1
|
Hoffman LJ, Foley JM, Tanrıverdi B, Chein J, Olson IR. Awake targeted memory reactivation doesn't work. Mem Cognit 2025; 53:453-466. [PMID: 38744776 PMCID: PMC11868201 DOI: 10.3758/s13421-024-01576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/16/2024]
Abstract
Memories are pliable and can be biased by post-encoding information. In targeted memory reactivation (TMR) studies, participants encode information then sleep, during which time sounds or scents that were previously associated with the encoded images are re-presented in an effort to trigger reactivation of the associated memory traces. Upon subsequent testing, memory for reactivated items is often enhanced. Is sleep essential for this process? The literature on awake TMR is small and findings are mixed. Here, we asked English-speaking adults to learn Japanese vocabulary words. During a subsequent active rest phase, participants played Tetris while sound cues associated with the vocabulary words were presented. Results showed that when memories were reactivated, they were either disrupted (Experiment 1) or unaffected (Experiments 2, 3). These findings indicate that awake TMR is not beneficial, and may actually impair subsequent memory. These findings have important implications for research on memory consolidation and reactivation.
Collapse
Affiliation(s)
- Linda J Hoffman
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Julia M Foley
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Büşra Tanrıverdi
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Jason Chein
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Ingrid R Olson
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
2
|
Picard-Deland C, Aumont T, Samson-Richer A, Paquette T, Nielsen T. Whole-body procedural learning benefits from targeted memory reactivation in REM sleep and task-related dreaming. Neurobiol Learn Mem 2021; 183:107460. [PMID: 34015442 DOI: 10.1016/j.nlm.2021.107460] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Sleep facilitates memory consolidation through offline reactivations of memory traces. Dreaming may play a role in memory improvement and may reflect these memory reactivations. To experimentally address this question, we used targeted memory reactivation (TMR), i.e., application, during sleep, of a stimulus that was previously associated with learning, to assess whether it influences task-related dream imagery (or task-dream reactivations). Specifically, we asked if TMR or task-dream reactivations in either slow-wave (SWS) or rapid eye movement (REM) sleep benefit whole-body procedural learning. Healthy participants completed a virtual reality (VR) flying task prior to and following a morning nap or rest period during which task-associated tones were readministered in either SWS, REM sleep, wake or not at all. Findings indicate that learning benefits most from TMR when applied in REM sleep compared to a Control-sleep group. REM dreams that reactivated kinesthetic elements of the VR task (e.g., flying, accelerating) were also associated with higher improvement on the task than were dreams that reactivated visual elements (e.g., landscapes) or that had no reactivations. TMR did not itself influence dream content but its effects on performance were greater when coexisting with task-dream reactivations in REM sleep. Findings may help explain the mechanistic relationships between dream and memory reactivations and may contribute to the development of sleep-based methods to optimize complex skill learning.
Collapse
Affiliation(s)
- Claudia Picard-Deland
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Tomy Aumont
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Biomedical Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Arnaud Samson-Richer
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Tyna Paquette
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Tore Nielsen
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
3
|
Foo CN, Arumugam M, Lekhraj R, Lye MS, Mohd-Sidik S, Jamil Osman Z. Effectiveness of Health-Led Cognitive Behavioral-Based Group Therapy on Pain, Functional Disability and Psychological Outcomes among Knee Osteoarthritis Patients in Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176179. [PMID: 32858791 PMCID: PMC7503685 DOI: 10.3390/ijerph17176179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/22/2022]
Abstract
Background: Psychosocial interventions for patients with osteoarthritis (OA) of the knee to reduce pain and improve physical and psychological functioning are still lacking in Malaysia. Methods: A parallel-group unblinded randomized controlled trial involving 300 patients was conducted in two hospital orthopedics clinics in Malaysia. Patients were randomly assigned to receive cognitive behavioral-based group therapy (n = 150) or no further intervention (n = 150). The primary outcome was the change from baseline in knee pain as determined by the Knee injury and Osteoarthritis Outcome Score (KOOS) at 6 months. The data collected were analyzed by covariate-adjusted mixed design repeated measures analysis of variance. All analyses were performed under the terms of intention-to-treat. Results: At 6 months, mean change from baseline in the KOOS knee pain score was 0.6 points (95% CI −1.73 to 2.94) in the control group and 8.9 points (95% CI 6.62 to 11.23) (denoting less knee pain intensity) in the intervention group (significant treatment effect p < 0.0001). Patients treated with such an approach also experienced significant improvement in functional ability when performing activities of daily living and had improved ability to cope with depression, anxiety and pain catastrophizing. Conclusion: The intervention module delivered by healthcare professionals had a sustained effect on knee OA pain and functionality over 6 months, thereby leading to an overall improvement in psychological well-being, thus benefitting most of the Malaysian knee OA patients.
Collapse
Affiliation(s)
- Chai Nien Foo
- Department of Population Medicine, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia;
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence: (C.N.F.); (M.A.)
| | - Manohar Arumugam
- Department of Orthopaedic, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (C.N.F.); (M.A.)
| | - Rampal Lekhraj
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Munn-Sann Lye
- Department of Population Medicine, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia;
| | - Sherina Mohd-Sidik
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Zubaidah Jamil Osman
- Faculty of Allied Health Sciences, Cyberjaya University College of Medical Sciences, Cyberjaya 63000, Malaysia;
| |
Collapse
|
4
|
Cuenca-Martínez F, Suso-Martí L, León-Hernández JV, La Touche R. The Role of Movement Representation Techniques in the Motor Learning Process: A Neurophysiological Hypothesis and a Narrative Review. Brain Sci 2020; 10:brainsci10010027. [PMID: 31906593 PMCID: PMC7016972 DOI: 10.3390/brainsci10010027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 01/27/2023] Open
Abstract
We present a neurophysiological hypothesis for the role of motor imagery (MI) and action observation (AO) training in the motor learning process. The effects of movement representation in the brain and those of the cortical–subcortical networks related to planning, executing, adjusting, and automating real movements share a similar neurophysiological activity. Coupled with the influence of certain variables related to the movement representation process, this neurophysiological activity is a key component of the present hypothesis. These variables can be classified into four domains: physical, cognitive–evaluative, motivational–emotional, and direct-modulation. The neurophysiological activity underlying the creation and consolidation of mnemonic representations of motor gestures as a prerequisite to motor learning might differ between AO and MI. Together with variations in cognitive loads, these differences might explain the differing results in motor learning. The mirror neuron system appears to function more efficiently through AO training than MI, and AO is less demanding in terms of cognitive load than MI. AO might be less susceptible to the influence of variables related to movement representation.
Collapse
Affiliation(s)
- Ferran Cuenca-Martínez
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain; (J.V.L.-H.); (R.L.T.)
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-740-1980 (ext. 310)
| | - Luis Suso-Martí
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
- Department of Physiotherapy, Cardenal Herrera University-CEU, CEU Universities, 46115 Valencia, Spain
| | - Jose Vicente León-Hernández
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain; (J.V.L.-H.); (R.L.T.)
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
| | - Roy La Touche
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain; (J.V.L.-H.); (R.L.T.)
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
- Instituto de Neurociencia y Dolor Craneofacial (INDCRAN), 28008 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain
| |
Collapse
|