1
|
Song X, Li R, Chu X, Li Q, Li R, Li Q, Tong KY, Gu X, Ming D. Multilevel analysis of the central-peripheral-target organ pathway: contributing to recovery after peripheral nerve injury. Neural Regen Res 2025; 20:2807-2822. [PMID: 39435615 PMCID: PMC11826472 DOI: 10.4103/nrr.nrr-d-24-00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities. Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites, neglecting multilevel pathological analysis of the overall nervous system and target organs. This has led to restrictions on current therapeutic approaches. In this paper, we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective, covering the central nervous system, peripheral nervous system, and target organs. After peripheral nerve injury, the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves; changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord. The nerve will undergo axonal regeneration, activation of Schwann cells, inflammatory response, and vascular system regeneration at the injury site. Corresponding damage to target organs can occur, including skeletal muscle atrophy and sensory receptor disruption. We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury. The main current treatments are conducted passively and include physical factor rehabilitation, pharmacological treatments, cell-based therapies, and physical exercise. However, most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway. Therefore, we should further explore multilevel treatment options that produce effective, long-lasting results, perhaps requiring a combination of passive (traditional) and active (novel) treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
Collapse
Affiliation(s)
- Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Ruixin Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Xiaolei Chu
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qi Li
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Ruihua Li
- Department of Hand Microsurgery, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qingwen Li
- School of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Kai-Yu Tong
- Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| |
Collapse
|
2
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 PMCID: PMC11691477 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Zhang N, Yao X, Zhang Q, Zhang C, Zheng Q, Wang Y, Shan F. Electrical stimulation promotes peripheral nerve regeneration by upregulating glycolysis and oxidative phosphorylation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167804. [PMID: 40101840 DOI: 10.1016/j.bbadis.2025.167804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/15/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
Peripheral nerve injury (PNI) frequently results in motor and sensory dysfunction due to the limited regenerative capacity of axonal neurons and Schwann cells. Electrical stimulation (ES) has emerged as a promising strategy to enhance nerve regeneration; however, the underlying mechanisms, particularly those related to energy metabolism, remain poorly understood. This study aimed to investigate whether ES could promote nerve regeneration in a mouse model of PNI by modulating energy metabolism. ES was applied to the gastrocnemius and posterior thigh muscles post-sciatic nerve injury. Motor functional recovery was evaluated using gait analysis and electrophysiological test. Molecular and cellular changes in the distal nerve stumps were evaluated through Western blot and immunofluorescence staining. Nerve regeneration was assessed by neurostructural protein staining and nerve ultrastructure visualized by transmission electron microscopy. Our findings indicate that ES significantly accelerated both morphological and functional recovery following PNI. Specifically, ES upregulated energy metabolism in the sciatic nerve post-PNI by enhancing glucose uptake, glycolysis, and oxidative phosphorylation. Furthermore, ES increased the expression of neurotrophic factors and modulated the AMPK/mTOR/p70S6K signaling pathway, which are crucial for cellular metabolism and nerve regeneration. Collectively, these findings underscore the critical role of ES in modulating energy metabolism to support nerve regeneration, highlighting its potential as a clinical strategy for treating peripheral neuropathy.
Collapse
Affiliation(s)
- Nannan Zhang
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China; Department of Respiratory and Critical Care, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| | - Xiaoying Yao
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| | - Qingqing Zhang
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| | - Chuanji Zhang
- Shandong Daizhuang Hospital, Jining 272051, Shandong, China; Jining Key Laboratory of Neuromodulation, Jining 272051, Shandong, China
| | - Qian Zheng
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| | - Yuzhong Wang
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China; Department of Neurology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China.
| | - Fangzhen Shan
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China.
| |
Collapse
|
4
|
Burrell JC, Ali ZS, Zager EL, Rosen JM, Tatarchuk MM, Cullen DK. Engineering the Future of Restorative Clinical Peripheral Nerve Surgery. Adv Healthc Mater 2025:e2404293. [PMID: 40166822 DOI: 10.1002/adhm.202404293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/25/2025] [Indexed: 04/02/2025]
Abstract
Peripheral nerve injury is a significant clinical challenge, often leading to permanent functional deficits. Standard interventions, such as autologous nerve grafts or distal nerve transfers, require sacrificing healthy nerve tissue and typically result in limited motor or sensory recovery. Nerve regeneration is complex and influenced by several factors: 1) the regenerative capacity of proximal neurons, 2) the ability of axons and support cells to bridge the injury, 3) the capacity of Schwann cells to maintain a supportive environment, and 4) the readiness of target muscles or sensory organs for reinnervation. Emerging bioengineering solutions, including biomaterials, drug delivery systems, fusogens, electrical stimulation devices, and tissue-engineered products, aim to address these challenges. Effective translation of these therapies requires a deep understanding of the physiology and pathology of nerve injury. This article proposes a comprehensive framework for developing restorative strategies that address all four major physiological responses in nerve repair. By implementing this framework, we envision a paradigm shift that could potentially enable full functional recovery for patients, where current approaches offer minimal hope.
Collapse
Affiliation(s)
- Justin C Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Oral and Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Zarina S Ali
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Nerve Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric L Zager
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Nerve Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph M Rosen
- Division of Plastic Surgery, Dartmouth-Hitchcock Medical Center, Dartmouth College, Lebanon, NH, 03766, USA
| | - Mykhailo M Tatarchuk
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Axonova Medical, LLC, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Xiong J, Wang JT, Lin S, Xie BY. Advances in hemiplegia rehabilitation: modern therapeutic interventions to enhance activities of daily living. Front Neurol 2025; 16:1555990. [PMID: 40224310 PMCID: PMC11985468 DOI: 10.3389/fneur.2025.1555990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Hemiplegia severely impairs patients' abilities to perform activities of daily living (ADL), thus affecting their overall quality of life and independence. Often caused by stroke or other forms of brain injury, hemiparesis causes long-term impairment of upper and lower limb function, hindering the patient's ability to manage self-care. With advances in modern rehabilitation medicine, emerging therapeutic interventions such as electrophysiological feedback, virtual reality, and robot-assisted therapy are increasingly being applied to the rehabilitation of hemiplegic patients. These interventions, combined with precise technical support through individualized training, have been shown to be effective in improving upper and lower limb function as well as enhancing ADL abilities of hemiplegic patients. This paper reviews recent advances in modern hemiplegic rehabilitation therapeutic interventions, assesses their impact on improving ADL performance, and examines their effectiveness in improving functional outcomes and quality of life for patients. These findings suggest that modern rehabilitation approaches have significant clinical potential to provide more personalized and effective treatment strategies for people with hemiplegia.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Nursing, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jin-Tian Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Bao-Yuan Xie
- Department of Nursing, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
6
|
Chung HJ, Kim DJ, Kim YS, Lee SH, Kim KI, Lee JH, Kim MS. Berberine Enhances Neuroregeneration in a Rat Model of Peroneal Nerve Transection Injury: An Animal Study. J Pain Res 2025; 18:749-758. [PMID: 39991523 PMCID: PMC11846484 DOI: 10.2147/jpr.s483968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025] Open
Abstract
Background Berberine has therapeutic potential in central nervous system disorders, however, few studies have investigated the effect of berberine on axonal regeneration in PNS injury models. Thus, this study aims to assess the effects of berberine on axonal regeneration in a peroneal nerve transection rat model. Methods Sprague-Dawley rats were divided into two groups: group B, berberine (20 mg/kg) intraperitoneal injection after peroneal nerve transection; and group C, normal saline injection as a control. The sciatic nerve functional index (SNFI) was used to assess functional recovery after nerve injury at 2, 4, and 6 weeks post-transection. Electromyography (EMG) was performed to evaluate quantitative neuromuscular function (latency and amplitude) and the regeneration ratio of the injured nerve was evaluated through histological analysis at 6 weeks post-transection. To analyze the effect of various concentrations of berberine on nerve regeneration, Schwann cell viability was analyzed at 0, 0.1, 0.5, 1.0, 5.0 and 10.0 μM of berberine. Results At 2 and 4 weeks post-transection, SNFI showed no significant difference between groups B and C. However, at 6 weeks post-transection, the SNFI was significantly higher in group B than in group C. On EMG, the latency and amplitude was significantly lower and higher, respectively, in group B than in group C. Histological analysis showed that the regeneration ratio was significantly higher in group B than in group C. Schwann cell viability was highest when 1.0 μM of berberine was administered (136.7±3.5%), and was significantly higher compared to the groups administered with 0.1 μM (114.5±10.6%) and 0.5 μM (118.5±4.8%). Conclusion Berberine injections have a therapeutic effect on nerve regeneration after peripheral nerve transection. In in vitro studies, a minimum dose of 1.0 μM berberine was required to obtain optimal nerve regeneration. Further in vivo studies are needed to analyze the optimal concentration.
Collapse
Affiliation(s)
- Hyun-Ju Chung
- Core Research Laboratory, Medical Science Research Institute, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Dong-Jin Kim
- Core Research Laboratory, Medical Science Research Institute, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Yeon-Seo Kim
- Department of Orthopaedic Surgery, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Kang-Il Kim
- Department of Orthopaedic Surgery, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Jae-Hoon Lee
- Department of Orthopaedic Surgery, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Myung-Seo Kim
- Department of Orthopaedic Surgery, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| |
Collapse
|
7
|
Huang J, Wang P, Wang W, Wei J, Yang L, Liu Z, Li G. Using Electrical Muscle Stimulation to Enhance Electrophysiological Performance of Agonist-Antagonist Myoneural Interface. Bioengineering (Basel) 2024; 11:904. [PMID: 39329646 PMCID: PMC11444137 DOI: 10.3390/bioengineering11090904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The agonist-antagonist myoneural interface (AMI), a surgical method to reinnervate physiologically-relevant proprioceptive feedback for control of limb prostheses, has demonstrated the ability to provide natural afferent sensations for limb amputees when actuating their prostheses. Following AMI surgery, one potential challenge is atrophy of the disused muscles, which would weaken the reinnervation efficacy of AMI. It is well known that electrical muscle stimulus (EMS) can reduce muscle atrophy. In this study, we conducted an animal investigation to explore whether the EMS can significantly improve the electrophysiological performance of AMI. AMI surgery was performed in 14 rats, in which the distal tendons of bilateral solei donors were connected and positioned on the surface of the left biceps femoris. Subsequently, the left tibial nerve and the common peroneus nerve were sutured onto the ends of the connected donor solei. Two stimulation electrodes were affixed onto the ends of the donor solei for EMS delivery. The AMI rats were randomly divided into two groups. One group received the EMS treatment (designated as EMS_on) regularly for eight weeks and another received no EMS (designated as EMS_off). Two physiological parameters, nerve conduction velocity (NCV) and motor unit number, were derived from the electrically evoked compound action potential (CAP) signals to assess the electrophysiological performance of AMI. Our experimental results demonstrated that the reinnervated muscles of the EMS_on group generated higher CAP signals in comparison to the EMS_off group. Both NCV and motor unit number were significantly elevated in the EMS_on group. Moreover, the EMS_on group displayed statistically higher CAP signals on the indirectly activated proprioceptive afferents than the EMS_off group. These findings suggested that EMS treatment would be promising in enhancing the electrophysiological performance and facilitating the reinnervation process of AMI.
Collapse
Affiliation(s)
- Jianping Huang
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China; (J.H.); (W.W.); (J.W.); (L.Y.)
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Ping Wang
- Biomedical Sensing Engineering and Technology Research Center, Shandong University, Jinan 250000, China;
| | - Wei Wang
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China; (J.H.); (W.W.); (J.W.); (L.Y.)
| | - Jingjing Wei
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China; (J.H.); (W.W.); (J.W.); (L.Y.)
| | - Lin Yang
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China; (J.H.); (W.W.); (J.W.); (L.Y.)
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China; (J.H.); (W.W.); (J.W.); (L.Y.)
- Biomedical Sensing Engineering and Technology Research Center, Shandong University, Jinan 250000, China;
| | - Guanglin Li
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China; (J.H.); (W.W.); (J.W.); (L.Y.)
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- The SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518055, China
- Shandong Zhongke Advanced Technology Co., Ltd., Jinan 250000, China
| |
Collapse
|
8
|
Bordett R, Danazumi KB, Wijekoon S, Garcia CJ, Abdulmalik S, Kumbar SG. Advancements in stimulation therapies for peripheral nerve regeneration. Biomed Mater 2024; 19:052008. [PMID: 39025114 PMCID: PMC11425301 DOI: 10.1088/1748-605x/ad651d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Soft-tissue injuries affecting muscles, nerves, vasculature, tendons, and ligaments often diminish the quality of life due to pain, loss of function, and financial burdens. Both natural healing and surgical interventions can result in scarring, which potentially may impede functional recovery and lead to persistent pain. Scar tissue, characterized by a highly disorganized fibrotic extracellular matrix, may serve as a physical barrier to regeneration and drug delivery. While approaches such as drugs, biomaterials, cells, external stimulation, and other physical forces show promise in mitigating scarring and promoting regenerative healing, their implementation remains limited and challenging. Ultrasound, laser, electrical, and magnetic forms of external stimulation have been utilized to promote soft tissue as well as neural tissue regeneration. After stimulation, neural tissues experience increased proliferation of Schwann cells, secretion of neurotropic factors, production of myelin, and growth of vasculature, all aimed at supporting axon regeneration and innervation. Yet, the outcomes of healing vary depending on the pathophysiology of the damaged nerve, the timing of stimulation following injury, and the specific parameters of stimulation employed. Increased treatment intensity and duration have been noted to hinder the healing process by inducing tissue damage. These stimulation modalities, either alone or in combination with nerve guidance conduits and scaffolds, have been demonstrated to promote healing. However, the literature currently lacks a detailed understanding of the stimulation parameters used for nerve healing applications. In this article, we aim to address this gap by summarizing existing reports and providing an overview of stimulation parameters alongside their associated healing outcomes.
Collapse
Affiliation(s)
- Rosalie Bordett
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Khadija B Danazumi
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Suranji Wijekoon
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Christopher J Garcia
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sangamesh G Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
9
|
Bazarek SF, Krenn MJ, Shah SB, Mandeville RM, Brown JM. Novel Technologies to Address the Lower Motor Neuron Injury and Augment Reconstruction in Spinal Cord Injury. Cells 2024; 13:1231. [PMID: 39056812 PMCID: PMC11274462 DOI: 10.3390/cells13141231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Lower motor neuron (LMN) damage results in denervation of the associated muscle targets and is a significant yet under-appreciated component of spinal cord injury (SCI). Denervated muscle undergoes a progressive degeneration and fibro-fatty infiltration that eventually renders the muscle non-viable unless reinnervated within a limited time window. The distal nerve deprived of axons also undergoes degeneration and fibrosis making it less receptive to axons. In this review, we describe the LMN injury associated with SCI and its clinical consequences. The process of degeneration of the muscle and nerve is broken down into the primary components of the neuromuscular circuit and reviewed, including the nerve and Schwann cells, the neuromuscular junction, and the muscle. Finally, we discuss three promising strategies to reverse denervation atrophy. These include providing surrogate axons from local sources; introducing stem cell-derived spinal motor neurons into the nerve to provide the missing axons; and finally, instituting a training program of high-energy electrical stimulation to directly rehabilitate these muscles. Successful interventions for denervation atrophy would significantly expand reconstructive options for cervical SCI and could be transformative for the predominantly LMN injuries of the conus medullaris and cauda equina.
Collapse
Affiliation(s)
- Stanley F. Bazarek
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
- Department of Neurological Surgery, University Hospitals-Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Matthias J. Krenn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS 39216, USA
- Spinal Cord Injury Medicine and Research Services, VA Medical Center, Jackson, MS 39216, USA
| | - Sameer B. Shah
- Departments of Orthopedic Surgery and Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA;
- Research Division, VA San Diego Medical Center, San Diego, CA 92161, USA
| | - Ross M. Mandeville
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
| | - Justin M. Brown
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
| |
Collapse
|
10
|
Lebiedowska A, Hartman-Petrycka M, Stolecka-Warzecha A, Odrzywołek W, Bożek M, Wilczyński S. The Influence of Skin Parameters and Body Composition on the Tolerance of Pain Stimulus Generated During Electrical Muscle Stimulation (EMS) in Women - Pilot Study. Clin Cosmet Investig Dermatol 2024; 17:1227-1243. [PMID: 38827630 PMCID: PMC11143995 DOI: 10.2147/ccid.s463676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/04/2024] [Indexed: 06/04/2024]
Abstract
Purpose This pilot study aims to explore how skin parameters and body composition impact the tolerance to EMS (Electrical Muscle Stimulation) stimuli in women, particularly focusing on pain tolerance in response to varying intensities of EMS. This research seeks to understand what is essential for optimizing EMS applications. Patients and Methods The study involved 16 females (age 35.9 ± 12.3). Body composition and anthropometric measurements were taken, including BMI (Body Mass Index), weight percentage, WHtR (Waist to Height Ratio), WHR (Waist-Hip Ratio), and Bioelectrical Impedance Analysis. High-frequency ultrasound scans were conducted to assess skin parameters. The EMS stimulation was performed using an Evolvex (InMode, Israel), with applicators placed around the abdomen and intensity adjusted according to patient tolerance, recorded at the pain threshold. Results The maximum tolerated EMS stimulus varied from 12V to 55V, with a median of 33V. Body weight showed a strong positive correlation (R=0.76, p<0.001) and hip circumference (R=0.66, p<0.001) with EMS intensity. Body fat mass (R=0.61, p=0.012) and visceral fat area (R=0.55, p=0.029) were positively correlated with EMS intensity. However, no significant correlations were observed between EMS tolerance and muscle tissue parameters or total body water content. The study also found that skin structure parameters showed no significant impact on EMS tolerance. Conclusion The study reveals that women's tolerance to EMS stimuli is influenced by various factors. Anthropometric parameters like hip circumference, body weight, skinfold, and BMI are strongly correlated with EMS tolerance. Body composition factors, particularly adipose tissue characteristics such as body fat mass and percentage, also significantly impact EMS intensity requirements, with no notable correlation to muscle tissue or water content. However, variations in skin structure, including thickness and density, do not significantly affect EMS tolerance. These insights are crucial for tailoring personalized EMS therapy to enhance effectiveness and comfort in both aesthetic and rehabilitative applications.
Collapse
Affiliation(s)
- Agata Lebiedowska
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Magdalena Hartman-Petrycka
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Anna Stolecka-Warzecha
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Wiktoria Odrzywołek
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Małgorzata Bożek
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Sławomir Wilczyński
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
11
|
Bueno CRDS, Buchaim DV, Barraviera B, Ferreira RS, Santos PSDS, Reis CHB, Cini MA, Kuga MC, Rosa GM, Buchaim RL. Delayed repair of the facial nerve and its negative impacts on nerve and muscle regeneration. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230093. [PMID: 38808073 PMCID: PMC11132725 DOI: 10.1590/1678-9199-jvatitd-2023-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/12/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND In this experimental protocol, we evaluated the immediate and delayed repair of the buccal branch of the facial nerve (BBFN) with heterologous fibrin biopolymer (HFB) as a coaptation medium and the use of photobiomodulation (PBM), performing functional and histomorphometric analysis of the BBFN and perioral muscles. METHODS Twenty-eight rats were divided into eight groups using the BBFN bilaterally (the left nerve was used for PBM), namely: G1 - control group, right BBFN (without injury); G2 - control group, left BBFN (without injury + PBM); G3 - Denervated right BBFN (neurotmesis); G4 - Denervated left BBFN (neurotmesis + PBM); G5 - Immediate repair of right BBFN (neurotmesis + HFB); G6 - Immediate repair of left BBFN (neurotmesis + HFB + PBM); G7 - Delayed repair of right BBFN (neurotmesis + HFB); G8 - Delayed repair of left BBFN (neurotmesis + HFB + PBM). Delayed repair occurred after two weeks of denervation. All animals were sacrificed after six weeks postoperatively. RESULTS In the parameters of the BBFN, we observed inferior results in the groups with delayed repair, in relation to the groups with immediate repair, with a significant difference (p < 0.05) in the diameter of the nerve fiber, the axon, and the thickness of the myelin sheath of the group with immediate repair with PBM compared to the other experimental groups. In measuring the muscle fiber area, groups G7 (826.4 ± 69.90) and G8 (836.7 ± 96.44) were similar to G5 (882.8 ± 70.51). In the functional analysis, the G7 (4.10 ± 0.07) and G8 (4.12 ± 0.08) groups presented normal parameters. CONCLUSION We demonstrated that delayed repair of BBFN is possible with HFB, but with worse results compared to immediate repair, and that PBM has a positive influence on nerve regeneration results in immediate repair.
Collapse
Affiliation(s)
- Cleuber Rodrigo de Souza Bueno
- Department of Biological Sciences, Bauru School of Dentistry (FOB),
University of São Paulo (USP), Bauru, SP, Brazil
- Dentistry School, University Center of Adamantina (UNIFAI),
Adamantina, SP, Brazil
- Medical School, University Center of Adamantina (UNIFAI),
Adamantina, SP, Brazil
| | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina (UNIFAI),
Adamantina, SP, Brazil
- Graduate Program in Structural and Functional Interactions in
Rehabilitation, University of Marilia (UNIMAR), Marília, SP, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of
Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), São
Paulo, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School
(FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School
(FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru
School of Dentistry (FOB), University of São Paulo (USP), Bauru, SP, Brazil
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry (FOB),
University of São Paulo (USP), Bauru, SP, Brazil
- Graduate Program in Structural and Functional Interactions in
Rehabilitation, University of Marilia (UNIMAR), Marília, SP, Brazil
- UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR),
Marília, SP, Brazil
| | | | - Milton Carlos Kuga
- Department of Restorative Dentistry, School of Dentistry, São Paulo
State University (UNESP), Araraquara, SP, Brazil
| | - Geraldo Marco Rosa
- Dentistry School, Faculty of the Midwest Paulista (FACOP),
Piratininga, SP, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB),
University of São Paulo (USP), Bauru, SP, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of
Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), São
Paulo, SP, Brazil
| |
Collapse
|
12
|
Lee H, Cho S, Kim D, Lee T, Kim HS. Bioelectric medicine: unveiling the therapeutic potential of micro-current stimulation. Biomed Eng Lett 2024; 14:367-392. [PMID: 38645592 PMCID: PMC11026362 DOI: 10.1007/s13534-024-00366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 04/23/2024] Open
Abstract
Bioelectric medicine (BEM) refers to the use of electrical signals to modulate the electrical activity of cells and tissues in the body for therapeutic purposes. In this review, we particularly focused on the microcurrent stimulation (MCS), because, this can take place at the cellular level with sub-sensory application unlike other stimuli. These extremely low-level currents mimic the body's natural electrical activity and are believed to promote various physiological processes. To date, MCS has limited use in the field of BEM with applications in several therapeutic purposes. However, recent studies provide hopeful signs that MCS is more scalable and widely applicable than what has been used so far. Therefore, this review delves into the landscape of MCS, shedding light on the multifaceted applications and untapped potential of MCS in the realm of healthcare. Particularly, we summarized the hierarchical mediation from cell to whole body responses by MCS including its physiological applications. Our final objective of this review is to contribute to the growing body of literature that unveils the captivating potential of BEM, with MCS poised at the intersection of technological innovation and the intricacies of the human body.
Collapse
Affiliation(s)
- Hana Lee
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| | - Seungkwan Cho
- Gfyhealth Inc., Seongnam, Gyeonggi 13488 South Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| | - Taehyun Lee
- Gfyhealth Inc., Seongnam, Gyeonggi 13488 South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| |
Collapse
|
13
|
Wang X, Hu S, Ouyang S, Pan X, Fu Y, Chen X, Wu S. TsMS combined with EA promotes functional recovery and axonal regeneration via mediating the miR-539-5p/Sema3A/PlexinA1 signalling axis in sciatic nerve-injured rats. Neurosci Lett 2024; 824:137691. [PMID: 38373630 DOI: 10.1016/j.neulet.2024.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Enhancing axonal regeneration is one of the most important processes in treating nerve injuries. Both magnetic and electrical stimulation have the effect of promoting nerve axon regeneration. But few study has investigated the effects of trans-spinal magnetic stimulation (TsMS) combined with electroacupuncture (EA) on nerve regeneration in rats with sciatic nerve injury. In this study, we compared the improvement of neurological function in rats with sciatic nerve crush injuries after 4 weeks of different interventions (EA, TsMS, or TsMS combined with EA). We further explored the morphological and molecular biological alterations following sciatic nerve injury by HE, Masson, RT-PCR, western blotting, immunofluorescence staining and small RNA transcriptome sequencing. The results showed that TsMS combined with EA treatment significantly promoted axonal regeneration, increased the survival rate of neurons, and suppressed denervation atrophy of the gastrocnemius muscle. Subsequent experiments suggested that the combination treatment may play an active role by mediating the miR-539-5p/Sema3A/PlexinA1 signaling axis.
Collapse
Affiliation(s)
- Xianbin Wang
- Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China; Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shouxing Hu
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shuai Ouyang
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Xiao Pan
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Yingxue Fu
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Xingyu Chen
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shuang Wu
- Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China; Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China.
| |
Collapse
|
14
|
Loyo Li M, Cameron MH, Volk GF. Does electrical stimulation still have a place in the treatment armamentarium for Bell's palsy? Expert Rev Neurother 2024; 24:1-3. [PMID: 38105767 DOI: 10.1080/14737175.2023.2295426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Affiliation(s)
- Myriam Loyo Li
- Facial Nerve Center, Department of Otolaryngology- Head and Neck Surgery, Oregon Health & Science University, Oregon, USA
| | - Michelle H Cameron
- Department of Neurology, Oregon Health & Science University, MS Center of Excellence-West, VA Portland Health Care System, Portland, OR, USA
| | - Gerd Fabian Volk
- Facial-Nerve-Center, Department of Otorhinolaryngology, Head and Neck Surgery, Center of Rare Diseases, Jena University Hospital, Jena, Germany
| |
Collapse
|
15
|
Leng Y, Li X, Zheng F, Liu H, Wang C, Wang X, Liao Y, Liu J, Meng K, Yu J, Zhang J, Wang B, Tan Y, Liu M, Jia X, Li D, Li Y, Gu Z, Fan Y. Advances in In Vitro Models of Neuromuscular Junction: Focusing on Organ-on-a-Chip, Organoids, and Biohybrid Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211059. [PMID: 36934404 DOI: 10.1002/adma.202211059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The neuromuscular junction (NMJ) is a peripheral synaptic connection between presynaptic motor neurons and postsynaptic skeletal muscle fibers that enables muscle contraction and voluntary motor movement. Many traumatic, neurodegenerative, and neuroimmunological diseases are classically believed to mainly affect either the neuronal or the muscle side of the NMJ, and treatment options are lacking. Recent advances in novel techniques have helped develop in vitro physiological and pathophysiological models of the NMJ as well as enable precise control and evaluation of its functions. This paper reviews the recent developments in in vitro NMJ models with 2D or 3D cultures, from organ-on-a-chip and organoids to biohybrid robotics. Related derivative techniques are introduced for functional analysis of the NMJ, such as the patch-clamp technique, microelectrode arrays, calcium imaging, and stimulus methods, particularly optogenetic-mediated light stimulation, microelectrode-mediated electrical stimulation, and biochemical stimulation. Finally, the applications of the in vitro NMJ models as disease models or for drug screening related to suitable neuromuscular diseases are summarized and their future development trends and challenges are discussed.
Collapse
Affiliation(s)
- Yubing Leng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Xiaorui Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Fuyin Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Hui Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xudong Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yulong Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jiangyue Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Kaiqi Meng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jiaheng Yu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jingyi Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Binyu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Xiaoling Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Deyu Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| |
Collapse
|
16
|
Bueno CRDS, Tonin MCC, Buchaim DV, Barraviera B, Junior RSF, Santos PSDS, Reis CHB, Pastori CM, Pereira EDSBM, Nogueira DMB, Cini MA, Rosa Junior GM, Buchaim RL. Morphofunctional Improvement of the Facial Nerve and Muscles with Repair Using Heterologous Fibrin Biopolymer and Photobiomodulation. Pharmaceuticals (Basel) 2023; 16:653. [PMID: 37242436 PMCID: PMC10223113 DOI: 10.3390/ph16050653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Peripheral nerve injuries impair the patient's functional capacity, including those occurring in the facial nerve, which require effective medical treatment. Thus, we investigated the use of heterologous fibrin biopolymer (HFB) in the repair of the buccal branch of the facial nerve (BBFN) associated with photobiomodulation (PBM), using a low-level laser (LLLT), analyzing the effects on axons, muscles facials, and functional recovery. This experimental study used twenty-one rats randomly divided into three groups of seven animals, using the BBFN bilaterally (the left nerve was used for LLLT): Control group-normal and laser (CGn and CGl); Denervated group-normal and laser (DGn and DGl); Experimental Repair Group-normal and laser (ERGn and ERGl). The photobiomodulation protocol began in the immediate postoperative period and continued for 5 weeks with a weekly application. After 6 weeks of the experiment, the BBFN and the perioral muscles were collected. A significant difference (p < 0.05) was observed in nerve fiber diameter (7.10 ± 0.25 µm and 8.00 ± 0.36 µm, respectively) and axon diameter (3.31 ± 0.19 µm and 4.07 ± 0.27 µm, respectively) between ERGn and ERGl. In the area of muscle fibers, ERGl was similar to GC. In the functional analysis, the ERGn and the ERGI (4.38 ± 0.10) and the ERGI (4.56 ± 0.11) showed parameters of normality. We show that HFB and PBM had positive effects on the morphological and functional stimulation of the buccal branch of the facial nerve, being an alternative and favorable for the regeneration of severe injuries.
Collapse
Affiliation(s)
- Cleuber Rodrigo de Souza Bueno
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (C.R.d.S.B.); (M.C.C.T.); (C.H.B.R.)
- Dentistry School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil;
| | - Maria Clara Cassola Tonin
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (C.R.d.S.B.); (M.C.C.T.); (C.H.B.R.)
| | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil;
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Universidade Estadual Paulista, UNESP), Botucatu 18610-307, Brazil; (B.B.); (R.S.F.J.)
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Universidade Estadual Paulista), Botucatu 18618-687, Brazil
| | - Rui Seabra Ferreira Junior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Universidade Estadual Paulista, UNESP), Botucatu 18610-307, Brazil; (B.B.); (R.S.F.J.)
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Universidade Estadual Paulista), Botucatu 18618-687, Brazil
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil;
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (C.R.d.S.B.); (M.C.C.T.); (C.H.B.R.)
- UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | | | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
| | - Dayane Maria Braz Nogueira
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil;
| | - Marcelo Augusto Cini
- Medical School, University of West Paulista (UNOESTE), Guarujá 11441-225, Brazil;
| | | | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (C.R.d.S.B.); (M.C.C.T.); (C.H.B.R.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| |
Collapse
|
17
|
Ibitoye MO, Hamzaid NA, Ahmed YK. Effectiveness of FES-supported leg exercise for promotion of paralysed lower limb muscle and bone health-a systematic review. BIOMED ENG-BIOMED TE 2023:bmt-2021-0195. [PMID: 36852605 DOI: 10.1515/bmt-2021-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
Leg exercises through standing, cycling and walking with/without FES may be used to preserve lower limb muscle and bone health in persons with physical disability due to SCI. This study sought to examine the effectiveness of leg exercises on bone mineral density and muscle cross-sectional area based on their clinical efficacy in persons with SCI. Several literature databases were searched for potential eligible studies from the earliest return date to January 2022. The primary outcome targeted was the change in muscle mass/volume and bone mineral density as measured by CT, MRI and similar devices. Relevant studies indicated that persons with SCI that undertook FES- and frame-supported leg exercise exhibited better improvement in muscle and bone health preservation in comparison to those who were confined to frame-assisted leg exercise only. However, this observation is only valid for exercise initiated early (i.e., within 3 months after injury) and for ≥30 min/day for ≥ thrice a week and for up to 24 months or as long as desired and/or tolerable. Consequently, apart from the positive psychological effects on the users, leg exercise may reduce fracture rate and its effectiveness may be improved if augmented with FES.
Collapse
Affiliation(s)
- Morufu Olusola Ibitoye
- Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur Malaysia
| | - Yusuf Kola Ahmed
- Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
18
|
Ni L, Yao Z, Zhao Y, Zhang T, Wang J, Li S, Chen Z. Electrical stimulation therapy for peripheral nerve injury. Front Neurol 2023; 14:1081458. [PMID: 36908597 PMCID: PMC9998520 DOI: 10.3389/fneur.2023.1081458] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Peripheral nerve injury is common and frequently occurs in extremity trauma patients. The motor and sensory impairment caused by the injury will affect patients' daily life and social work. Surgical therapeutic approaches don't assure functional recovery, which may lead to neuronal atrophy and hinder accelerated regeneration. Rehabilitation is a necessary stage for patients to recover better. A meaningful role in non-pharmacological intervention is played by rehabilitation, through individualized electrical stimulation therapy. Clinical studies have shown that electrical stimulation enhances axon growth during nerve repair and accelerates sensorimotor recovery. According to different effects and parameters, electrical stimulation can be divided into neuromuscular, transcutaneous, and functional electrical stimulation. The therapeutic mechanism of electrical stimulation may be to reduce muscle atrophy and promote muscle reinnervation by increasing the expression of structural protective proteins and neurotrophic factors. Meanwhile, it can modulate sensory feedback and reduce neuralgia by inhibiting the descending pathway. However, there are not many summary clinical application parameters of electrical stimulation, and the long-term effectiveness and safety also need to be further explored. This article aims to explore application methodologies for effective electrical stimulation in the rehabilitation of peripheral nerve injury, with simultaneous consideration for fundamental principles of electrical stimulation and the latest technology. The highlight of this paper is to identify the most appropriate stimulation parameters (frequency, intensity, duration) to achieve efficacious electrical stimulation in the rehabilitation of peripheral nerve injury.
Collapse
Affiliation(s)
- Lingmei Ni
- Infection Prevention and Control Department, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhao Yao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yifan Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Siyue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zuobing Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Lu S, Chen W, Wang J, Guo Z, Xiao L, Wei L, Yu J, Yuan Y, Chen W, Bian M, Huang L, Liu Y, Zhang J, Li YL, Jiang LB. Polydopamine-Decorated PLCL Conduit to Induce Synergetic Effect of Electrical Stimulation and Topological Morphology for Peripheral Nerve Regeneration. SMALL METHODS 2023; 7:e2200883. [PMID: 36596669 DOI: 10.1002/smtd.202200883] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Due to the limited self-repairing capacity after peripheral nerve injuries (PNI), artificial nerve conduits are widely applied to facilitate neural regeneration. Exogenous electrical stimulation (ES) that is carried out by the conductive conduit regulates the biological behavior of Schwann cells (SCs). Meanwhile, a longitudinal surface structure counts to guide axonal growth to accelerate the end-to-end connection. Currently, there are no conduits equipped with both electrical conduction and axon-guiding surface structure. Herein, a biodegradable, conductive poly(l-lactide-co-caprolactone)/graphene (PLCL/GN) composite conduit is designed. The conduit with 20.96 ± 1.26 MPa tensile strength has a micropatterned surface of 20 µm groove fabricated by microimprint technology and self-assembled polydopamine (PDA). In vitro evaluation shows that the conduits with ES effectively stimulate the directional cell migration, adhesion, and elongation, and enhance neuronal expression of SCs. The rat sciatic nerve crush model demonstrates that the conductive micropatterned conduit with ES promotes the growth of myelin sheath, faster nerve regeneration, and 20-fold functional recovery in vivo. These discoveries prove that the PLCL(G)/PDA/GN composite conduit is a promising tool for PNI treatment by providing the functional integration of physical guidance, biomimetic biological regulation, and bioelectrical stimulation, which inspires a novel therapeutic approach for nerve regeneration in the future.
Collapse
Affiliation(s)
- Shunyi Lu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wen Chen
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiayi Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zilong Guo
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, 4059, Australia
| | - Lingyu Wei
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jieqin Yu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ya Yuan
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weisin Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengxuan Bian
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Huang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Jian Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yu-Lin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
20
|
Wang J, Lu S, Yuan Y, Huang L, Bian M, Yu J, Zou J, Jiang L, Meng D, Zhang J. Inhibition of Schwann Cell Pyroptosis Promotes Nerve Regeneration in Peripheral Nerve Injury in Rats. Mediators Inflamm 2023; 2023:9721375. [PMID: 37144237 PMCID: PMC10154099 DOI: 10.1155/2023/9721375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/14/2022] [Accepted: 03/24/2023] [Indexed: 05/06/2023] Open
Abstract
Background Peripheral nerve injury (PNI) is one of the most debilitating injuries, but therapies for PNI are still far from satisfactory. Pyroptosis, a recently identified form of cell death, has been demonstrated to participate in different diseases. However, the role of pyroptosis of Schwann cells in PNI remains unclear. Methods We established a rat PNI model, and western blotting, transmission electron microscopy, and immunofluorescence staining were used to confirm pyroptosis of Schwann cells in PNI in vivo. In vitro, pyroptosis of Schwann cells was induced by lipopolysaccharides (LPS)+adenosine triphosphate disodium (ATP). An irreversible inhibitor of pyroptosis, acetyl (Ac)-Tyr-Val-Ala-Asp-chloromethyl ketone (Ac-YVAD-cmk), was used to attenuate Schwann cell pyroptosis. Moreover, the influence of pyroptotic Schwann cells on the function of dorsal root ganglion neurons (DRGns) was analyzed by a coculture system. Finally, the rat PNI model was intraperitoneally treated with Ac-YVAD-cmk to observe the effect of pyroptosis on nerve regeneration and motor function. Results Schwann cell pyroptosis was notably observed in the injured sciatic nerve. LPS+ATP treatment effectively induced Schwann cell pyroptosis, which was largely attenuated by Ac-YVAD-cmk. Additionally, pyroptotic Schwann cells inhibited the function of DRGns by secreting inflammatory factors. A decrease in pyroptosis in Schwann cells promoted regeneration of the sciatic nerve and recovery of motor function in rats. Conclusion Given the role of Schwann cell pyroptosis in PNI progression, inhibition of Schwann cell pyroptosis might be a potential therapeutic strategy for PNI in the future.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ya Yuan
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieqin Yu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiapeng Zou
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dehua Meng
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW To review advances in the diagnostic evaluation and management of traumatic peripheral nerve injuries. RECENT FINDINGS Serial multimodal assessment of peripheral nerve injuries facilitates assessment of spontaneous axonal regeneration and selection of appropriate patients for early surgical intervention. Novel surgical and rehabilitative approaches have been developed to complement established strategies, particularly in the area of nerve grafting, targeted rehabilitation strategies and interventions to promote nerve regeneration. However, several management challenges remain, including incomplete reinnervation, traumatic neuroma development, maladaptive central remodeling and management of fatigue, which compromise functional recovery. SUMMARY Innovative approaches to the assessment and treatment of peripheral nerve injuries hold promise in improving the degree of functional recovery; however, this remains a complex and evolving area.
Collapse
|
22
|
Chu XL, Song XZ, Li Q, Li YR, He F, Gu XS, Ming D. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res 2022; 17:2185-2193. [PMID: 35259827 PMCID: PMC9083151 DOI: 10.4103/1673-5374.335823] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies on the mechanisms of peripheral nerve injury (PNI) have mainly focused on the pathophysiological changes within a single injury site. However, recent studies have indicated that within the central nervous system, PNI can lead to changes in both injury sites and target organs at the cellular and molecular levels. Therefore, the basic mechanisms of PNI have not been comprehensively understood. Although electrical stimulation was found to promote axonal regeneration and functional rehabilitation after PNI, as well as to alleviate neuropathic pain, the specific mechanisms of successful PNI treatment are unclear. We summarize and discuss the basic mechanisms of PNI and of treatment via electrical stimulation. After PNI, activity in the central nervous system (spinal cord) is altered, which can limit regeneration of the damaged nerve. For example, cell apoptosis and synaptic stripping in the anterior horn of the spinal cord can reduce the speed of nerve regeneration. The pathological changes in the posterior horn of the spinal cord can modulate sensory abnormalities after PNI. This can be observed in cases of ectopic discharge of the dorsal root ganglion leading to increased pain signal transmission. The injured site of the peripheral nerve is also an important factor affecting post-PNI repair. After PNI, the proximal end of the injured site sends out axial buds to innervate both the skin and muscle at the injury site. A slow speed of axon regeneration leads to low nerve regeneration. Therefore, it can take a long time for the proximal nerve to reinnervate the skin and muscle at the injured site. From the perspective of target organs, long-term denervation can cause atrophy of the corresponding skeletal muscle, which leads to abnormal sensory perception and hyperalgesia, and finally, the loss of target organ function. The mechanisms underlying the use of electrical stimulation to treat PNI include the inhibition of synaptic stripping, addressing the excessive excitability of the dorsal root ganglion, alleviating neuropathic pain, improving neurological function, and accelerating nerve regeneration. Electrical stimulation of target organs can reduce the atrophy of denervated skeletal muscle and promote the recovery of sensory function. Findings from the included studies confirm that after PNI, a series of physiological and pathological changes occur in the spinal cord, injury site, and target organs, leading to dysfunction. Electrical stimulation may address the pathophysiological changes mentioned above, thus promoting nerve regeneration and ameliorating dysfunction.
Collapse
Affiliation(s)
- Xiao-Lei Chu
- Academy of Medical Engineering and Translational Medicine, Tianjin University; Department of Rehabilitation, Tianjin Hospital, Tianjin, China
| | - Xi-Zi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qi Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University; Department of Rehabilitation, Tianjin Hospital, Tianjin, China
| | - Yu-Ru Li
- College of Exercise & Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Feng He
- College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xiao-Song Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine; College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
23
|
Alarcón JB, Chuhuaicura PB, Sluka KA, Vance CG, Fazan VPS, Godoy KA, Fuentes RE, Dias FJ. Transcutaneous Electrical Nerve Stimulation in Nerve Regeneration: A Systematic Review of In Vivo Animal Model Studies. Neuromodulation 2022; 25:1248-1258. [DOI: 10.1016/j.neurom.2021.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 01/25/2023]
|
24
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
25
|
Wei S, Hu Q, Cheng X, Ma J, Liang X, Peng J, Xu W, Sun X, Han G, Ma X, Wang Y. Differences in the Structure and Protein Expression of Femoral Nerve Branches in Rats. Front Neuroanat 2020; 14:16. [PMID: 32322192 PMCID: PMC7156789 DOI: 10.3389/fnana.2020.00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shuai Wei
- Tianjin Hospital Tianjin University, Tianjin, China
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qian Hu
- Department of Geriatrics, The Second People’s Hospital of Nantong, Nantong, China
| | - Xiaoqing Cheng
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianxiong Ma
- Tianjin Hospital Tianjin University, Tianjin, China
| | - Xuezhen Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenjing Xu
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Xun Sun
- Tianjin Hospital Tianjin University, Tianjin, China
| | - Gonghai Han
- The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xinlong Ma
- Tianjin Hospital Tianjin University, Tianjin, China
- *Correspondence: Xinlong Ma Yu Wang
| | - Yu Wang
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- *Correspondence: Xinlong Ma Yu Wang
| |
Collapse
|