1
|
Guo X, Wang J, Fan H, Tao W, Ren Z, Li X, Liu S, Zhou P, Chen Y. Computational drug repurposing in Parkinson's disease: Omaveloxolone and cyproheptadine as promising therapeutic candidates. Front Pharmacol 2025; 16:1539032. [PMID: 40264664 PMCID: PMC12011821 DOI: 10.3389/fphar.2025.1539032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Parkinson's disease (PD), a prevalent and progressive neurodegenerative disorder, currently lacks effective and satisfactory pharmacological treatments. Computational drug repurposing represents a promising and efficient strategy for drug discovery, aiming to identify new therapeutic indications for existing pharmaceuticals. Methods: We employed a drug-target network approach to computationally repurpose FDA-approved drugs from databases such as DrugBank. A literature review was conducted to select candidates not previously reported as pharmacoprotective against PD. Subsequent in vitro evaluation utilized Cell Counting Kit-8 (CCK8) assays to assess the neuroprotective effects of the selected compounds in the SH-SY5Y cell model of Parkinson's disease induced by 1-methyl-4-phenylpyridinium (MPP+). Furthermore, an in vivo mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was developed to investigate the mechanisms of action and therapeutic potential of the identified drug candidates. Results: Our approach identified 176 drug candidates, with 28 selected for their potential anti-Parkinsonian effects and lack of prior PD-related reporting. CCK8 assays showed significant neuroprotection in SH-SY5Y cells for Omaveloxolone and Cyproheptadine. In the MPTP-induced mouse model, Cyproheptadine inhibited interleukin-6 (IL-6) expression and prevented Tyrosine Hydroxylase (TH) downregulation via the MAPK/NFκB pathway, while Omaveloxolone alleviated TH downregulation, potentially through the Kelch-like ECH-associated protein 1 (KEAP1)-NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway. Both drugs preserved dopaminergic neurons and improved neurological deficits in the PD model. Conclusion: This study elucidates potential drug candidates for the treatment of Parkinson's disease through the application of computational repurposing, thereby underscoring its efficacy as a drug discovery strategy.
Collapse
Affiliation(s)
- Xin Guo
- Department of Geriatric Neurology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jie Wang
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Hongyang Fan
- Department of Geriatric Neurology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Wanying Tao
- Department of Critical Care Medicine, Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zijing Ren
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xingyue Li
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Suyu Liu
- Medical College, Nanjing University, Nanjing, China
| | - Peiyang Zhou
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yingzhu Chen
- Department of Geriatric Neurology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Chen L, Cui W, Qin J, Zhu M, Zhang H, Yang J, Xu Z, Huang H. FKBP51 is Involved in Epileptic Seizure by Regulating PSD95 in a PTZ-Induced Epileptic Mouse Model. J Integr Neurosci 2025; 24:25710. [PMID: 40152573 DOI: 10.31083/jin25710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Epilepsy, the world's third most prevalent chronic brain disorder, significantly affects patients' quality of life and increases the economic burden on families and society. Previous studies have demonstrated that FK506-binding protein 51 (FKBP51) plays a crucial role in synaptic plasticity. However, FKBP51 exhibits different functions under various physiological and pathological conditions. Our study explored the relationship between FKBP51 and epilepsy and its possible mechanism of action. We also analyzed the expression levels of postsynaptic density-95 (PSD95) and synaptophysin (SYP) in the hippocampus to examine the pathophysiology of epilepsy. METHODS A chronic epileptic kindling model was established by injecting pentylenetetrazole (PTZ) intraperitoneally, and a spontaneous seizure model was created by injecting kainic acid (KA) into the dentate gyrus using a stereotaxic apparatus. Endogenous FKBP51 expression was inhibited using adeno-associated virus (AAV)-FKBP51-Small hairpin RNAs (shRNA). The expression of FKBP51, PSD95, and SYP in the hippocampus and synaptosomes was measured through western blotting. Golgi staining and electron microscopy were used to examine spines and synaptic structures. RESULTS The results showed a significant increase in FKBP51 expression in the hippocampal tissue of the PTZ- and KA-induced epilepsy model groups. Inhibition of FKBP51 expression through AAV-FKBP51-shRNA resulted in a shorter latency and an elevated seizure grade score in mice. Moreover, the suppression of FKBP51 expression enhanced the expression of synaptic plasticity-related proteins, increased the density of dendritic spines, and elevated the quantity of spherical synaptic vesicles in the presynaptic membrane in the hippocampus. CONCLUSIONS FKBP51 may serve as an endogenous protective factor in epilepsy by regulating the expression of the synaptic plasticity-related protein PSD95, the density of dendritic spines, and the number of synaptic vesicles in the hippocampal CA1.
Collapse
Affiliation(s)
- Ling Chen
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
| | - Wenxiu Cui
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
- Department of Neurology, Ziyang Central Hospital, 641300 Ziyang, Sichuan, China
| | - Jiyao Qin
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
| | - Manmin Zhu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
| | - Juan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
| |
Collapse
|
3
|
Sahin F, Gunel A, Atasoy BT, Guler U, Salih B, Kuzu I, Taspinar M, Cinar O, Kahveci S. Enhancing proteasome activity by NMDAR antagonists explains their therapeutic effect in neurodegenerative and mental diseases. Sci Rep 2025; 15:1165. [PMID: 39805913 PMCID: PMC11729902 DOI: 10.1038/s41598-024-84479-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
NMDAR antagonists, such as memantine and ketamine, have shown efficacy in treating neurodegenerative diseases and major depression. The mechanism by which these drugs correct the aforementioned diseases is still unknown. Our study reveals that these antagonists significantly enhance 20S proteasome activity, crucial for degrading intrinsically disordered, oxidatively damaged, or misfolded proteins, factors pivotal in neurodegenerative diseases like Alzheimer's and Parkinson's. In our mouse model experiment, ketamine administration notably altered brain synaptic protein profiles within two hours, significantly downregulating proteins strongly associated with Alzheimer's and Parkinson's diseases. Furthermore, the altered proteins exhibited enrichment in terms related to plasticity and potentiation, including retrograde endocannabinoid signaling-a pivotal pathway in both short- and long-term plasticity that may elucidate the long-lasting effects of ketamine in major depression. Via the ubiquitin-independent 20S proteasome pathway (UIPS), these drugs maintain cellular protein homeostasis, which is crucial as proteasome activity declines with age, leading to protein aggregation and disease symptoms. Therefore, these findings hold promise for new treatment options not only for brain diseases but also for other systemic conditions associated with unfolded or misfolded proteins.
Collapse
Affiliation(s)
- Fikret Sahin
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey.
| | - Aslihan Gunel
- Faculty of Arts and Science Department of Chemistry-Biochemistry, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Buse Turegun Atasoy
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | - Ulku Guler
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Isinsu Kuzu
- Department of Medical Pathology, Ankara University School of Medicine, Ankara, Turkey
| | - Mehmet Taspinar
- Department of Medical Biology, Aksaray University School of Medicine, Aksaray, Turkey
| | - Ozgur Cinar
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Selda Kahveci
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
- Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
4
|
Carracedo S, Launay A, Dechelle-Marquet PA, Faivre E, Blum D, Delarasse C, Boué-Grabot E. Purinergic-associated immune responses in neurodegenerative diseases. Prog Neurobiol 2024; 243:102693. [PMID: 39579963 DOI: 10.1016/j.pneurobio.2024.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The chronic activation of immune cells can participate in the development of pathological conditions such as neurodegenerative diseases including Alzheimer's disease (AD), Multiple Sclerosis (MS), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In recent years, compelling evidence indicates that purinergic signaling plays a key role in neuro-immune cell functions. The extracellular release of adenosine 5'-triphosphate (ATP), and its breakdown products (ADP and adenosine) provide the versatile basis for complex purinergic signaling through the activation of several families of receptors. G-protein coupled adenosine A2A receptors, ionotropic P2X and G-protein coupled P2Y receptors for ATP and other nucleotides are abundant and widely distributed in neurons, microglia, and astrocytes of the central nervous system as well as in peripheral immune cells. These receptors are strongly linked to inflammation, with a functional interplay that may influence the intricate purinergic signaling involved in inflammatory responses. In the present review, we examine the roles of the purinergic receptors in neuro-immune cell functions with particular emphasis on A2AR, P2X4 and P2X7 and their possible relevance to specific neurodegenerative disorders. Understanding the molecular mechanisms governing purinergic receptor interaction will be crucial for advancing the development of effective immunotherapies targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Carracedo
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| | - Agathe Launay
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | | | - Emilie Faivre
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | - David Blum
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | - Cécile Delarasse
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17, rue Moreau, Paris F-75012, France
| | | |
Collapse
|
5
|
Bhat AA, Moglad E, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Pant K, Singh TG, Dureja H, Singh SK, Dua K, Gupta G, Subramaniyan V. Therapeutic approaches targeting aging and cellular senescence in Huntington's disease. CNS Neurosci Ther 2024; 30:e70053. [PMID: 39428700 PMCID: PMC11491556 DOI: 10.1111/cns.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disease that is manifested by a gradual loss of physical, cognitive, and mental abilities. As the disease advances, age has a major impact on the pathogenic signature of mutant huntingtin (mHTT) protein aggregation. This review aims to explore the intricate relationship between aging, mHTT toxicity, and cellular senescence in HD. Scientific data on the interplay between aging, mHTT, and cellular senescence in HD were collected from several academic databases, including PubMed, Google Scholar, Google, and ScienceDirect. The search terms employed were "AGING," "HUNTINGTON'S DISEASE," "MUTANT HUNTINGTIN," and "CELLULAR SENESCENCE." Additionally, to gather information on the molecular mechanisms and potential therapeutic targets, the search was extended to include relevant terms such as "DNA DAMAGE," "OXIDATIVE STRESS," and "AUTOPHAGY." According to research, aging leads to worsening HD pathophysiology through some processes. As a result of the mHTT accumulation, cellular senescence is promoted, which causes DNA damage, oxidative stress, decreased autophagy, and increased inflammatory responses. Pro-inflammatory cytokines and other substances are released by senescent cells, which may worsen the neuronal damage and the course of the disease. It has been shown that treatments directed at these pathways reduce some of the HD symptoms and enhance longevity in experimental animals, pointing to a new possibility of treating the condition. Through their amplification of the harmful effects of mHTT, aging and cellular senescence play crucial roles in the development of HD. Comprehending these interplays creates novel opportunities for therapeutic measures targeted at alleviating cellular aging and enhancing HD patients' quality of life.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Kumud Pant
- Graphic Era (Deemed to be University), Dehradun, India
| | | | - Harish Dureja
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
- Centre of Medical and Bio‐Allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash UniversityBandar SunwaySelangor Darul EhsanMalaysia
- Department of Medical SciencesSchool of Medical and Life Sciences Sunway UniversityBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
6
|
Li L, Yang C, Jia M, Wang Y, Zhao Y, Li Q, Gong J, He Y, Xu K, Liu X, Chen X, Hu J, Liu Z. Synbiotic therapy with Clostridium sporogenes and xylan promotes gut-derived indole-3-propionic acid and improves cognitive impairments in an Alzheimer's disease mouse model. Food Funct 2024; 15:7865-7882. [PMID: 38967039 DOI: 10.1039/d4fo00886c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized primarily by cognitive impairment. Recent investigations have highlighted the potential of nutritional interventions that target the gut-brain axis, such as probiotics and prebiotics, in forestalling the onset of AD. In this study, whole-genome sequencing was employed to identify xylan as the optimal carbon source for the tryptophan metabolism regulating probiotic Clostridium sporogenes (C. sporogenes). Subsequent in vivo studies demonstrated that administration of a synbiotic formulation comprising C. sporogenes (1 × 1010 CFU per day) and xylan (1%, w/w) over a duration of 30 days markedly enhanced cognitive performance and spatial memory faculties in the 5xFAD transgenic AD mouse model. The synbiotic treatment significantly reduced amyloid-β (Aβ) accumulation in the cortex and hippocampus of the brain. Importantly, synbiotic therapy substantially restored the synaptic ultrastructure in AD mice and suppressed neuroinflammatory responses. Moreover, the intervention escalated levels of the microbial metabolite indole-3-propionic acid (IPA) and augmented the relative prevalence of IPA-synthesizing bacteria, Lachnospira and Clostridium, while reducing the dominant bacteria in AD, such as Aquabacterium, Corynebacterium, and Romboutsia. Notably, synbiotic treatment also prevented the disruption of gut barrier integrity. Correlation analysis indicated a strong positive association between gut microbiota-generated IPA levels and behavioral changes. In conclusion, this study demonstrates that synbiotic supplementation significantly improves cognitive and intellectual deficits in 5xFAD mice, which could be partly attributed to enhanced IPA production by gut microbiota. These findings provide a theoretical basis for considering synbiotic therapy as a novel microbiota-targeted approach for the treatment of metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Yang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuhao Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyuan Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Gong
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying He
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuhui Chen
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518004, China
| | - Jun Hu
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518004, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
7
|
Fernandes EFA, Palner M, Raval NR, Jeppesen TE, Danková D, Bærentzen SL, Werner C, Eilts J, Maric HM, Doose S, Aripaka SS, Kaalund SS, Aznar S, Kjaer A, Schlosser A, Haugaard-Kedström LM, Knudsen GM, Herth MM, Stro Mgaard K. Development of Peptide-Based Probes for Molecular Imaging of the Postsynaptic Density in the Brain. J Med Chem 2024; 67:11975-11988. [PMID: 38981131 DOI: 10.1021/acs.jmedchem.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The postsynaptic density (PSD) comprises numerous scaffolding proteins, receptors, and signaling molecules that coordinate synaptic transmission in the brain. Postsynaptic density protein 95 (PSD-95) is a master scaffold protein within the PSD and one of its most abundant proteins and therefore constitutes a very attractive biomarker of PSD function and its pathological changes. Here, we exploit a high-affinity inhibitor of PSD-95, AVLX-144, as a template for developing probes for molecular imaging of the PSD. AVLX-144-based probes were labeled with the radioisotopes fluorine-18 and tritium, as well as a fluorescent tag. Tracer binding showed saturable, displaceable, and uneven distribution in rat brain slices, proving effective in quantitative autoradiography and cell imaging studies. Notably, we observed diminished tracer binding in human post-mortem Parkinson's disease (PD) brain slices, suggesting postsynaptic impairment in PD. We thus offer a suite of translational probes for visualizing and understanding PSD-related pathologies.
Collapse
Affiliation(s)
- Eduardo F A Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Nakul Ravi Raval
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| | - Troels E Jeppesen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | - Daniela Danková
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Simone L Bærentzen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Christian Werner
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University, Am Hubland, Würzburg D-97074, Germany
| | - Janna Eilts
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University, Am Hubland, Würzburg D-97074, Germany
| | - Hans M Maric
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University, Josef-Schneider-Str. 2, Würzburg 97080, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University, Am Hubland, Würzburg D-97074, Germany
| | - Sanjay Sagar Aripaka
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Sanne Simone Kaalund
- Center for Neuroscience and Stereology, Bispebjerg University Hospital, Nielsine Nielsens Vej 6B, Copenhagen DK-2400, Denmark
| | - Susana Aznar
- Center for Neuroscience and Stereology, Bispebjerg University Hospital, Nielsine Nielsens Vej 6B, Copenhagen DK-2400, Denmark
- Center for Translational Research, Bispebjerg University Hospital, Nielsine Nielsens Vej 4B, Copenhagen DK-2400, Denmark
| | - Andreas Kjaer
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | - Andreas Schlosser
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University, Am Hubland, Würzburg D-97074, Germany
| | - Linda M Haugaard-Kedström
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | - Matthias M Herth
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | - Kristian Stro Mgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| |
Collapse
|
8
|
Egunlusi AO, Malan SF, Palchykov VA, Joubert J. Calcium Modulating Effect of Polycyclic Cages: A Suitable Therapeutic Approach Against Excitotoxic-induced Neurodegeneration. Mini Rev Med Chem 2024; 24:1277-1292. [PMID: 38275027 DOI: 10.2174/0113895575273868231128104121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 01/27/2024]
Abstract
Neurodegenerative disorders pose a significant challenge to global healthcare systems due to their progressive nature and the resulting loss of neuronal cells and functions. Excitotoxicity, characterized by calcium overload, plays a critical role in the pathophysiology of these disorders. In this review article, we explore the involvement of calcium dysregulation in neurodegeneration and neurodegenerative disorders. A promising therapeutic strategy to counter calcium dysregulation involves the use of calcium modulators, particularly polycyclic cage compounds. These compounds, structurally related to amantadine and memantine, exhibit neuroprotective properties by attenuating calcium influx into neuronal cells. Notably, the pentacycloundecylamine NGP1-01, a cage-like structure, has shown efficacy in inhibiting both N-methyl-D-aspartate (NMDA) receptors and voltage- gated calcium channels (VGCCs), making it a potential candidate for neuroprotection against excitotoxic-induced neurodegenerative disorders. The structure-activity relationship of polycyclic cage compounds is discussed in detail, highlighting their calcium-inhibitory activities. Various closed, open, and rearranged cage compounds have demonstrated inhibitory effects on calcium influx through NMDA receptors and VGCCs. Additionally, these compounds have exhibited neuroprotective properties, including free radical scavenging, attenuation of neurotoxicities, and reduction of neuroinflammation. Although the calcium modulatory activities of polycyclic cage compounds have been extensively studied, apart from amantadine and memantine, none have undergone clinical trials. Further in vitro and in vivo studies and subsequent clinical trials are required to establish the efficacy and safety of these compounds. The development of polycyclic cages as potential multifunctional agents for treating complex neurodegenerative diseases holds great promise.
Collapse
Affiliation(s)
- Ayodeji O Egunlusi
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Sarel F Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Vitalii A Palchykov
- Research Institute of Chemistry and Geology, Oles Honchar Dnipropetrovsk National University, 72 Gagarina Av., Dnipro 49010, Ukraine
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
9
|
Singh S, Ahuja A, Pathak S. Potential Role of Oxidative Stress in the Pathophysiology of Neurodegenerative Disorders. Comb Chem High Throughput Screen 2024; 27:2043-2061. [PMID: 38243956 DOI: 10.2174/0113862073280680240101065732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
Neurodegeneration causes premature death in the peripheral and central nervous system. Neurodegeneration leads to the accumulation of oxidative stress, inflammatory responses, and the generation of free radicals responsible for nervous disorders like amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders. Therefore, focus must be diverted towards treating and managing these disorders, as it is very challenging. Furthermore, effective therapies are also lacking, so the growing interest of the global market must be inclined towards developing newer therapeutic approaches that can intercept the progression of neurodegeneration. Emerging evidences of research findings suggest that antioxidant therapy has significant potential in modulating disease phenotypes. This makes them promising candidates for further investigation. This review focuses on the role of oxidative stress and reactive oxygen species in the pathological mechanisms of various neurodegenerative diseases, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders and their neuroprotection. Additionally, it highlights the potential of antioxidant-based therapeutics in mitigating disease severity in humans and improving patient compliance. Ongoing extensive global research further sheds light on exploring new therapeutic targets for a deeper understanding of disease mechanisms in the field of medicine and biology targeting neurogenerative disorders.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| |
Collapse
|
10
|
Sun D, Li S, Huang H, Xu L. Neurotoxicity of melittin: Role of mitochondrial oxidative phosphorylation system in synaptic plasticity dysfunction. Toxicology 2023; 497-498:153628. [PMID: 37678661 DOI: 10.1016/j.tox.2023.153628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Melittin (Mel), a main active peptide component of bee venom, has been proven to possess strong antitumor activity. Previous studies have shown that Mel caused severe cell membrane lysis and acted on the central nervous system (CNS). Here, this study was designed to investigate the effects of Mel on CNS and explore the potential mechanism. We confirmed the neurotoxic effect of melittin by in vivo and in vitro experiments. After subcutaneous administration of Mel (4 mg/kg, 8 mg/kg) for 14 days, the mice exhibited obvious depression-like behavior in a dose dependent manner. Besides, RNA-sequencing analysis revealed that oxidative phosphorylation (OXPHOS) signaling pathway was mostly enriched in hippocampus. Consistently, we found that Mel distinctly inhibited the activity of OXPHOS complex I and induced oxidative stress injury. Moreover, Mel significantly induced synaptic plasticity dysfunction in hippocampus via BDNF/TrkB/CREB signaling pathway. Taken together, the neurotoxic effect of Mel was involved in impairing OXPHOS system and hippocampal synaptic plasticity. These novel findings provide new insights into fully understanding the health risks of Mel and are conducive to the development of Mel related drugs.
Collapse
Affiliation(s)
- Dan Sun
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Haiqin Huang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China
| | - Lixing Xu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
11
|
Postsynaptic Proteins at Excitatory Synapses in the Brain—Relationship with Depressive Disorders. Int J Mol Sci 2022; 23:ijms231911423. [PMID: 36232725 PMCID: PMC9569598 DOI: 10.3390/ijms231911423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders (DDs) are an increasingly common health problem that affects all age groups. DDs pathogenesis is multifactorial. However, it was proven that stress is one of the most important environmental factors contributing to the development of these conditions. In recent years, there has been growing interest in the role of the glutamatergic system in the context of pharmacotherapy of DDs. Thus, it has become increasingly important to explore the functioning of excitatory synapses in pathogenesis and pharmacological treatment of psychiatric disorders (including DDs). This knowledge may lead to the description of new mechanisms of depression and indicate new potential targets for the pharmacotherapy of illness. An excitatory synapse is a highly complex and very dynamic structure, containing a vast number of proteins. This review aimed to discuss in detail the role of the key postsynaptic proteins (e.g., NMDAR, AMPAR, mGluR5, PSD-95, Homer, NOS etc.) in the excitatory synapse and to systematize the knowledge about changes that occur in the clinical course of depression and after antidepressant treatment. In addition, a discussion on the potential use of ligands and/or modulators of postsynaptic proteins at the excitatory synapse has been presented.
Collapse
|
12
|
Schwab K, Chasapopoulou Z, Frahm S, Magbagbeolu M, Cranston A, Harrington CR, Wischik CM, Theuring F, Riedel G. Glutamatergic transmission and receptor expression in the synucleinopathy h-α-synL62 mouse model: Effects of hydromethylthionine. Cell Signal 2022; 97:110386. [PMID: 35709886 DOI: 10.1016/j.cellsig.2022.110386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
The accumulation of alpha-synuclein (α-Syn) into Lewy bodies in cortical and subcortical regions has been linked to the pathogenesis of synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). While there is a strong link between synuclein aggregates and the reduction in dopamine function in the emergence of PD, less is known about the consequences of α-Syn accumulation in glutamatergic neurons and how this could be exploited as a therapeutic target. Transgenic h-α-synL62 (L62) mice, in which synuclein aggregation is achieved through the expression of full-length human α-Syn fused with a signal sequence peptide, were used to characterise glutamatergic transmission using a combination of behavioural, immunoblotting, and histopathological approaches. The protein aggregation inhibitor hydromethylthionine mesylate (HMTM) alone, or in combination with the glutamatergic compounds 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine hydrochloride (MTEP) and memantine, was used to target α-Syn aggregation. We show that accumulation of α-Syn aggregates in glutamatergic synapses affected synaptic protein expression including metabotropic glutamate receptor 5 (mGLUR5) levels and ratio of N-methyl-d-aspartate (NMDA) receptor subunits GluN1/GluN2A. The ratio of NMDA receptor subunits and levels of mGLUR5 were both normalised by HMTM in L62 mice. These alterations, however, did not affect glutamate release in synaptosomes derived from L62 mice or behavioural endpoints following pharmacological manipulations of glutamate functions. Our results confirm that HMTM acts in the L62 mouse model of PD as an inhibitor of pathological aggregation of synuclein and show that HMTM treatment normalises both the ratio of NMDA receptor subunits and mGLUR5 levels. These findings support the potential utility of HMTM as a disease-modifying treatment for PD aiming to reduce synuclein aggregation pathology.
Collapse
Affiliation(s)
- Karima Schwab
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany
| | - Zoi Chasapopoulou
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; Center for Stroke Research, Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Robert Koch Platz 4, 101155 Berlin, Germany
| | - Silke Frahm
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; Stem Cell Core Facility, Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Mandy Magbagbeolu
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany
| | - Anna Cranston
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Benchsci, Montreal, Quebec, Canada
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Franz Theuring
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
13
|
Teleanu RI, Niculescu AG, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters-Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. Int J Mol Sci 2022; 23:5954. [PMID: 35682631 PMCID: PMC9180936 DOI: 10.3390/ijms23115954] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Neurotransmitters are molecules that amplify, transmit, and convert signals in cells, having an essential role in information transmission throughout the nervous system. Hundreds of such chemicals have been discovered in the last century, continuing to be identified and studied concerning their action on brain health. These substances have been observed to influence numerous functions, including emotions, thoughts, memories, learning, and movements. Thus, disturbances in neurotransmitters' homeostasis started being correlated with a plethora of neurological and neurodegenerative disorders. In this respect, the present paper aims to describe the most important neurotransmitters, broadly classified into canonical (e.g., amino acids, monoamines, acetylcholine, purines, soluble gases, neuropeptides) and noncanonical neurotransmitters (e.g., exosomes, steroids, D-aspartic acid), and explain their link with some of the most relevant neurological conditions. Moreover, a brief overview of the recently developed neurotransmitters' detection methods is offered, followed by several considerations on the modulation of these substances towards restoring homeostasis.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Eugenia Roza
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Oana Vladâcenco
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | | |
Collapse
|
14
|
Abstract
In 1959, E. G. Gray described two different types of synapses in the brain for the first time: symmetric and asymmetric. Later on, symmetric synapses were associated with inhibitory terminals, and asymmetric synapses to excitatory signaling. The balance between these two systems is critical to maintain a correct brain function. Likewise, the modulation of both types of synapses is also important to maintain a healthy equilibrium. Cerebral circuitry responds differently depending on the type of damage and the timeline of the injury. For example, promoting symmetric signaling following ischemic damage is beneficial only during the acute phase; afterwards, it further increases the initial damage. Synapses can be also altered by players not directly related to them; the chronic and long-term neurodegeneration mediated by tau proteins primarily targets asymmetric synapses by decreasing neuronal plasticity and functionality. Dopamine represents the main modulating system within the central nervous system. Indeed, the death of midbrain dopaminergic neurons impairs locomotion, underlying the devastating Parkinson’s disease. Herein, we will review studies on symmetric and asymmetric synapses plasticity after three different stressors: symmetric signaling under acute damage—ischemic stroke; asymmetric signaling under chronic and long-term neurodegeneration—Alzheimer’s disease; symmetric and asymmetric synapses without modulation—Parkinson’s disease.
Collapse
|
15
|
Wen W, Li P, Liu P, Xu S, Wang F, Huang JH. Post-Translational Modifications of BACE1 in Alzheimer's Disease. Curr Neuropharmacol 2021; 20:211-222. [PMID: 33475074 PMCID: PMC9199555 DOI: 10.2174/1570159x19666210121163224] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Beta-Amyloid Cleaving Enzyme1 (BACE1) is a monospecific enzyme for the key rate-limiting step in the synthesis of beta-amyloid(Aβ) from cleavage of amyloid precursor protein (APP), to form senile plaques and causes cognitive dysfunction in Alzheimer's disease (AD). Post-translation modifications of BACE1, such as acetylation, glycosylation, palmitoylation, phosphorylation, play a crucial role in the trafficking and maturation process of BACE1. The study of BACE1 is of great importance not only for understanding the formation of toxic Aβ but also for the development of an effective therapeutic target for the treatment of AD. This paper review recent advances in the studies about BACE1, with focuses being paid to the relationship of Aβ, BACE1 with post- translational regulation of BACE1. In addition, we specially reviewed studies about the compounds that can be used to affect post-translational regulation of BACE1 or regulate BACE1 in the literature, which can be used for subsequent research on whether BACE1 is a post-translationally modified drug.
Collapse
Affiliation(s)
- Wen Wen
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137. China
| | - Ping Li
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137. China
| | - Panwang Liu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137. China
| | - Shijun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137. China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan 610000. China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health Science Center, Temple, TX 79409. United States
| |
Collapse
|
16
|
O'Connor M, Shentu YP, Wang G, Hu WT, Xu ZD, Wang XC, Liu R, Man HY. Acetylation of AMPA Receptors Regulates Receptor Trafficking and Rescues Memory Deficits in Alzheimer's Disease. iScience 2020; 23:101465. [PMID: 32861999 PMCID: PMC7476873 DOI: 10.1016/j.isci.2020.101465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/21/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
In Alzheimer's disease (AD), decreases in the amount and synaptic localization of AMPA receptors (AMPARs) result in weakened synaptic activity and dysfunction in synaptic plasticity, leading to impairments in cognitive functions. We have previously found that AMPARs are subject to lysine acetylation, resulting in higher AMPAR stability and protein accumulation. Here we report that AMPAR acetylation was significantly reduced in AD and neurons with Aβ incubation. We identified p300 as the acetyltransferase responsible for AMPAR acetylation and found that enhancing GluA1 acetylation ameliorated Aβ-induced reductions in total and cell-surface AMPARs. Importantly, expression of acetylation mimetic GluA1 (GluA1-4KQ) in APP/PS1 mice rescued impairments in synaptic plasticity and memory. These findings indicate that Aβ-induced reduction in AMPAR acetylation and stability contributes to synaptopathy and memory deficiency in AD, suggesting that AMPAR acetylation may be an effective molecular target for AD therapeutics.
Collapse
Affiliation(s)
- Margaret O'Connor
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Yang-Ping Shentu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guan Wang
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Wen-Ting Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen-Dong Xu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., L-603, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA, USA
| |
Collapse
|