1
|
Zhang Y, Meng X, Zhao W, Wang G, Zhang C, Tao J, Wang L, Zhang C, Kang P, Sun H, Li X, Ji F. Histone lactylation protects against sevoflurane-induced cognitive impairment by regulating YTHDF3/PRDX3 mediated microglial pyroptosis in neonatal mice. Int Immunopharmacol 2025; 151:114269. [PMID: 40022822 DOI: 10.1016/j.intimp.2025.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Sevoflurane (SEV), a widely used inhalational anesthetic, multiple SEV exposures has been implicated in cognitive impairment, particularly in neonates. However, the mechanisms underlying SEV-induced cognitive impairment not fully understood. METHODS Neonatal mice or murine microglial line BV-2 cells were exposed to SEV. Morris water maze and novel object recognition tests were used for measuring the cognitive function of mice. Histological examination and immunofluorescence staining were conducted to evaluate hippocampal morphology and the lactylated proteins in microglia, respectively. Cell pyroptosis was measured by flow cytometry and transmission electron microscope, and cytokine levels were detected using ELISA. Protein and gene expression were analyzed through western blot and RT-PCR. The interaction of proteins was verified by CHIP or RIP assays. RESULTS SEV induces significant cognitive impairment and reduces both histone lactylation and YTH domain-containing family protein 3 (YTHDF3) expression in the hippocampal tissues of neonatal mice. A decrease in histone lactylation and YTHDF3 expression is accompanied by increased cell pyroptosis and inflammation were observed in SEV-treated BV-2 cells. SEV modulates YTHDF3 expression via histone lactylation, thereby influencing N6-methyladenosine (m6A)-mediated peroxiredoxin 3 (PRDX3) translation and the subsequent activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome mediated pyroptosis in BV-2 cells. Overexpression of YTHDF3 or PRDX3 counteract the SEV-induced promotion of pyroptosis and inflammation in BV-2 cells. Furthermore, histone lactylation enhances YTHDF3 expression and mitigates SEV-induced cognitive dysfunction in neonatal mice, whereas downregulation of YTHDF3 diminishes this protective effect. CONCLUSION Our findings elucidate that histone lactylation mitigates SEV-induced cognitive impairment by regulating YTHDF3/PRDX3-mediated microglial pyroptosis in neonatal mice. These insights offer a novel understanding of the molecular mechanisms underlying SEV-induced neurotoxicity in neonates.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006 Jiangsu Province, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006 Jiangsu Province, PR China; Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004 Anhui Province, PR China
| | - Xiaowen Meng
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006 Jiangsu Province, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006 Jiangsu Province, PR China
| | - Weiming Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006 Jiangsu Province, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006 Jiangsu Province, PR China
| | - Gang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006 Jiangsu Province, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006 Jiangsu Province, PR China
| | - Congli Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004 Anhui Province, PR China
| | - Jing Tao
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004 Anhui Province, PR China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Lei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006 Jiangsu Province, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006 Jiangsu Province, PR China
| | - Chao Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006 Jiangsu Province, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006 Jiangsu Province, PR China
| | - Peipei Kang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006 Jiangsu Province, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006 Jiangsu Province, PR China
| | - Haiyan Sun
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006 Jiangsu Province, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006 Jiangsu Province, PR China
| | - Xiaohong Li
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004 Anhui Province, PR China.
| | - Fuhai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006 Jiangsu Province, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006 Jiangsu Province, PR China.
| |
Collapse
|
2
|
Wang Y, Chen Y, Zhang M, Yuan C, Zhang Y, Liu X, Zhang Y, Liang X. Effect of histone demethylase KDM5B on long-term cognitive impairment in neonatal rats induced by sevoflurane. Front Mol Neurosci 2024; 17:1459358. [PMID: 39664113 PMCID: PMC11632109 DOI: 10.3389/fnmol.2024.1459358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Whether repeated inhalation of sevoflurane during the neonatal period causes long-term learning and memory impairments in humans is unclear. Some recent investigations have indicated that general anesthesia drugs affect histone methylation modification and may further affect learning and memory ability. This study aimed to explore the role and mechanism of histone methylation in long-term cognitive dysfunction caused by repeated inhalation of sevoflurane during the neonatal period. Methods Neonatal SD rats were assigned into three groups. Sevoflurane group and sevoflurane +AS8351 group were exposed to 2% sevoflurane for 4 h on postnatal day 7 (P7), day 14 (P7) and day 21 (P21), and the control group was inhaled the air oxygen mixture at the same time. From postnatal day 22 to 36, rats in the +AS8351 group were treated with AS8351 while those in the Sevoflurane group and control group were treated with normal saline. Half of the rats were carried out Y-maze, Morris water maze (MWM), western blot and transmission electron microscope at P37, and the remaining rats were fed to P97 for the same experiment. Results Neonatal sevoflurane exposure affected histone demethylase expression in hippocampus, changed histone methylation levels, Down-regulated synapse-associated protein expression, impaired synaptic plasticity and long-term cognitive dysfunction and KDM5B inhibitors partially restored the negative reaction caused by sevoflurane exposure. Discussion In conclusion, KDM5B inhibitor can save the long-term learning and memory impairment caused by sevoflurane exposure in neonatal period by inhibiting KDM5B activity.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of Anesthesiology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Xishui County People’s Hospital, Zunyi, China
| | - Yun Chen
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Mengxiao Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Chengdong Yuan
- Department of Anesthesiology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Xingjian Liu
- Department of Anesthesiology, Xishui County People’s Hospital, Zunyi, China
| | - Yi Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaoli Liang
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Ding J, Zhang K, Wang D, Wang Q. Sevoflurane augments neuroinflammation by regulating DUSP6 via YTHDF1 in postoperative cognitive dysfunction. Toxicol Res (Camb) 2024; 13:tfae100. [PMID: 38966092 PMCID: PMC11221885 DOI: 10.1093/toxres/tfae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Background Postoperative cognitive dysfunction (POCD) is a generally recognized complication experienced by patients who receive anesthesia during surgery. Sevoflurane, the most commonly used inhaled anesthetic, has been shown to trigger neuroinflammation that promotes to POCD. Objective This study examined the pathological mechanism by which sevoflurane causes neuroinflammation, participating in POCD. Methods To establish a neurocyte injury model, the human neuroblastoma cell lines SH-SY5Y and SK-N-SH were treated with sevoflurane. Cell viability was determined using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assays. The reactive oxygen species (ROS) level was evaluated by DCFH-DA assays. A lactate dehydrogenase (LDH) Cytotoxicity Assay Kit was used to measure LDH levels. Inflammatory cytokine levels were measured using enzyme-linked immunosorbent assay assays. Gene expression densities and protein abundance were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) or western blotting. The interaction between YTHDF1 and dual specific phosphatase 6 (DUSP6) was validated using RNA immunoprecipitation (RIP)-qPCR and methylated RIP (MeRIP)-qPCR assays. Flow cytometry was performed to determine apoptosis. Results Sevoflurane promoted apoptosis, oxidative stress, and neuroinflammation and repressed the expression levels of YTHDF1 and DUSP6. Furthermore, YTHDF1 overexpression reversed sevoflurane-induced neuroinflammation in neurocytes. DUSP6 overexpression could alleviate the neuroinflammation induced by sevoflurane via regulating the extracellular signal-regulated kinase (ERK)1/2 signaling pathway. Moreover, YTHDF1 enhanced DUSP6 expression. Conclusion Sevoflurane-stimulated neuroinflammation by regulating DUSP6 via YTHDF1. Sevoflurane promoted neuroinflammation by regulating DUSP6 via YTHDF1 in an in vitro model of POCD.
Collapse
Affiliation(s)
- Jie Ding
- Graduate School, Jiamusi University, Graduate School Department, No. 258, XueFu Street, Xiangyang District, Jiamusi City, 154002, China
| | - Kai Zhang
- Tuberculosis Department One Ward, PLA General Hospital Eighth Medical Center, No. A17, HeishanHu Road, Haidian District, Beijing 100091, China
| | - DongWei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No. 348 dexiang Street, Xiangyang District, Jiamusi 154002, Heilongjiang Province, China
| | - QingDong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No. 348 dexiang Street, Xiangyang District, Jiamusi 154002, Heilongjiang Province, China
| |
Collapse
|
4
|
Huang Y, Yang Y, Ye C, Liu Z, Wei F. The m 6A Reader YTHDF1 Improves Sevoflurane-Induced Neuronal Pyroptosis and Cognitive Dysfunction Through Augmenting CREB-BDNF Signaling. Neurochem Res 2023; 48:3625-3638. [PMID: 37572160 DOI: 10.1007/s11064-023-04007-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/12/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Sevoflurane is one of the most widely used anesthetics in surgery which is the main cause of postoperative cognitive dysfunction (POCD). Previous reports confirmed that YTHDF1 is differently expressed in sevoflurane-induced POCD, while the roles and mechanistic details remain unclear. The molecular expressions were assessed using qRT-PCR, western blot, immunofluorescence and immunohistochemistry. Pathological change in the hippocampus tissues was analyzed using HE staining. Cognitive ability in rats was measured using MWM test. Hippocampal neuronal viability and apoptosis were measured by MTT assay and flow cytometry, respectively. The levels of pro-inflammatory cytokines were assessed using ELISA. The interaction between YTHDF1 and CREB was analyzed by RNA immunoprecipitation assay. YTHDF1 was significantly decreased in hippocampus tissues by sevoflurane exposure, and its overexpression could improve sevoflurane-induced neuron damage and cognitive dysfunction. Meanwhile, YTHDF1 upregulation repressed sevoflurane-induced activation of NLRP3 inflammation and pyroptosis in hippocampus tissues. Subsequently, YTHDF1 directly interacted to CREB mRNA to augment its stability and translation via a m6A-dependent manner, thus activating CREB/BDNF pathway. In addition, the inactivation of CREB/BDNF pathway could reverse the protective effects of YTHDF1 overexpression on sevoflurane-mediated neuronal damage and pyroptosis. These findings revealed that YTHDF1 improved sevoflurane-induced neuronal pyroptosis and cognitive dysfunction through activating CREB-BDNF signaling.
Collapse
Affiliation(s)
- Yuanlu Huang
- Department of Anesthesiology and Operation, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, No.1519 Dongyue Avenue, Nanchang, Jiangxi Province, 330052, P.R. China
| | - Yuxuan Yang
- Department of Anesthesiology and Operation, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, No.1519 Dongyue Avenue, Nanchang, Jiangxi Province, 330052, P.R. China
| | - Changsheng Ye
- Department of Anesthesiology and Operation, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, No.1519 Dongyue Avenue, Nanchang, Jiangxi Province, 330052, P.R. China
| | - Ziye Liu
- Department of Anesthesiology and Operation, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, No.1519 Dongyue Avenue, Nanchang, Jiangxi Province, 330052, P.R. China
| | - Fusheng Wei
- Department of Anesthesiology and Operation, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, No.1519 Dongyue Avenue, Nanchang, Jiangxi Province, 330052, P.R. China.
| |
Collapse
|
5
|
Niu Y, Cheng Y, Miao Z, Xu J, Jiang H, Yan J. Inhibitory neuron map of sevoflurane induced neurotoxicity model in young primates. Front Cell Neurosci 2023; 17:1252782. [PMID: 38026701 PMCID: PMC10643782 DOI: 10.3389/fncel.2023.1252782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Sevoflurane, one of the most commonly used anesthetic agents in children, may induce neuronal dysfunction and cognitive impairment. Exposure to sevoflurane might induce an imbalance between neural excitation and inhibition which could be a mechanism behind anesthesia-induced cognitive and affective dysfunctions. However, the underlying mechanisms remain unclear. Methods In this study, we used two rhesus macaques in the control group, and one rhesus macaques in the anesthesia group. We employed single-nucleus RNA sequencing (snRNA-seq) technology to explore alterations in distinct types of inhibitory neurons involved in the long-term cognitive impairment caused by sevoflurane in young macaques. Results Following sevoflurane treatment, an upregulation was observed in the SST+ inhibitory neuron in the LHX6+ neighborhood in the hippocampus of rhesus macaques. This alteration might impact brain development by influencing interneuron migration and maturation. Additionally, we proposed a novel classification of inhibitory neurons, defined by CNR1 and LHX6 applicable to both humans and macaques. Discussion Our study proposed a novel classification of inhibitory neurons defined by LHX6 and CNR1, relevant in macaques and humans. We also provide evidence that sevoflurane upregulated the SST+ inhibitory neuron in the LHX6+ neighborhood in the hippocampus of rhesus macaques, which may underlie the potential neurotoxic effects induced by general anesthetics. Our results also offer a more reliable approach for studying the structure and function of the human brain.
Collapse
Affiliation(s)
| | | | | | | | | | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Li S, Hou Q, Wang R, Hou Y, Wang Q, Zhang B, Ni C, Zheng H. Sevoflurane upregulates neuron death process-related Ddit4 expression by NMDAR in the hippocampus. Aging (Albany NY) 2023; 15:5698-5712. [PMID: 37348034 PMCID: PMC10333074 DOI: 10.18632/aging.204822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a serious and common complication induced by anesthesia and surgery. Neuronal apoptosis induced by general anesthetic neurotoxicity is a high-risk factor. However, a comprehensive analysis of general anesthesia-regulated gene expression patterns and further research on molecular mechanisms are lacking. Here, we performed bioinformatics analysis of gene expression in the hippocampus of aged rats that received sevoflurane anesthesia in GSE139220 from the GEO database, found a total of 226 differentially expressed genes (DEGs) and investigated hub genes according to the number of biological processes in which the genes were enriched and performed screening by 12 algorithms with cytoHubba in Cytoscape. Among the screened hub genes, Agt, Cdkn1a, Ddit4, and Rhob are related to the neuronal death process. We further confirmed that these genes, especially Ddit4, were upregulated in the hippocampus of aged mice that received sevoflurane anesthesia. NMDAR, the core target receptor of sevoflurane, rather than GABAAR, mediates the sevoflurane regulation of DDIT4 expression. Our study screened sevoflurane-regulated DEGs and focused on the neuronal death process to reveal DDIT4 as a potential target mediated by NMDAR, which may provide a new target for the treatment of sevoflurane neurotoxicity.
Collapse
Affiliation(s)
- Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qi Hou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Runjia Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yu Hou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
7
|
Lv J, Xing L, Zhong X, Li K, Liu M, Du K. Role of N6-methyladenosine modification in central nervous system diseases and related therapeutic agents. Biomed Pharmacother 2023; 162:114583. [PMID: 36989722 DOI: 10.1016/j.biopha.2023.114583] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
N6-methyladenosine (m6A) is a ubiquitous mRNA modification in eukaryotes. m6A occurs through the action of methyltransferases, demethylases, and methylation-binding proteins. m6A methylation of RNA is associated with various neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), depression, cerebral apoplexy, brain injury, epilepsy, cerebral arteriovenous malformations, and glioma. Furthermore, recent studies report that m6A-related drugs have attracted considerable concerns in the therapeutic areas of neurological disorders. Here, we mainly summarized the role of m6A modification in neurological diseases and the therapeutic potential of m6A-related drugs. The aim of this review is expected to be useful to systematically assess m6A as a new potential biomarker and develop innovative modulators of m6A for the amelioration and treatment of neurological disorders.
Collapse
Affiliation(s)
- Junya Lv
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China
| | - Lijuan Xing
- Precision Laboratory of Panjin Central Hospital, Panjin 124000, China
| | - Xin Zhong
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Mingyan Liu
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang 110179, China.
| | - Ke Du
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang 110179, China.
| |
Collapse
|
8
|
Petroff RL, Grant KS, Burbacher TM. The Role of Nonhuman Primates in Neurotoxicology Research: Preclinical Models and Experimental Methods. Curr Protoc 2023; 3:e698. [PMID: 36912610 PMCID: PMC10084743 DOI: 10.1002/cpz1.698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Although noteworthy progress has been made in developing alternatives to animal testing, nonhuman primates still play a critical role in advancing biomedical research and will likely do so for many years. Core similarities between monkeys and humans in genetics, physiology, reproduction, development, and behavior make them excellent models for translational studies relevant to human health. This unit is designed to specifically address the role of nonhuman primates in neurotoxicology research and outlines the specialized assessments that can be used to measure exposure-related changes at the structural, chemical, cellular, molecular, and functional levels. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Rebekah L Petroff
- Department of Environmental & Occupational Health Sciences (DEOHS), University of Washington, Seattle, Washington
| | - Kimberly S Grant
- Department of Environmental & Occupational Health Sciences (DEOHS), University of Washington, Seattle, Washington
| | - Thomas M Burbacher
- Department of Environmental & Occupational Health Sciences (DEOHS), University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Kisan A, Chhabra R. Modulation of gene expression by YTH domain family (YTHDF) proteins in human physiology and pathology. J Cell Physiol 2023; 238:5-31. [PMID: 36326110 DOI: 10.1002/jcp.30907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The advent of high throughput techniques in the past decade has significantly advanced the field of epitranscriptomics. The internal chemical modification of the target RNA at a specific site is a basic feature of epitranscriptomics and is critical for its structural stability and functional property. More than 170 modifications at the transcriptomic level have been reported so far, among which m6A methylation is one of the more conserved internal RNA modifications, abundantly found in eukaryotic mRNAs and frequently involved in enhancing the target messenger RNA's (mRNA) stability and translation. m6A modification of mRNAs is essential for multiple physiological processes including stem cell differentiation, nervous system development and gametogenesis. Any aberration in the m6A modification can often result in a pathological condition. The deregulation of m6A methylation has already been described in inflammation, viral infection, cardiovascular diseases and cancer. The m6A modification is reversible in nature and is carried out by specialized m6A proteins including writers (m6A methyltransferases) that add methyl groups and erasers (m6A demethylases) that remove methyl groups selectively. The fate of m6A-modified mRNA is heavily reliant on the various m6A-binding proteins ("readers") which recognize and generate a functional signal from m6A-modified mRNA. In this review, we discuss the role of a family of reader proteins, "YT521-B homology domain containing family" (YTHDF) proteins, in human physiology and pathology. In addition, we critically evaluate the potential of YTHDF proteins as therapeutic targets in human diseases.
Collapse
Affiliation(s)
- Aju Kisan
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
10
|
An Update on Preclinical Research in Anesthetic-Induced Developmental Neurotoxicity in Nonhuman Primate and Rodent Models. J Neurosurg Anesthesiol 2023; 35:104-113. [PMID: 36745171 DOI: 10.1097/ana.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Cheng Y, Liu S, Zhang L, Jiang H. Identification of Prefrontal Cortex and Amygdala Expressed Genes Associated With Sevoflurane Anesthesia on Non-human Primate. Front Integr Neurosci 2022; 16:857349. [PMID: 35845920 PMCID: PMC9286018 DOI: 10.3389/fnint.2022.857349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Clinical trials and animal studies have indicated that long-term use or multiple administrations of anesthesia may lead to fine motor impairment in the developing brain. Most studies on anesthesia-induced neurotoxicity have focused on the hippocampus and prefrontal cortex (PFC); however, the role of other vital encephalic regions, such as the amygdala, is still unclear. Herein, we focused on sevoflurane, the most commonly used volatile anesthetic in infants, and performed a transcriptional analysis of the PFC and amygdala of macaques after multiple exposures to the anesthetic by RNA sequencing. The overall, overlapping, and encephalic region-specific transcriptional patterns were separately analyzed to reveal their functions and differentially expressed gene sets that were influenced by sevoflurane. Specifically, functional, protein–protein interaction, neighbor gene network, and gene set enrichment analyses were performed. Further, we built the basic molecular feature of the amygdala by comparing it to the PFC. In comparison with the amygdala’s changing pattern following sevoflurane exposure, functional annotations of the PFC were more enriched in glial cell-related biological functions than in neuron and synapsis development. Taken together, transcriptional studies and bioinformatics analyses allow for an improved understanding of the primate PFC and amygdala.
Collapse
|
12
|
Ma LH, Yan J, Jiao XH, Zhou CH, Wu YQ. The Role of Epigenetic Modifications in Neurotoxicity Induced by Neonatal General Anesthesia. Front Mol Neurosci 2022; 15:877263. [PMID: 35571375 PMCID: PMC9097083 DOI: 10.3389/fnmol.2022.877263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
It has been widely demonstrated by numerous preclinical studies and clinical trials that the neonates receiving repeated or long-time general anesthesia (GA) could develop prolonged cognitive dysfunction. However, the definite mechanism remains largely unknown. Epigenetics, which is defined as heritable alterations in gene expression that are not a result of alteration of DNA sequence, includes DNA methylation, histone post-translational modifications, non-coding RNAs (ncRNAs), and RNA methylation. In recent years, the role of epigenetic modifications in neonatal GA-induced neurotoxicity has been widely explored and reported. In this review, we discuss and conclude the epigenetic mechanisms involving in the process of neonatal anesthesia-induced cognitive dysfunction. Also, we analyze the wide prospects of epigenetics in this field and its possibility to work as treatment target.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jing Yan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Cheng-Hua Zhou,
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Cheng-Hua Zhou,
| |
Collapse
|