1
|
Cattaneo A, Begni V, Zonca V, Riva MA. Early life adversities, psychopathologies and novel pharmacological strategies. Pharmacol Ther 2024; 260:108686. [PMID: 38969307 DOI: 10.1016/j.pharmthera.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Exposure to adversities during early life stages (early life adversities - ELA), ranging from pregnancy to adolescence, represents a major risk factor for the vulnerability to mental disorders. Hence, it is important to understand the molecular and functional underpinning of such relationship, in order to develop strategies aimed at reducing the psychopathologic burden associated with ELA, which may eventually lead to a significant improvement in clinical practice. In this review, we will initially recapitulate clinical and preclinical evidence supporting the link between ELA and psychopathology and we will primarily discuss the main biological mechanisms that have been described as potential mediators of the effects of ELA on the psychopathologic risk, including the role for genetic factors as well as sex differences. The knowledge emerging from these studies may be instrumental for the development of novel therapeutic strategies aimed not only at correcting the deficits that emerge from ELA exposure, but also in preventing the manifestation of a full-blown psychopathologic condition. With this respect, we will specifically focus on adolescence as a key time frame for disease onset as well as for early therapeutic intervention. We believe that incorporating clinical and preclinical research data in the context of early life adversities can be instrumental to elucidate the mechanisms contributing to the risk for psychopathology or that may promote resilience. This will ultimately allow the identification of 'at risk' individuals who may benefit from specific forms of interventions that, by interfering with disease trajectories, could result in more benign clinical outcomes.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Valentina Zonca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
2
|
Baskin-Sommers A, Williams A, Benson-Williams C, Ruiz S, Ricard JR, Camacho J. Shrinking the footprint of the criminal legal system through policies informed by psychology and neuroscience. COMMUNICATIONS PSYCHOLOGY 2024; 2:38. [PMID: 39242804 PMCID: PMC11332213 DOI: 10.1038/s44271-024-00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/17/2024] [Indexed: 09/09/2024]
Abstract
The footprint of the legal system in the United States is expansive. Applying psychological and neuroscience research to understand or predict individual criminal behavior is problematic. Nonetheless, psychology and neuroscience can contribute substantially to the betterment of the criminal legal system and the outcomes it produces. We argue that scientific findings should be applied to the legal system through systemwide policy changes. Specifically, we discuss how science can shape policies around pollution in prisons, the use of solitary confinement, and the law's conceptualization of insanity. Policies informed by psychology and neuroscience have the potential to affect meaningful-and much-needed-legal change.
Collapse
Affiliation(s)
- Arielle Baskin-Sommers
- Department of Psychology, Yale University, 100 College St, New Haven, CT, 06510, USA.
- Yale Law School, 127 Wall St, New Haven, CT, 06511, USA.
| | - Alex Williams
- Department of Psychology, Yale University, 100 College St, New Haven, CT, 06510, USA
| | | | - Sonia Ruiz
- Department of Psychology, Yale University, 100 College St, New Haven, CT, 06510, USA
| | - Jordyn R Ricard
- Department of Psychology, Yale University, 100 College St, New Haven, CT, 06510, USA
| | - Jorge Camacho
- Yale Law School, 127 Wall St, New Haven, CT, 06511, USA
| |
Collapse
|
3
|
Gyles TM, Nestler EJ, Parise EM. Advancing preclinical chronic stress models to promote therapeutic discovery for human stress disorders. Neuropsychopharmacology 2024; 49:215-226. [PMID: 37349475 PMCID: PMC10700361 DOI: 10.1038/s41386-023-01625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
There is an urgent need to develop more effective treatments for stress-related illnesses, which include depression, post-traumatic stress disorder, and anxiety. We view animal models as playing an essential role in this effort, but to date, such approaches have generally not succeeded in developing therapeutics with new mechanisms of action. This is partly due to the complexity of the brain and its disorders, but also to inherent difficulties in modeling human disorders in rodents and to the incorrect use of animal models: namely, trying to recapitulate a human syndrome in a rodent which is likely not possible as opposed to using animals to understand underlying mechanisms and evaluating potential therapeutic paths. Recent transcriptomic research has established the ability of several different chronic stress procedures in rodents to recapitulate large portions of the molecular pathology seen in postmortem brain tissue of individuals with depression. These findings provide crucial validation for the clear relevance of rodent stress models to better understand the pathophysiology of human stress disorders and help guide therapeutic discovery. In this review, we first discuss the current limitations of preclinical chronic stress models as well as traditional behavioral phenotyping approaches. We then explore opportunities to dramatically enhance the translational use of rodent stress models through the application of new experimental technologies. The goal of this review is to promote the synthesis of these novel approaches in rodents with human cell-based approaches and ultimately with early-phase proof-of-concept studies in humans to develop more effective treatments for human stress disorders.
Collapse
Affiliation(s)
- Trevonn M Gyles
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Jaehne EJ, Antolasic EJ, Creutzberg KC, Begni V, Riva MA, van den Buuse M. Impaired fear memory in a rat model of the Brain-Derived Neurotrophic Factor Val66Met polymorphism is reversed by chronic exercise. Neurobiol Learn Mem 2023; 203:107779. [PMID: 37269900 DOI: 10.1016/j.nlm.2023.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/08/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with reduced activity-dependent BDNF release in the brain and has been implicated in fear and anxiety disorders, including post-traumatic stress disorder. Exercise has been shown to have benefits in affective disorders but the role of BDNF Val66Met remains unclear. Male and female BDNF Val66Met rats were housed in automated running-wheel cages from weaning while controls were housed in standard cages. During adulthood, all rats underwent standard three-day fear conditioning testing, with three tone/shock pairings on day 1 (acquisition), and extinction learning and memory (40 tones/session) on day 2 and day 3. Expression of BDNF and stress-related genes were measured in the frontal cortex. Extinction testing on day 2 revealed significantly lower freezing in response to initial cue exposure in control Met/Met rats, reflecting impaired fear memory. This deficit was reversed in both male and female Met/Met rats exposed to exercise. There were no genotype effects on acquisition or extinction of fear, however chronic exercise increased freezing in all groups at every stage of testing. Exercise furthermore led to increased expression of Bdnf in the prefrontal cortex of females and its isoforms in both sexes, as well as increased expression of FK506 binding protein 51 (Fkpb5) in females and decreased expression of Serum/glucocorticoid-regulated kinase (Sgk1) in males independent of genotype. These results show that the Met/Met genotype of the Val66Met polymorphism affects fear memory, and that chronic exercise selectively reverses this genotype effect. Chronic exercise also led to an overall increase in freezing in all genotypes which may contribute to results.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Emily J Antolasic
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Kerstin C Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
5
|
Stark RA, Brinkman B, Gibb RL, Iwaniuk AN, Pellis SM. Atypical play experiences in the juvenile period has an impact on the development of the medial prefrontal cortex in both male and female rats. Behav Brain Res 2023; 439:114222. [PMID: 36427590 DOI: 10.1016/j.bbr.2022.114222] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/06/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
In rats reared without play, or with limited access to play during the juvenile period, the dendrites of pyramidal neurons of the medial prefrontal cortex (mPFC) exhibit more branching than rats reared with more typical levels of play. This suggests that play is critical for pruning the dendritic arbor of these neurons. However, the rearing paradigms typically used to limit play involve physical separation from a peer or sharing a cage with an adult, causing stress that may disrupt pruning. To limit this potentially confounding source of stress, we used an alternative approach in this study: pairing playful Long Evans rats (LE) with low playing Fischer 344 (F344) rats throughout the juvenile period. We then examined the morphology of medial prefrontal cortex (mPFC) neurons, predicting that pruning should be reduced. LE rats reared with another LE rat had significantly greater pruning of mPFC pyramidal neurons compared to LE rats reared with a F344 partner. Furthermore, in previous studies, only one sex or the other was used, whereas in the present rearing paradigm, both sexes were tested, showing that play influences neuronal pruning in both. The neurons of the play deficient LE rats not only occupied more space, as determined by convex hull analyses, but the dendrites were also longer than in rats with more typical play experiences. Unlike studies using more stressful rearing paradigms, the present effects were limited to the apical dendritic projections, suggesting that the previously reported effects on the basilar dendrites may have resulted from developmental disruptions caused by stress. If correct, the present findings indicate that play experienced over the juvenile period affects how mPFC neurons develop and function.
Collapse
Affiliation(s)
- R A Stark
- University of Lethbridge, Alberta, Canada.
| | - B Brinkman
- University of Lethbridge, Alberta, Canada
| | - R L Gibb
- University of Lethbridge, Alberta, Canada
| | | | - S M Pellis
- University of Lethbridge, Alberta, Canada
| |
Collapse
|
6
|
Walker DM, Zhou X, Cunningham AM, Ramakrishnan A, Cates HM, Lardner CK, Peña CJ, Bagot RC, Issler O, Van der Zee Y, Lipschultz AP, Godino A, Browne CJ, Hodes GE, Parise EM, Torres-Berrio A, Kennedy PJ, Shen L, Zhang B, Nestler EJ. Crystallin Mu in Medial Amygdala Mediates the Effect of Social Experience on Cocaine Seeking in Males but Not in Females. Biol Psychiatry 2022; 92:895-906. [PMID: 36182529 PMCID: PMC9828478 DOI: 10.1016/j.biopsych.2022.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Social experiences influence susceptibility to substance use disorder. The adolescent period is associated with the development of social reward and is exceptionally sensitive to disruptions to reward-associated behaviors by social experiences. Social isolation (SI) during adolescence alters anxiety- and reward-related behaviors in adult males, but little is known about females. The medial amygdala (meA) is a likely candidate for the modulation of social influence on drug reward because it regulates social reward, develops during adolescence, and is sensitive to social stress. However, little is known regarding how the meA responds to drugs of abuse. METHODS We used adolescent SI coupled with RNA sequencing to better understand the molecular mechanisms underlying meA regulation of social influence on reward. RESULTS We show that SI in adolescence, a well-established preclinical model for addiction susceptibility, enhances preference for cocaine in male but not in female mice and alters cocaine-induced protein and transcriptional profiles within the adult meA particularly in males. To determine whether transcriptional mechanisms within the meA are important for these behavioral effects, we manipulated Crym expression, a sex-specific key driver gene identified through differential gene expression and coexpression network analyses, specifically in meA neurons. Overexpression of Crym, but not another key driver that did not meet our sex-specific criteria, recapitulated the behavioral and transcriptional effects of adolescent SI. CONCLUSIONS These results show that the meA is essential for modulating the sex-specific effects of social experience on drug reward and establish Crym as a critical mediator of sex-specific behavioral and transcriptional plasticity.
Collapse
Affiliation(s)
- Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hannah M Cates
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Casey K Lardner
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Catherine J Peña
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rosemary C Bagot
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Orna Issler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yentl Van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew P Lipschultz
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Georgia E Hodes
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Angelica Torres-Berrio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pamela J Kennedy
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
7
|
Cotella EM, Nawreen N, Moloney RD, Martelle SE, Oshima KM, Lemen P, NiBlack JN, Julakanti RR, Fitzgerald M, Baccei ML, Herman JP. Adolescent Stress Confers Resilience to Traumatic Stress Later in Life: Role of the Prefrontal Cortex. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 3:274-282. [PMID: 37124346 PMCID: PMC10140393 DOI: 10.1016/j.bpsgos.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Adolescent brains are sensitive to stressors. However, under certain circumstances, developmental stress can promote an adaptive phenotype, allowing individuals to cope better with adverse situations in adulthood, thereby contributing to resilience. Methods Sprague Dawley rats (50 males, 48 females) were subjected to adolescent chronic variable stress (adol CVS) for 2 weeks at postnatal day 45. At postnatal day 85, a group was subjected to single prolonged stress (SPS). After a week, animals were evaluated in an auditory-cued fear conditioning paradigm, and neuronal recruitment during reinstatement was assessed by Fos expression. Patch clamp electrophysiology (17-35 cells/group) was performed in male rats to examine physiological changes associated with resilience. Results Adol CVS blocked fear potentiation evoked by SPS. We observed that SPS impaired extinction (males) and enhanced reinstatement (both sexes) of the conditioned freezing response. Prior adol CVS prevented both effects. SPS effects were associated with a reduction of infralimbic (IL) cortex neuronal recruitment after reinstatement in males and increased engagement of the central amygdala in females, both also prevented by adol CVS, suggesting different neurocircuits involved in generating resilience between sexes. We explored the mechanism behind reduced IL recruitment in males by studying the intrinsic excitability of IL pyramidal neurons. SPS reduced excitability of IL neurons, and prior adol CVS prevented this effect. Conclusions Our data indicate that adolescent stress can impart resilience to the effects of traumatic stress on neuroplasticity and behavior. Our data provide a mechanistic link behind developmental stress-induced behavioral resilience and prefrontal (IL) cortical excitability in males.
Collapse
Affiliation(s)
- Evelin M. Cotella
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
- Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Nawshaba Nawreen
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio
| | - Rachel D. Moloney
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Susan E. Martelle
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Kristen M. Oshima
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Paige Lemen
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Jordan N. NiBlack
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Reetu R. Julakanti
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Maureen Fitzgerald
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Mark L. Baccei
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - James P. Herman
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio
- Veterans Affairs Medical Center, Cincinnati, Ohio
- Address correspondence to James P. Herman, Ph.D.
| |
Collapse
|
8
|
Lopizzo N, Marizzoni M, Begni V, Mazzelli M, Provasi S, Borruso L, Riva MA, Cattaneo A. Social isolation in adolescence and long-term changes in the gut microbiota composition and in the hippocampal inflammation: Implications for psychiatric disorders - Dirk Hellhammer Award Paper 2021. Psychoneuroendocrinology 2021; 133:105416. [PMID: 34593267 DOI: 10.1016/j.psyneuen.2021.105416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023]
Abstract
Exposure to early adverse experiences induces persistent changes in physiological, emotional and behavioural functions predisposing the individual to an enhanced vulnerability to develop different disorders during lifespan. The adverse outcomes depend upon the timing of the stressful experiences, and in this contest, adolescence represents a key sensitive period for brain development. Among the biological systems involved, gut microbiota has recently been proposed to act on the interplay between the stress response, brain functions and immune system, through the gut-brain axis communication. In the current study we aimed to evaluate, in a preclinical model, changes over time in the microbiota community structure in physiological condition and in response to stress during adolescence. We also aimed to correlate the microbiota composition to the inflammatory status in brain. We used the preclinical model of social deprivation in rats during adolescence, based on the lack of all social contacts, for four weeks after weaning, followed by re-socialization until adulthood. We collected fecal samples at different post-natal days to investigate the short- and long-lasting effects of social isolation on gut microbiota composition and we collected brain areas (dorsal and ventral hippocampus) samples at killing to measure a panel of inflammatory and microglia activation markers. 16 S metataxonomic sequencing analysis revealed that microbial changes were influenced by age in both isolated and controls rats, regardless of sex, whereas social isolation impacted the microbial composition in a sex-dependent manner. A multivariate analysis showed that social isolation induced short-term gut microbiota alterations in females but not in males. We also identified several stress-related genera associated with social isolation condition. In brain areas we found a specific inflammatory pattern, in dorsal and ventral hippocampus, that significantly correlated with gut microbiota composition. Overall, in this study we reported a novel sex-specific association between gut microbiota composition and inflammatory response related to social isolation paradigm during adolescence, suggesting that stressful experiences during this sensitive period could have a long-lasting impact on the development of different biological systems that could in turn influence the vulnerability to develop mental disorders later in life.
Collapse
Affiliation(s)
- Nicola Lopizzo
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Moira Marizzoni
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Mazzelli
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Stefania Provasi
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen/Bolzano, piazza Università 5, 39100 Bolzano, Italy
| | - Marco Andrea Riva
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Annamaria Cattaneo
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
9
|
Methods and Challenges in Investigating Sex-Specific Consequences of Social Stressors in Adolescence in Rats: Is It the Stress or the Social or the Stage of Development? Curr Top Behav Neurosci 2021; 54:23-58. [PMID: 34455576 DOI: 10.1007/7854_2021_245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adolescence is a time of social learning and social restructuring that is accompanied by changes in both the hypothalamic-pituitary-gonadal axis and the hypothalamic-pituitary-adrenal (HPA) axis. The activation of these axes by puberty and stressors, respectively, shapes adolescent development. Models of social stress in rats are used to understand the consequences of perturbations of the social environment for ongoing brain development. This paper reviews the challenges in investigating the sex-specific consequences of social stressors, sex differences in the models of social stress used in rats and the sex-specific effects on behaviour and provides an overview of sex differences in HPA responding to stressors, the variability in pubertal development and in strains of rats that require consideration in conducting such research, and directions for future research.
Collapse
|
10
|
Chu X, Snoeren E, Södersten P, Ågmo A. Sexual incentive motivation and male and female copulatory behavior in female rats given androgen from postnatal day 20. Physiol Behav 2021; 237:113460. [PMID: 33991538 DOI: 10.1016/j.physbeh.2021.113460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022]
Abstract
Masculinization and feminization of rat sexual behavior has been supposed to occur during a short postnatal period. However, much data have made it evident that these processes may continue until adolescence. In the present study, we evaluated whether androgen treatment of females from postnatal day 20 and onwards could alter sexual motivation and behavior in a male direction. Juveniles were ovariectomized on day 20 and concurrently implanted with Silastic capsules containing either testosterone or dihydrotestosterone. Controls were implanted with an empty capsule. Tests for sexual incentive motivation and male sexual behavior were performed every fifth day when the females were between 50 and 75 days of age. At day 80, a test for female sexual behavior was performed. Females treated with testosterone approached a female sexual incentive far more than a male incentive, showing that sexual motivation had been changed in a male-like direction. Dihydrotestosterone had a similar, albeit smaller, effect. Females implanted with an empty capsule approached both incentives equally. Testosterone produced a high level of mounting behavior, whereas intromission-like behavioral patterns were rare and ejaculation-like behavior was absent. In the test for female sexual behavior, the testosterone-treated animals displayed a relatively high lordosis quotient, far above that displayed in females implanted with dihydrotestosterone or an empty capsule. It is concluded that treatment with an aromatizable androgen during the peripubertal-adolescent period masculinizes sexual motivation and partly sexual behavior. A non-aromatizable androgen weakly masculinize sexual motivation without enhancing male sexual behavior. It appears that simultaneous actions on androgen and estrogen receptors are needed for significant masculinization during the period studied here. Since the testosterone-treated females displayed lordosis, sexual behavior was not defeminized. In sum, these results suggest that sexual differentiation continues well into the peripubertal and adolescent periods.
Collapse
Affiliation(s)
- Xi Chu
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eelke Snoeren
- Department of Psychology, University of Tromsø, 9037 Tromsø, Norway
| | - Per Södersten
- Karolinska Institutet, Novum, S-141 01 Hudddinge, Sweden
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, 9037 Tromsø, Norway.
| |
Collapse
|
11
|
Sanson A, Riva MA. Anti-Stress Properties of Atypical Antipsychotics. Pharmaceuticals (Basel) 2020; 13:E322. [PMID: 33092112 PMCID: PMC7589119 DOI: 10.3390/ph13100322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Stress exposure represents a major environmental risk factor for schizophrenia and other psychiatric disorders, as it plays a pivotal role in the etiology as well as in the manifestation of disease symptomatology. It may be inferred that pharmacological treatments must be able to modulate the behavioral, functional, and molecular alterations produced by stress exposure to achieve significant clinical outcomes. This review aims at examining existing clinical and preclinical evidence that supports the ability of atypical antipsychotic drugs (AAPDs) to modulate stress-related alterations. Indeed, while the pharmacodynamic differences between AAPDs have been extensively characterized, less is known on their ability to regulate downstream mechanisms that are critical for functional recovery and patient stabilization. We will discuss stress-related mechanisms, spanning from neuroendocrine function to inflammation and neuronal plasticity, which are relevant for the manifestation of schizophrenic symptomatology, and we will discuss if and how AAPDs may interfere with such mechanisms. Considering the impact of stress in everyday life, we believe that a better understanding of the potential effects of AAPDs on stress-related mechanisms may provide novel and important insights for improving therapeutic strategies aimed at promoting coping mechanisms and enhancing the quality of life of patients affected by psychiatric disorders.
Collapse
Affiliation(s)
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Giuseppe Balzaretti 9, 20133 Milan, Italy;
| |
Collapse
|