1
|
Yu Z, Yuan Y, Zhang J, Li Y, Wang Z, Wang Y, Duan Y, Zhou Y. Review of the lethal mechanism of insulin poisoning and the characteristic of forensic identification. Leg Med (Tokyo) 2024; 70:102478. [PMID: 38959585 DOI: 10.1016/j.legalmed.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Insulin, as the only hypoglycemic hormone in the body, plays a key role in blood sugar control. However, excessive insulin intake can lead to insulin poisoning and even death, which often occurs in clinical and forensic work. At present, some researches on insulin poisoning have been carried out at home and abroad, however, it seems that the mechanism and forensic characteristics of insulin poisoning are not clear and complete. Therefore, in this paper, we reviewed the potential mechanism of insulin poisoning, the methods of insulin detection and the forensic identification of poisoning cases, aiming at providing services for the forensic identification of insulin poisoning.
Collapse
Affiliation(s)
- Zhonghao Yu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yuhao Yuan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jiaxin Zhang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yiling Li
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhaoxuan Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yubei Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yijie Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Zhao S, Liu Z, Ma L, Yin M, Zhou Y. Potential biomarkers in hypoglycemic brain injury. Forensic Sci Med Pathol 2024; 20:810-822. [PMID: 37466819 DOI: 10.1007/s12024-023-00681-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
Oxidative stress is a major underlying mechanism in hypoglycemic brain injury. Several oxidative stress-related proteins were identified through previous proteomics and literature review. The aim of the present study was to evaluate the potential of these proteins as biomarkers in hypoglycemic brain injury. Forty male Sprague Dawley rats were randomly and equally divided into four groups: control, acute hypoglycemia, hypoglycemia resuscitation 24 h, and hypoglycemia resuscitation 7 days. The hypoglycemic brain injury rat model was successfully constructed according to the Auer model. Real-time fluorescent quantitative polymerase chain reaction, western blot analysis, and immunohistochemical staining were used to quantify the expression of oxidative stress-related proteins. We also verified the expression level of selected protein in the brain samples of fatal insulin overdose cases. The expression of oxidative stress-related proteins PEX1/5/12 was down-regulated in hypoglycemic brain injury (P < 0.05), while the expressions of DJ-1 and NDRG1 were up-regulated (P < 0.05). Compared with the control group, the serum oxidative stress indexes SOD and MDA in the acute hypoglycemia group were significantly different (P < 0.01). The expressions of DJ-1 and NDRG1 in the hippocampus, cortex, and hypothalamus of rats were increased (P < 0.05). The expressions of DJ-1 and NDRG1 proteins in the cortex of the autopsy samples of insulin overdose were increased (P < 0.05). Oxidative stress-related proteins showed potential value as specific molecular markers in hypoglycemic brain injury, but further confirmatory studies are needed.
Collapse
Affiliation(s)
- Shuquan Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-Sen university, Guang zhou, China
| | - Zihao Liu
- Evidence Identification Center, Chongqing Public Security Bureau, Chongqing, China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Yin
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwu Zhou
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-Sen university, Guang zhou, China.
| |
Collapse
|
3
|
Steriade C, Titulaer MJ, Vezzani A, Sander JW, Thijs RD. The association between systemic autoimmune disorders and epilepsy and its clinical implications. Brain 2021; 144:372-390. [PMID: 33221878 DOI: 10.1093/brain/awaa362] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic autoimmune disorders occur more frequently in patients with epilepsy than in the general population, suggesting shared disease mechanisms. The risk of epilepsy is elevated across the spectrum of systemic autoimmune disorders but is highest in systemic lupus erythematosus and type 1 diabetes mellitus. Vascular and metabolic factors are the most important mediators between systemic autoimmune disorders and epilepsy. Systemic immune dysfunction can also affect neuronal excitability, not only through innate immune activation and blood-brain barrier dysfunction in most epilepsies but also adaptive immunity in autoimmune encephalitis. The presence of systemic autoimmune disorders in subjects with acute seizures warrants evaluation for infectious, vascular, toxic and metabolic causes of acute symptomatic seizures, but clinical signs of autoimmune encephalitis should not be missed. Immunosuppressive medications may have antiseizure properties and trigger certain drug interactions with antiseizure treatments. A better understanding of mechanisms underlying the co-existence of epilepsy and systemic autoimmune disorders is needed to guide new antiseizure and anti-epileptogenic treatments. This review aims to summarize the epidemiological evidence for systemic autoimmune disorders as comorbidities of epilepsy, explore potential immune and non-immune mechanisms, and provide practical implications on diagnostic and therapeutic approach to epilepsy in those with comorbid systemic autoimmune disorders.
Collapse
Affiliation(s)
- Claude Steriade
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Maarten J Titulaer
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, Bucks, UK.,Stichting Epilepsie Instellingen Nederland - (SEIN), Heemstede, The Netherlands
| | - Roland D Thijs
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Stichting Epilepsie Instellingen Nederland - (SEIN), Heemstede, The Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|