1
|
Sharma NK, Srivastava M, Dakal TC, Ranga V, Maurya PK. Acute Hypobaric Hypoxia Causes Alterations in Acetylcholine-Mediated Signaling Through Varying Expression of Muscarinic Receptors in the Prefrontal Cortex and Cerebellum of Rats' Brain. High Alt Med Biol 2025; 26:156-164. [PMID: 39379070 DOI: 10.1089/ham.2023.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Sharma, Narendra Kumar, Mansi Srivastava, Tikam Chand Dakal, Vipin Ranga, and Pawan Kumar Maurya. Acute hypobaric hypoxia causes alterations in acetylcholine-mediated signaling through varying expression of muscarinic receptors in the prefrontal cortex and cerebellum of rats' brain. High Alt Med Biol. 26:156-164, 2025. Background: Muscarinic receptor (CHRM) proteins are G-protein-associated acetylcholine receptors found in neuronal membranes. Five major subtypes, CHRM1-CHRM5, modulate acetylcholine in central nervous system signaling cascades. CHRM1, CHRM3, and CHRM5 are linked to Gαq/Gα11 proteins, whereas CHRM2 and CHRM4 are linked to Gαi/Gαo proteins. Objective: Limited research has been conducted to explore the impact of HH on CHRM gene expressions. It is caused by low oxygen availability at high altitudes, which impairs neurotransmission, cognitive performance, and physiological functions. Previous studies have shown that exposure to hypoxia leads to a reduction in CHRM receptors, which in turn causes alteration in signal transduction, physiological responses, cognitive deficits, and mood alterations. Method: In the present study, we have used semiquantitative PCR to measure muscarinic receptor gene expression after 6, 12, and 24 hours of HH exposure at 25,000 feet using a decompression chamber in rat brain's PFC and cerebellum. Result: We have found that CHRM1-CHRM5 downregulated after acute exposure to hypoxia until 12 hours, and then, the expression level of these receptors increased to 24 hours when compared with 12 hours in PFC. All subtypes have shown a similar pattern in PFC regions under hypoxia exposure. On the other hand, these receptors have shown altered expression at different time points in the cerebellum. CHRM1 and CHRM4 acutely downregulated, CHRM2 and CHRM5 downregulated, while CHRM3 upregulated after hypoxia exposure. Conclusion: Our study, for the first time, has shown the altered expressions of muscarinic receptors under temporal hypoxia exposure. The altered expression pattern has shown an association with acclimatization and protection against necrosis due to hypoxia. This study may pave further investigations for understanding and addressing the cognitive, behavioral, and physiological impacts of hypoxia and therapeutic development.
Collapse
Affiliation(s)
| | - Mansi Srivastava
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, India
| | - Tikam Chand Dakal
- Department of Biotechnology, Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur, India
| | - Vipin Ranga
- DBT-NECAB, Assam Agricultural University, Jorhat, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
3
|
Jalaiei A, Asadi MR, Daneshmandpour Y, Rezazadeh M, Ghafouri-Fard S. Clinical, molecular, physiologic, and therapeutic feature of patients with CHRNA4 and CHRNB2 deficiency: A systematic review. J Neurochem 2025; 169:e16200. [PMID: 39193833 DOI: 10.1111/jnc.16200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
The α4β2 nAChRs are crucial ion channels that control neurotransmitter release and play a role in various physiologic and pathologic processes. CHRNA4 encodes the α4-nAChRs, while CHRNB2 encodes the β2-nAChRs. Recent studies have found different variants of α4β2-nAChRs in individuals with conditions such as AD, ADHD, ALS, PD, and brain abnormalities. We conducted a scoping review following a six-stage methodology structure and adhering to PRISMA guidelines. We systematically reviewed articles using relevant keywords up to October 2, 2023. In this summary, we cover the clinical symptoms reported, the genes and protein structure of CHRNA4 and CHRNB2, mutations in these genes, inheritance patterns, the functional impact of mutations and polymorphisms in CHRNA4 and CHRNB2, and the epidemiology of these diseases. Recent research indicates that nAChRs may play a significant role in neurodegenerative disorders, possibly impacting neuronal function through yet undiscovered regulatory pathways. Studying how nAChRs interact with disease-related aggregates in neurodegenerative conditions may lead to new treatment options for these disorders.
Collapse
Affiliation(s)
- Abbas Jalaiei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Daneshmandpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Romani A, Antonietti A, Bella D, Budd J, Giacalone E, Kurban K, Sáray S, Abdellah M, Arnaudon A, Boci E, Colangelo C, Courcol JD, Delemontex T, Ecker A, Falck J, Favreau C, Gevaert M, Hernando JB, Herttuainen J, Ivaska G, Kanari L, Kaufmann AK, King JG, Kumbhar P, Lange S, Lu H, Lupascu CA, Migliore R, Petitjean F, Planas J, Rai P, Ramaswamy S, Reimann MW, Riquelme JL, Román Guerrero N, Shi Y, Sood V, Sy MF, Van Geit W, Vanherpe L, Freund TF, Mercer A, Muller E, Schürmann F, Thomson AM, Migliore M, Káli S, Markram H. Community-based reconstruction and simulation of a full-scale model of the rat hippocampus CA1 region. PLoS Biol 2024; 22:e3002861. [PMID: 39499732 PMCID: PMC11537418 DOI: 10.1371/journal.pbio.3002861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
The CA1 region of the hippocampus is one of the most studied regions of the rodent brain, thought to play an important role in cognitive functions such as memory and spatial navigation. Despite a wealth of experimental data on its structure and function, it has been challenging to integrate information obtained from diverse experimental approaches. To address this challenge, we present a community-based, full-scale in silico model of the rat CA1 that integrates a broad range of experimental data, from synapse to network, including the reconstruction of its principal afferents, the Schaffer collaterals, and a model of the effects that acetylcholine has on the system. We tested and validated each model component and the final network model, and made input data, assumptions, and strategies explicit and transparent. The unique flexibility of the model allows scientists to potentially address a range of scientific questions. In this article, we describe the methods used to set up simulations to reproduce in vitro and in vivo experiments. Among several applications in the article, we focus on theta rhythm, a prominent hippocampal oscillation associated with various behavioral correlates and use our computer model to reproduce experimental findings. Finally, we make data, code, and model available through the hippocampushub.eu portal, which also provides an extensive set of analyses of the model and a user-friendly interface to facilitate adoption and usage. This community-based model represents a valuable tool for integrating diverse experimental data and provides a foundation for further research into the complex workings of the hippocampal CA1 region.
Collapse
Affiliation(s)
- Armando Romani
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Alberto Antonietti
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Davide Bella
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Julian Budd
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
- HUN-REN Institute of Experimental Medicine (KOKI), Budapest, Hungary
| | | | - Kerem Kurban
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Sára Sáray
- HUN-REN Institute of Experimental Medicine (KOKI), Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Marwan Abdellah
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Alexis Arnaudon
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Elvis Boci
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Cristina Colangelo
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Jean-Denis Courcol
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Thomas Delemontex
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - András Ecker
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Joanne Falck
- UCL School of Pharmacy, University College London (UCL), London, United Kingdom
| | - Cyrille Favreau
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Michael Gevaert
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Juan B. Hernando
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Joni Herttuainen
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Genrich Ivaska
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Lida Kanari
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Anna-Kristin Kaufmann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - James Gonzalo King
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Pramod Kumbhar
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Sigrun Lange
- UCL School of Pharmacy, University College London (UCL), London, United Kingdom
- School of Life Sciences, University of Westminster, London, United Kingdom
| | - Huanxiang Lu
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | | | - Rosanna Migliore
- Institute of Biophysics, National Research Council (CNR), Palermo, Italy
| | - Fabien Petitjean
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Judit Planas
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Pranav Rai
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael W. Reimann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Juan Luis Riquelme
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Nadir Román Guerrero
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Ying Shi
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Vishal Sood
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Mohameth François Sy
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Werner Van Geit
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Liesbeth Vanherpe
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Tamás F. Freund
- HUN-REN Institute of Experimental Medicine (KOKI), Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Audrey Mercer
- UCL School of Pharmacy, University College London (UCL), London, United Kingdom
| | - Eilif Muller
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, Canada
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, Canada
- Mila Quebec AI Institute, Montréal, Canada
| | - Felix Schürmann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Alex M. Thomson
- UCL School of Pharmacy, University College London (UCL), London, United Kingdom
| | - Michele Migliore
- Institute of Biophysics, National Research Council (CNR), Palermo, Italy
| | - Szabolcs Káli
- HUN-REN Institute of Experimental Medicine (KOKI), Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|
5
|
Jia Q, Tan H, Li T, Duan X. Role of adenosine in the pathophysiology and treatment of attention deficit hyperactivity disorder. Purinergic Signal 2024:10.1007/s11302-024-10059-2. [PMID: 39480600 DOI: 10.1007/s11302-024-10059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental condition characterized by persistent inattention, hyperactivity, and impulsivity. Although its precise etiology remains unclear, current evidence suggests that dysregulation within the neurotransmitter system plays a key role in the pathogenesis of ADHD. Adenosine, an endogenous nucleoside widely distributed throughout the body, modulates various physiological processes, including neurotransmitter release, sleep regulation, and cognitive functions through its receptors. This review critically examines the role of the adenosine system in ADHD, focusing on the links between adenosine receptor function and ADHD-related symptoms. Additionally, it explores how adenosine interacts with dopamine and other neurotransmitter pathways, shedding light on its involvement in ADHD pathophysiology. This review aims to provide insights into the potential therapeutic implications of targeting the adenosine system for ADHD management.
Collapse
Affiliation(s)
- Qingxia Jia
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Hongwan Tan
- People's Hospital of Tongliang District, Chongqing, 402560, Tongliang, China
| | - Tingsong Li
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Xiaoling Duan
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China.
| |
Collapse
|
11
|
Shavit-Stein E, Dori A, Shimon MB, Gofrit SG, Maggio N. Prolonged Systemic Inflammation Alters Muscarinic Long-Term Potentiation (mLTP) in the Hippocampus. Neural Plast 2021; 2021:8813734. [PMID: 33510779 PMCID: PMC7822657 DOI: 10.1155/2021/8813734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
The cholinergic system plays a fundamental role in learning and memory. Pharmacological activation of the muscarinic receptor M1R potentiates NMDA receptor activity and induces short-term potentiation at the synapses called muscarinic LTP, mLTP. Dysfunction of cholinergic transmission has been detected in the settings of cognitive impairment and dementia. Systemic inflammation as well as neuroinflammation has been shown to profoundly alter synaptic transmission and LTP. Indeed, intervention which is aimed at reducing neuroinflammatory changes in the brain has been associated with an improvement in cognitive functions. While cognitive impairment caused either by cholinergic dysfunction and/or by systemic inflammation suggests a possible connection between the two, so far whether systemic inflammation affects mLTP has not been extensively studied. In the present work, we explored whether an acute versus persistent systemic inflammation induced by LPS injections would differently affect the ability of hippocampal synapses to undergo mLTP. Interestingly, while a short exposure to LPS resulted in a transient deficit in mLTP expression, a longer exposure persistently impaired mLTP. We believe that these findings may be involved in cognitive dysfunctions following sepsis and possibly neuroinflammatory processes.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, 52621 Tel HaShomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Amir Dori
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, 52621 Tel HaShomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Marina Ben Shimon
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, 52621 Tel HaShomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, 52621 Tel HaShomer, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, 52621 Tel HaShomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|