to serve as a promising therapy for treatment of IS.
Collapse
Affiliation(s)
- Pooja Kaushik
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mubashshir Ali
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India, V. Ramalingaswamy Bhawan, New Delhi, 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
9
|
Bin Ibrahim MZ, Benoy A, Sajikumar S. Long-term plasticity in the hippocampus: maintaining within and 'tagging' between synapses. FEBS J 2021; 289:2176-2201. [PMID: 34109726 DOI: 10.1111/febs.16065] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Synapses between neurons are malleable biochemical structures, strengthening and diminishing over time dependent on the type of information they receive. This phenomenon known as synaptic plasticity underlies learning and memory, and its different forms, long-term potentiation (LTP) and long-term depression (LTD), perform varied cognitive roles in reinforcement, relearning and associating memories. Moreover, both LTP and LTD can exist in an early transient form (early-LTP/LTD) or a late persistent form (late-LTP/LTD), which are triggered by different induction protocols, and also differ in their dependence on protein synthesis and the involvement of key molecular players. Beyond homosynaptic modifications, synapses can also interact with one another. This is encapsulated in the synaptic tagging and capture hypothesis (STC), where synapses expressing early-LTP/LTD present a 'tag' that can capture the protein synthesis products generated during a temporally proximal late-LTP/LTD induction. This 'tagging' phenomenon forms the framework of synaptic interactions in various conditions and accounts for the cellular basis of the time-dependent associativity of short-lasting and long-lasting memories. All these synaptic modifications take place under controlled neuronal conditions, regulated by subcellular elements such as epigenetic regulation, proteasomal degradation and neuromodulatory signals. Here, we review current understanding of the different forms of synaptic plasticity and its regulatory mechanisms in the hippocampus, a brain region critical for memory formation. We also discuss expression of plasticity in hippocampal CA2 area, a long-overlooked narrow hippocampal subfield and the behavioural correlate of STC. Lastly, we put forth perspectives for an integrated view of memory representation in synapses.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Amrita Benoy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
10
|
Naseem M, Vishnoi S, Kaushik M, Parvez S. Behavioural tagging: Effect of novelty exploration on plasticity related molecular signatures. Exp Brain Res 2021; 239:2359-2374. [PMID: 34097099 DOI: 10.1007/s00221-021-06099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/28/2021] [Indexed: 11/25/2022]
Abstract
Learning and memory are one of those frontier areas of neurobiology which attract us to investigate the intricacy of this process. Here, we aimed to investigate the general mechanism of "Behavioural Tagging and Capture" in long term memory (LTM) formation and to find the key factors playing role in consolidation of LTM. In this study, we've shown that not only plasticity related proteins (PRPs) but neurotransmitters and immediate early genes (IEGs) also play an important role in memory formation process. It's very well evident that memory traces can last longer if close in time novelty is introduced around memory encoding. Here our results point out that this novelty exploration acts as a modulator in memory consolidation by providing PRPs such as brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), enhancing neurotransmitters (Dopamine), IEGs (cFos) and some enzymes such as acetylcholinesterase (AChE), monoamine oxidase (MAO), sodium-potassium ATPase (Na+K+-ATPase). Therefore, by using a Novel Object Recognition task (NOR) in combination with novel task exposure, we evaluated the role of molecular markers in memory consolidation employing a behavioural tagging model. The purpose of the current study was first to evaluate the effect of novelty exposure around a single trail of NOR task in a critical time window on memory consolidation in rats after 24 h and second to determine the expression of BDNF, CREB, c-fos, AChE, MAO, Na+K+-ATPase as potential markers in the medial prefrontal cortex (mPFC) during memory formation. In the present study, to identify and validate the role of these molecular signatures in memory consolidation, infusion of the protein synthesis inhibitor Anisomycin (Ani) was done around the training session that causes a deficit in the formation of LTM when tested 24 h after weak encoding. Altogether, here we are providing the first comprehensive set of evidences indicating that BDNF, CREB, dopamine, some enzymes and c-fos role in modulating LTM by employing behavioural tagging model.
Collapse
Affiliation(s)
- Mehar Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Shruti Vishnoi
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Medha Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
11
|
Lopes da Cunha P, Tintorelli R, Correa J, Budriesi P, Viola H. Behavioral tagging as a mechanism for aversive-memory formation under acute stress. Eur J Neurosci 2021; 55:2651-2665. [PMID: 33914357 DOI: 10.1111/ejn.15249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
The behavioral tagging (BT) hypothesis postulates that a weak learning experience, which only induces short-term memory, may benefit from another event that provides plasticity-related proteins (PRPs) to establish a long-lasting memory. According to BT, the weak experience sets a transient learning tag at specific activated sites, and its temporal and spatial convergence with the PRPs allows the long-term memory (LTM) formation. In this work, rats were subjected to a weak inhibitory avoidance (IAw) training and we observed that acute stress (elevated platform, EP) experienced 1 hr before IAw promoted IA-LTM formation. This effect was dependent on glucocorticoid-receptor activity as well as protein synthesis in the dorsal hippocampus. However, the same stress has negative effects on IA-LTM formation when training is strong, probably by competing for necessary PRPs. Furthermore, our experiments showed that EP immediately after training did not impair the setting of the learning tag and even facilitated IA-LTM formation. These findings reveal different impacts of a given acute stressful experience on the formation of an aversive memory that could be explained by BT processes.
Collapse
Affiliation(s)
- Pamela Lopes da Cunha
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ramiro Tintorelli
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Correa
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Budriesi
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Haydee Viola
- Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Dr. Hector Maldonado" (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Iwai Y, Ozawa K, Yahagi K, Mishima T, Akther S, Vo CT, Lee AB, Tanaka M, Itohara S, Hirase H. Transient Astrocytic Gq Signaling Underlies Remote Memory Enhancement. Front Neural Circuits 2021; 15:658343. [PMID: 33828463 PMCID: PMC8019746 DOI: 10.3389/fncir.2021.658343] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Astrocytes elicit transient Ca2+ elevations induced by G protein-coupled receptors (GPCRs), yet their role in vivo remains unknown. To address this, transgenic mice with astrocytic expression of the optogenetic Gq-type GPCR, Optoα1AR, were established, in which transient Ca2+ elevations similar to those in wild type mice were induced by brief blue light illumination. Activation of cortical astrocytes resulted in an adenosine A1 receptor-dependent inhibition of neuronal activity. Moreover, sensory stimulation with astrocytic activation induced long-term depression of sensory evoked response. At the behavioral level, repeated astrocytic activation in the anterior cortex gradually affected novel open field exploratory behavior, and remote memory was enhanced in a novel object recognition task. These effects were blocked by A1 receptor antagonism. Together, we demonstrate that GPCR-triggered Ca2+ elevation in cortical astrocytes has causal impacts on neuronal activity and behavior.
Collapse
Affiliation(s)
- Youichi Iwai
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako, Japan
| | - Katsuya Ozawa
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako, Japan
| | - Kazuko Yahagi
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako, Japan
| | - Tsuneko Mishima
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sonam Akther
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Trang Vo
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ashley Bomin Lee
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mika Tanaka
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako, Japan
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Japan
| | - Hajime Hirase
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako, Japan
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Role of prelimbic cortex PKC and PKMζ in fear memory reconsolidation and persistence following reactivation. Sci Rep 2020; 10:4076. [PMID: 32139711 PMCID: PMC7057960 DOI: 10.1038/s41598-020-60046-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/06/2020] [Indexed: 12/27/2022] Open
Abstract
The persistence of newly acquired memories is supported by the activity of PKMζ, an atypical isoform of protein kinase C (PKC). Whether the activity of conventional and atypical PKC isoforms contributes to reactivated memories to persist is still unknown. Similarly, whether memory reactivation is a prerequisite for interventions to be able to change memory persistence is scarcely investigated. Based on the above, we examined the role of conventional and atypical PKC isoforms in the prelimbic cortex in reconsolidation and persistence of a reactivated contextual fear memory in male Wistar rats. It is shown that (i) inhibiting the PKC activity with chelerythrine or the PKMζ activity with ZIP impaired the persistence of a reactivated memory for at least 21 days; (ii) ZIP given immediately after memory reactivation affected neither the reconsolidation nor the persistence process. In contrast, when given 1 h later, it impaired the memory persistence; (iii) chelerythrine given immediately after memory reactivation impaired the reconsolidation; (iv) omitting memory reactivation prevented the chelerythrine- and ZIP-induced effects: (v) the ZIP action is independent of the time elapsed between its administration and the initial memory test. The results indicate that prelimbic cortex PKC and PKMζ are involved in memory reconsolidation and persistence.
Collapse
|