1
|
Simmons RW, Thomas JD, Nguyen TT, Mattson SN, Riley EP. Control of precision grip in children with heavy prenatal alcohol exposure. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:345-357. [PMID: 39726365 PMCID: PMC11828975 DOI: 10.1111/acer.15504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Fine motor skill deficits have been reported for children with histories of prenatal alcohol exposure, but little is known whether impaired motor skill extends to the regulation of precision grip control. METHODS Children with (n = 15) and without (n = 17) histories of heavy prenatal alcohol exposure used their dominant hand to grasp, lift, and hold in space a small-instrumented object with a mass of 19 g. Object mass was also experimentally increased by separately adding two aluminum cubes with mass of 200 and 400 g. Participants completed a block of eight trials for each object mass with the last six trials in each trial block being statistically analyzed. Selected temporal and kinetic parameters of grip force (GF) and load force (LF) were examined to quantitatively index precision grip performance of the two groups. RESULTS Compared to typically developing peers, children with prenatal alcohol exposure used excessive and more variable LF and greater GF to lift each object mass, with more finger GF than thumb GF being applied to the apparatus. The GF/LF ratio for the clinical group was greater when lifting the smallest mass load. When holding the object in space, children with prenatal alcohol exposure produced greater GF for the smallest mass load, again with more GF being applied via the finger compared to the thumb. CONCLUSIONS Children with heavy prenatal alcohol exposure demonstrate force deficits when using precision grip to manipulate an object with three different masses. Chronic irregular precision grip could manifest as a fine motor skill developmental delay that may negatively impact completion of functional activities of daily living requiring grasping an object with the index finger and thumb.
Collapse
Affiliation(s)
- Roger W. Simmons
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Jennifer D. Thomas
- Department of Psychology, Center for Behavioral TeratologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Tanya T. Nguyen
- Department of PsychiatryUniversity of California at San DiegoLa JollaCaliforniaUSA
- Sam and Rose Stein Institute for Research on AgingUniversity of California at San DiegoLa JollaCaliforniaUSA
| | - Sarah N. Mattson
- Department of Psychology, Center for Behavioral TeratologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Edward P. Riley
- Department of Psychology, Center for Behavioral TeratologySan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
2
|
Keum D, Medina AE. The effect of developmental alcohol exposure on multisensory integration is larger in deeper cortical layers. Alcohol 2024; 121:193-198. [PMID: 38417561 PMCID: PMC11345874 DOI: 10.1016/j.alcohol.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) are one of the most common causes of mental disability in the world. Despite efforts to increase public awareness of the risks of drinking during pregnancy, epidemiological studies indicate a prevalence of 1-6% in all births. There is growing evidence that deficits in sensory processing may contribute to social problems observed in FASD. Multisensory (MS) integration occurs when a combination of inputs from two sensory modalities leads to enhancement or suppression of neuronal firing. MS enhancement is usually linked to processes that facilitate cognition and reaction time, whereas MS suppression has been linked to filtering unwanted sensory information. The rostral portion of the posterior parietal cortex (PPr) of the ferret is an area that shows robust visual-tactile integration and displays both MS enhancement and suppression. Recently, our lab demonstrated that ferrets exposed to alcohol during the "third trimester equivalent" of human gestation show less MS enhancement and more MS suppression in PPr than controls. Here we complement these findings by comparing in vivo electrophysiological recordings from channels located in shallow and deep cortical layers. We observed that while the effects of alcohol (less MS enhancement and more MS suppression) were found in all layers, the magnitude of these effects was more pronounced in putative layers V-VI. These findings extend our knowledge of the sensory deficits of FASD.
Collapse
Affiliation(s)
- Dongil Keum
- Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, United States
| | - Alexandre E Medina
- Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, United States.
| |
Collapse
|
3
|
Pfefferbaum A, Sullivan EV, Pohl KM, Bischoff-Grethe A, Stoner SA, Moore EM, Riley EP. Brain Volume in Fetal Alcohol Spectrum Disorders Over a 20-Year Span. JAMA Netw Open 2023; 6:e2343618. [PMID: 37976065 PMCID: PMC10656646 DOI: 10.1001/jamanetworkopen.2023.43618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023] Open
Abstract
Importance Anomalous brain development and mental health problems are prevalent in fetal alcohol spectrum disorders (FASD), but there is a paucity of longitudinal brain imaging research into adulthood. This study presents long-term follow-up of brain volumetrics in a cohort of participants with FASD. Objective To test whether brain tissue declines faster with aging in individuals with FASD compared with control participants. Design, Setting, and Participants This cohort study used magnetic resonance imaging (MRI) data collected from individuals with FASD and control individuals (age 13-37 years at first magnetic resonance imaging [MRI1] acquired 1997-2000) compared with data collected 20 years later (MRI2; 2018-2021). Participants were recruited for MRI1 through the University of Washington Fetal Alcohol Syndrome (FAS) Follow-Up Study. For MRI2, former participants were recruited by the University of Washington Fetal Alcohol and Drug Unit. Data were analyzed from October 2022 to August 2023. Main Outcomes and Measures Intracranial volume (ICV) and regional cortical and cerebellar gray matter, white matter, and cerebrospinal fluid volumes were quantified automatically and analyzed, with group and sex as between-participant factors and age as a within-participant variable. Results Of 174 individuals with MRI1 data, 48 refused participation, 36 were unavailable, and 24 could not be located. The remaining 66 individuals (37.9%) were rescanned for MRI2, including 26 controls, 18 individuals with nondysmorphic heavily exposed fetal alcohol effects (FAE; diagnosed prior to MRI1), and 22 individuals with FAS. Mean (SD) age was 22.9 (5.6) years at MRI1 and 44.7 (6.5) years at MRI2, and 35 participants (53%) were male. The FAE and FAS groups exhibited enduring stepped volume deficits at MRI1 and MRI2; volumes among control participants were greater than among participants with FAE, which were greater than volumes among participants with FAS (eg, mean [SD] ICV: control, 1462.3 [119.3] cc at MRI1 and 1465.4 [129.4] cc at MRI2; FAE, 1375.6 [134.1] cc at MRI1 and 1371.7 [120.3] cc at MRI2; FAS, 1297.3 [163.0] cc at MRI1 and 1292.7 [172.1] cc at MRI2), without diagnosis-by-age interactions. Despite these persistent volume deficits, the FAE participants and FAS participants showed patterns of neurodevelopment within reference ranges: increase in white matter and decrease in gray matter of the cortex and decrease in white matter and increase in gray matter of the cerebellum. Conclusions and Relevance The findings of this cohort study support a nonaccelerating enduring, brain structural dysmorphic spectrum following prenatal alcohol exposure and a diagnostic distinction based on the degree of dysmorphia. FASD was not a progressive brain structural disorder by middle age, but whether accelerated decline occurs in later years remains to be determined.
Collapse
Affiliation(s)
- Adolf Pfefferbaum
- Center for Health Sciences, SRI International, Menlo Park, California
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Kilian M. Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | | | - Susan A. Stoner
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle
| | - Eileen M. Moore
- Department of Psychology, San Diego State University, San Diego, California
| | - Edward P. Riley
- Department of Psychology, San Diego State University, San Diego, California
| |
Collapse
|
4
|
Keum D, Pultorak K, Meredith MA, Medina AE. Effects of developmental alcohol exposure on cortical multisensory integration. Eur J Neurosci 2023; 57:784-795. [PMID: 36610022 PMCID: PMC9991967 DOI: 10.1111/ejn.15907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Fetal alcohol spectrum disorder (FASD) is one of the most common causes of mental disabilities in the world with a prevalence of 1%-6% of all births. Sensory processing deficits and cognitive problems are a major feature in this condition. Because developmental alcohol exposure can impair neuronal plasticity, and neuronal plasticity is crucial for the establishment of neuronal circuits in sensory areas, we predicted that exposure to alcohol during the third trimester equivalent of human gestation would disrupt the development of multisensory integration (MSI) in the rostral portion of the posterior parietal cortex (PPr), an integrative visual-tactile area. We conducted in vivo electrophysiology in 17 ferrets from four groups (saline/alcohol; infancy/adolescence). A total of 1157 neurons were recorded after visual, tactile and combined visual-tactile stimulation. A multisensory (MS) enhancement or suppression is characterized by a significantly increased or decreased number of elicited spikes after combined visual-tactile stimulation compared to the strongest unimodal (visual or tactile) response. At the neuronal level, those in infant animals were more prone to show MS suppression whereas adolescents were more prone to show MS enhancement. Although alcohol-treated animals showed similar developmental changes between infancy and adolescence, they always 'lagged behind' controls showing more MS suppression and less enhancement. Our findings suggest that alcohol exposure during the last months of human gestation would stunt the development of MSI, which could underlie sensory problems seen in FASD.
Collapse
Affiliation(s)
- Dongil Keum
- Department of Pediatrics, University of Maryland, School of Medicine. Baltimore, MD
| | - Katie Pultorak
- Department of Pediatrics, University of Maryland, School of Medicine. Baltimore, MD
| | - M. Alex Meredith
- Department of Anatomy and Neurobiology, Virginia Commonwealth University. Richmond VA
| | - Alexandre E. Medina
- Department of Pediatrics, University of Maryland, School of Medicine. Baltimore, MD
| |
Collapse
|
5
|
Candelaria-Cook FT, Schendel ME, Flynn L, Cerros C, Kodituwakku P, Bakhireva LN, Hill DE, Stephen JM. Decreased resting-state alpha peak frequency in children and adolescents with fetal alcohol spectrum disorders or prenatal alcohol exposure. Dev Cogn Neurosci 2022; 57:101137. [PMID: 35878441 PMCID: PMC9310113 DOI: 10.1016/j.dcn.2022.101137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can result in long-lasting changes to physical, behavioral, and cognitive functioning in children. PAE might result in decreased white matter integrity, corticothalamic tract integrity, and alpha cortical oscillations. Previous investigations of alpha oscillations in PAE/fetal alcohol spectrum disorder (FASD) have focused on average spectral power at specific ages; therefore, little is known about alpha peak frequency (APF) or its developmental trajectory making this research novel. Using resting-state MEG data, APF was determined from parietal/occipital regions in participants with PAE/FASD or typically developing controls (TDC). In total, MEG data from 157 infants, children, and adolescents ranging in age from 6 months to 17 years were used, including 17 individuals with PAE, 61 individuals with an FASD and 84 TDC. In line with our hypothesis, we found that individuals with PAE/FASD had significantly reduced APF relative to TDC. Both age and group were significantly related to APF with differences between TDC and PAE/FASD persisting throughout development. We did not find evidence that sex or socioeconomic status had additional impact on APF. Reduced APF in individuals with an FASD/PAE may represent a long-term deficit and demonstrates the detrimental impact prenatal alcohol exposure can have on neurophysiological processes.
Collapse
Affiliation(s)
| | - Megan E Schendel
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Lucinda Flynn
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Cassandra Cerros
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Piyadasa Kodituwakku
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ludmila N Bakhireva
- Substance Use Research and Education Center, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Dina E Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
6
|
Newville J, Howard TA, Chavez GJ, Valenzuela CF, Cunningham LA. Persistent myelin abnormalities in a third trimester-equivalent mouse model of fetal alcohol spectrum disorder. Alcohol Clin Exp Res 2022; 46:77-86. [PMID: 34825395 PMCID: PMC8799509 DOI: 10.1111/acer.14752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Abnormal diffusion within white matter (WM) tracts has been linked to cognitive impairment in children with fetal alcohol spectrum disorder. Whether changes to myelin organization and structure underlie the observed abnormal diffusion patterns remains unknown. Using a third trimester-equivalent mouse model of alcohol exposure, we previously demonstrated acute loss of oligodendrocyte lineage cells with persistent loss of myelin basic protein and lower fractional anisotropy (FA) in the corpus callosum (CC). Here, we tested whether these WM deficits are accompanied by changes in: (i) axial diffusion (AD) and radial diffusion (RD), (ii) myelin ultrastructure, or (iii) structural components of the node of Ranvier. METHODS Mouse pups were exposed to alcohol or air vapor for 4 h daily from postnatal day (P)3 to P15 (BEC: 160.4 ± 12.0 mg/dl; range = 128.2 to 185.6 mg/dl). Diffusion tensor imaging (DTI) and histological analyses were performed on brain tissue isolated at P50. Diffusion parameters were measured with Paravision™ 5.1 software (Bruker) following ex vivo scanning in a 7.0 T MRI. Nodes of Ranvier were identified using high-resolution confocal imaging of immunofluorescence for Nav 1.6 (nodes) and Caspr (paranodes) and measured using Imaris™ imaging software (Bitplane). Myelin ultrastructure was evaluated by calculating the G-ratio (axonal diameter/myelinated fiber diameter) on images acquired using transmission electron microscopy. RESULTS Consistent with our previous study, high resolution DTI at P50 showed lower FA in the CC of alcohol-exposed mice (p = 0.0014). Here, we show that while AD (diffusion parallel to CC axons) was similar between treatment groups (p = 0.30), RD (diffusion perpendicular to CC axons) in alcohol-exposed subjects was significantly higher than in controls (p = 0.0087). In the posterior CC, where we identified the highest degree of abnormal diffusion, node of Ranvier length did not differ between treatment groups (p = 0.41); however, the G-ratio of myelinated axons was significantly higher in alcohol-exposed animals than controls (p = 0.023). CONCLUSIONS High resolution DTI revealed higher RD at P50 in the CC of alcohol-exposed animals, suggesting less myelination of axons, particularly in the posterior regions. In agreement with these findings, ultrastructural analysis of myelinated axons in the posterior CC showed reduced myelin thickness in alcohol-exposed animals, evidenced by a higher G-ratio.
Collapse
Affiliation(s)
- Jessie Newville
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Tamara A. Howard
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Glenna J. Chavez
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - C. Fernando Valenzuela
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Lee Anna Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
7
|
Stephen JM, Hill DE, Candelaria-Cook FT. Examining the effects of prenatal alcohol exposure on corticothalamic connectivity: A multimodal neuroimaging study in children. Dev Cogn Neurosci 2021; 52:101019. [PMID: 34666262 PMCID: PMC8524752 DOI: 10.1016/j.dcn.2021.101019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 02/01/2023] Open
Abstract
Children with a fetal alcohol spectrum disorder (FASD) experience a range of cognitive and behavioral effects. Prior studies have demonstrated white matter changes in children with FASD relative to typically developing controls (TDC) and these changes relate to behavior. Our prior MEG study (Candelaria-Cook et al. 2020) demonstrated reduced alpha oscillations during rest in FASD relative to TDC and alpha power is correlated with behavior. However, little is known about how brain structure influences brain function. We hypothesized that alpha power was related to corticothalamic connectivity. Children 8–13 years of age (TDC: N = 25, FASD: N = 24) underwent rest MEG with eyes open or closed and MRI to collect structural and diffusion tensor imaging data. MEG spectral analysis was performed for sensor and source data. We estimated mean fractional anisotropy in regions of interest (ROIs) that included the corticothalamic tracts. The FASD group had reduced mean FA in three of the corticothalamic ROIs. FA in these tracts was significantly correlated with alpha power at the sensor and source level. The results support the hypothesis that integrity of the corticothalamic tracts influences cortical alpha power. Further research is needed to understand how brain structure and function influence behavior.
Collapse
Affiliation(s)
- J M Stephen
- The Mind Research Network and Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States; Psychiatry Department, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.
| | - D E Hill
- The Mind Research Network and Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States; Psychiatry Department, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - F T Candelaria-Cook
- The Mind Research Network and Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States; Psychiatry Department, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
8
|
Wong EL, Strohm A, Atlas J, Lamantia C, Majewska AK. Dynamics of microglia and dendritic spines in early adolescent cortex after developmental alcohol exposure. Dev Neurobiol 2021; 81:786-804. [PMID: 34228891 PMCID: PMC8440400 DOI: 10.1002/dneu.22843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/26/2021] [Accepted: 06/13/2021] [Indexed: 11/05/2022]
Abstract
Fetal alcohol spectrum disorder patients suffer from many cognitive disabilities. These include impaired auditory, visual, and tactile sensory information processing, making it more difficult for these patients to learn to navigate social scenarios. Rodent studies have shown that alcohol exposure during the brain growth spurt (BGS) can lead to acute neuronal apoptosis and an immunological response by microglia in the somatosensory cortex. Since microglia have critical physiological functions, including the support of excitatory synapse remodeling via interactions with dendritic spines, we sought to understand whether BGS alcohol exposure has long-term effects on microglial or dendritic spine dynamics. Using in vivo two-photon microscopy in 4-5 week old mice, we evaluated microglial functions such as process motility, the response to tissue injury, and the dynamics of physical interactions between microglial processes and dendritic spines. We also investigated potential differences in the morphology, density, or dynamics of dendritic spines in layer I/II primary sensory cortex of control and BGS alcohol exposed mice. We found that microglial process motility and contact with dendritic spines were not altered after BGS alcohol exposure. While the response of microglial processes toward tissue injury was not significantly altered by prior alcohol exposure, there was a trend suggesting that alcohol early in life may prime microglia to respond more quickly to secondary injury. Spine density, morphology, stability, and remodeling over time were not perturbed after BGS alcohol exposure. We demonstrate that after BGS alcohol exposure, the physiological functions of microglia and excitatory neurons remain intact in early adolescence.
Collapse
Affiliation(s)
- Elissa L. Wong
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Alexandra Strohm
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Jason Atlas
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Cassandra Lamantia
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ania K. Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
9
|
Pinner JFL, Coffman BA, Stephen JM. Covariation Between Brain Function (MEG) and Structure (DTI) Differentiates Adolescents with Fetal Alcohol Spectrum Disorder from Typically Developing Controls. Neuroscience 2020; 449:74-87. [PMID: 33010344 DOI: 10.1016/j.neuroscience.2020.09.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 07/29/2020] [Accepted: 09/24/2020] [Indexed: 01/22/2023]
Abstract
The behavioral, cognitive, and sensory difficulties experienced by individuals exposed to alcohol prenatally currently fail to provide early identification for fetal alcohol spectrum disorder (FASD). Attempting to advance this pursuit through a multivariate analysis, we collected magnetoencephalography (MEG) data during auditory, somatosensory, visual paradigms, DTI, and behavior in adolescents ages 12-21 years (FASD: N = 13; HC: N = 20). We assessed the relationship between brain function (MEG) and structure (fractional anisotropy (FA)) utilizing joint independent component analysis (jICA), and examined how this measure relates to behavior. We identified 5 components that reveal group differences in co-variation between MEG and FA. For example, component 5 (t = 3.162, p = 0.003, Hedges' g = 1.13) contained MEG activity corresponding to all three sensory modalities, most robustly in occipital lobes, and DTI-derived cerebellar FA, underlying the role of the cerebellum in sensory processing. Further, in HCs component 5's loading factor was positively correlated with verbal ability (r = 0.646, p = 0.002), indicating higher covariation was associated with better verbal performance. Interestingly, this relationship is lacking in FASD (r = 0.009, p = 0.979). Also, component 5 loading factor negatively correlated with impulsivity (r = -0.527, p = 0.002), indicating that stronger function-structure associations were associated with individuals with lower impulsivity. These findings suggest that multimodal integration of MEG and FA provides novel associations between structure and function that may help differentiate adolescents with FASD from HC.
Collapse
Affiliation(s)
- John F L Pinner
- The Mind Research Network, Albuquerque, NM, United States; Department of Psychology, The University of New Mexico, Albuquerque, NM, United States.
| | - Brian A Coffman
- The Mind Research Network, Albuquerque, NM, United States; The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | |
Collapse
|