1
|
Li P, Liu J, Wang R, Cao F, Li J, Wang H. Myricetin Mitigated Sevoflurane-induced Cognitive Dysfunction in Aged-mice Through Inhibiting Histone Deacetylase 2/nuclear Factor Erythroid 2-related Factor 2/heme Oxygenase-1 Signalling-mediated Ferroptosis and Mitochondrial Dysfunction. Mol Neurobiol 2025; 62:7776-7791. [PMID: 39937417 DOI: 10.1007/s12035-025-04703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Sevoflurane anaesthesia induces neurotoxicity and postoperative cognitive dysfunction (POCD) after surgery. This study investigated the roles and potential mechanisms of the natural flavonoid myricetin in sevoflurane-induced cognitive dysfunction. Primary hippocampal neurons were treated with 3% sevoflurane to establish a neuron injury model. Neurons was pre-treated with different concentrations of myricetin, and ferroptosis inhibitor ferrostatin-1 (Fer-1) was used as a positive control. Moreover, mice were anaesthetised with 3% sevoflurane to establish an in-vivo model, and they were pre-treated with 50 or 100 m/kg myricetin. Cell viability and death were determined. Ferroptosis-related markers, including intracellular iron content, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), 4-hydroxy-2-nonenal (4-HNE), glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) protein levels were measured. Myricetin treatment enhanced cell viability and mitigated sevoflurane-induced cell death in the hippocampal neurons. Sevoflurane exposure increased the ROS, MDA and 4-HNE levels and reduced the GSH level, whereas myricetin treatment abrogated these effects. Meanwhile, myricetin treatment restrained sevoflurane-induced increase in intracellular iron content and GPX4 and SLC7A11 protein levels. A high dose of myricetin showed distinct protective effects. Mechanistic studies demonstrated that myricetin treatment reversed sevoflurane-induced histone deacetylase 2 (HDAC2) upregulation and nuclear factor erythroid 2-related factor 2 (Nrf2) deacetylation, thus activating the Nrf2/heme oxygenase-1 (HO-1) signalling. Myricetin treatment mitigated sevoflurane-induced cognitive dysfunction in aged mice by inhibiting hippocampal ferroptosis and mitochondrial dysfunction via the HDAC2/Nrf2/HO-1 signalling pathway. Myricetin may be a treatment option for POCD after surgery.
Collapse
Affiliation(s)
- Peng Li
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jingjing Liu
- Department of Anesthesiology, Chinese People's Armed Police Force Hospital of Beijing, Beijing, 100037, China
| | - Rui Wang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Fuyang Cao
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jiannan Li
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Henglin Wang
- Department of Anesthesiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
2
|
Liu J, Zhang G, Chen L, Dong Q, Luo R, Zhang Y, Wen J, He Y, Li L. Natural products targeting ferroptosis in depression: Research progress and therapeutic prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156818. [PMID: 40339536 DOI: 10.1016/j.phymed.2025.156818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/02/2025] [Accepted: 04/27/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Depression is recognized as a chronic mental illness, also influenced by neurotransmitter homeostasis, with its incidence increasing annually worldwide. This condition inflicts significant physical and psychological harm, severely compromising human health. It exhibits a broad morbidity spectrum, and some current treatments and medications are hindered by short-term efficacy, strong side effects, and other limitations. PURPOSE Due to the limitations, it is imperative to explore new treatment approaches and develop targeted drugs. Ferroptosis, a cell death mode dependent on iron, is believed to be intricately linked to the onset of depression. Thus, modulating cellular ferroptosis presents a promising avenue for the targeted therapy of depression. METHODS We conducted a comprehensive search of databases such as PubMed, Elsevier ScienceDirect, Google Scholar, and CNKI, using keywords such as "ferroptosis", "depression", "iron death", "safety", "efficacy", and "effectiveness". Our review included original scientific articles, clinical trials, meta-analyses, and review papers published up to February 2025, focusing on studies excluding non-natural products. RESULTS Several natural products derived from plant, animal, or microbial sources effectively target ferroptosis, alleviating depressive symptoms and demonstrating unique and favorable outcomes. This review provides an exhaustive overview of the sources, pharmacological actions, mechanisms, efficacy, and safety of these natural products, highlighting their potential clinical benefits and offering a comprehensive perspective on their properties. CONCLUSION This study offers concrete ideas and valuable insights for the development and application of these natural products in the targeted treatment of depression.
Collapse
Affiliation(s)
- Jing Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Gaoju Zhang
- Sichuan Province Traditional Chinese Medicine Decoction Pieces Co., Ltd, Chengdu 611732, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu 610039, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ranwen Luo
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
3
|
Du J, Chen C, Chen J. Cirsilineol improves anesthesia/surgery-induced postoperative cognitive dysfunction through attenuating oxidative stress and modulating microglia M1/M2 polarization. PeerJ 2024; 12:e18507. [PMID: 39559329 PMCID: PMC11572359 DOI: 10.7717/peerj.18507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
Background Cirsilineol is a trimethoxy and dihydroxy flavonoid isolated from plant species such as Artemisia vestita and has a variety of pharmacological properties. This study analyzed whether cirsilineol could prevent postoperative cognitive dysfunction (POCD). Methods A POCD mouse model induced by anesthesia/surgery induction and a cell model established with hydrogen peroxide (H2O2)-induced microglia BV-2 were employed to explore the efficacy of cirsilineol on POCD. The cognition function of the mice were assessed by carrying out behavioral tests (Morris water maze test and Y-maze test). We assessed the activation and polarization status of microglia using immunofluorescence analysis and detected the expression levels of CD86 and CD206 using the quantitative PCR (qPCR). Subsequently, cell viability was determined by CCK-8 assay and apoptosis was assessed using Calcein-AM/PI staining. Meanwhile, superoxide dismutase (SOD) and malondialdehyde (MDA) levels in plasma and cell culture medium were detected using chemiluminescence. Finally, the phosphorylation levels of JAK/STAT signaling pathway-related proteins were analyzed by Western blot. Results Cirsilineol reduced the escape latency and times of crossing island and increased spontaneous alternation (SA) rate, restoring the cognitive dysfunctions of POCD-modeled mice. Meanwhile, POCD elevated CD86 expression and malondialdehyde content and lowered the level of SOD; however, cirsilineol promoted CD206 expression and generation of SOD and inhibited malondialdehyde production. In H2O2-induced microglia BV-2, cirsilineol treatment increased SOD content and suppressed the generation of reactive oxygen species (ROS) and malondialdehyde, modulating microglia M1/M2 polarization and JAK/STAT pathway. Conclusion Cirsilineol prevented against POCD by attenuating oxidative stress and modulating microglia M1/M2 polarization, providing novel insights for the management of POCD.
Collapse
Affiliation(s)
- Junli Du
- Department of Anesthesiology, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Chen
- Department of Anesthesiology, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Chen
- Department of Anesthesiology, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Zhang Z, Yang W, Wang L, Zhu C, Cui S, Wang T, Gu X, Liu Y, Qiu P. Unraveling the role and mechanism of mitochondria in postoperative cognitive dysfunction: a narrative review. J Neuroinflammation 2024; 21:293. [PMID: 39533332 PMCID: PMC11559051 DOI: 10.1186/s12974-024-03285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a frequent neurological complication encountered during the perioperative period with unclear mechanisms and no effective treatments. Recent research into the pathogenesis of POCD has primarily focused on neuroinflammation, oxidative stress, changes in neural synaptic plasticity and neurotransmitter imbalances. Given the high-energy metabolism of neurons and their critical dependency on mitochondria, mitochondrial dysfunction directly affects neuronal function. Additionally, as the primary organelles generating reactive oxygen species, mitochondria are closely linked to the pathological processes of neuroinflammation. Surgery and anesthesia can induce mitochondrial dysfunction, increase mitochondrial oxidative stress, and disrupt mitochondrial quality-control mechanisms via various pathways, hence serving as key initiators of the POCD pathological process. We conducted a review on the role and potential mechanisms of mitochondria in postoperative cognitive dysfunction by consulting relevant literature from the PubMed and EMBASE databases spanning the past 25 years. Our findings indicate that surgery and anesthesia can inhibit mitochondrial respiration, thereby reducing ATP production, decreasing mitochondrial membrane potential, promoting mitochondrial fission, inducing mitochondrial calcium buffering abnormalities and iron accumulation, inhibiting mitophagy, and increasing mitochondrial oxidative stress. Mitochondrial dysfunction and damage can ultimately lead to impaired neuronal function, abnormal synaptic transmission, impaired synthesis and release of neurotransmitters, and even neuronal death, resulting in cognitive dysfunction. Targeted mitochondrial therapies have shown positive outcomes, holding promise as a novel treatment for POCD.
Collapse
Affiliation(s)
- Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chengyao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Shuyan Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Tian Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
5
|
Zhai P, Ouyang XH, Yang ML, Lin L, Li JY, Li YM, Cheng X, Zhu R, Hu DS. Luteolin protects against myocardial ischemia/reperfusion injury by reducing oxidative stress and apoptosis through the p53 pathway. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:652-664. [PMID: 39343710 DOI: 10.1016/j.joim.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/13/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVE Myocardial ischemia/reperfusion injury (MIRI) is an obstacle to the success of cardiac reperfusion therapy. This study explores whether luteolin can mitigate MIRI by regulating the p53 signaling pathway. METHODS Model mice were subjected to a temporary surgical ligation of the left anterior descending coronary artery, and administered luteolin. The myocardial infarct size, myocardial enzyme levels, and cardiac function were measured. Latent targets and signaling pathways were screened using network pharmacology and molecular docking. Then, proteins related to the p53 signaling pathway, apoptosis and oxidative stress were measured. Hypoxia/reoxygenation (HR)-incubated HL1 cells were used to validate the effects of luteolin in vitro. In addition, a p53 agonist and an inhibitor were used to investigate the mechanism. RESULTS Luteolin reduced the myocardial infarcted size and myocardial enzymes, and restored cardiac function in MIRI mice. Network pharmacology identified p53 as a hub target. The bioinformatic analyses showed that luteolin had anti-apoptotic and anti-oxidative properties. Additionally, luteolin halted the activation of p53, and prevented both apoptosis and oxidative stress in myocardial tissue in vivo. Furthermore, luteolin inhibited cell apoptosis, JC-1 monomer formation, and reactive oxygen species elevation in HR-incubated HL1 cells in vitro. Finally, the p53 agonist NSC319726 downregulated the protective attributes of luteolin in the MIRI mouse model, and both luteolin and the p53 inhibitor pifithrin-α demonstrated a similar therapeutic effect in the MIRI mice. CONCLUSION Luteolin effectively treats MIRI and may ameliorate myocardial damage by regulating apoptosis and oxidative stress through its targeting of the p53 signaling pathway. Please cite this article as: Zhai P, Ouyang XH, Yang ML, Lin L, Li JY, Li YM, Cheng X, Zhu R, Hu DS. Luteolin protects against myocardial ischemia/reperfusion injury by reducing oxidative stress and apoptosis through the p53 pathway. J Integr Med. 2024; 22(6): 652-664.
Collapse
Affiliation(s)
- Pan Zhai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xiao-Hu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Meng-Ling Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Lan Lin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yi-Ming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Rui Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - De-Sheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China; China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
6
|
Jia Q, Duan Y, Liu Y, Liu J, Luo J, Song Y, Xu Z, Zhang K, Shan J, Mo F, Wang M, Wang Y, Cai X. High-Performance Bidirectional Microelectrode Array for Assessing Sevoflurane Anesthesia Effects and In Situ Electrical Stimulation in Deep Brain Regions. ACS Sens 2024; 9:2877-2887. [PMID: 38779969 DOI: 10.1021/acssensors.3c02676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Precise assessment of wakefulness states during sevoflurane anesthesia and timely arousal are of paramount importance to refine the control of anesthesia. To tackle this issue, a bidirectional implantable microelectrode array (MEA) is designed with the capability to detect electrophysiological signal and perform in situ deep brain stimulation (DBS) within the dorsomedial hypothalamus (DMH) of mice. The MEA, modified with platinum nanoparticles/IrOx nanocomposites, exhibits exceptional characteristics, featuring low impedance, minimal phase delay, substantial charge storage capacity, high double-layer capacitance, and longer in vivo lifetime, thereby enhancing the sensitivity of spike firing detection and electrical stimulation (ES) effectiveness. Using this MEA, sevoflurane-inhibited neurons and sevoflurane-excited neurons, together with changes in the oscillation characteristics of the local field potential within the DMH, are revealed as indicative markers of arousal states. During the arousal period, varying-frequency ESs are applied to the DMH, eliciting distinct arousal effects. Through in situ detection and stimulation, the disparity between these outcomes can be attributed to the influence of DBS on different neurons. These advancements may further our understanding of neural circuits and their potential applications in clinical contexts.
Collapse
Affiliation(s)
- Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yiming Duan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jin Shan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ying Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
7
|
Zhou Y, Huang Y, Ye W, Chen Z, Yuan Z. Cynaroside improved depressive-like behavior in CUMS mice by suppressing microglial inflammation and ferroptosis. Biomed Pharmacother 2024; 173:116425. [PMID: 38490155 DOI: 10.1016/j.biopha.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Depression is a common mental health disorder, and in recent years, the incidence of various forms of depression has been on the rise. Most medications for depression are highly dependency-inducing and can lead to relapse upon discontinuation. Therefore, novel treatment modalities and therapeutic targets are urgently required. Traditional Chinese medicine (TCM) offers advantages in the treatment of depression owing to its multi-target, multi-dimensional approach that addresses the root cause of depression by regulating organ functions and balancing Yin and Yang, with minimal side effects. Cynaroside (CNS), an extract from the traditional Chinese herb honeysuckle, is a flavonoid compound with antioxidant properties. In this study, network pharmacology identified 44 potential targets of CNS associated with depression and several highly correlated inflammatory signaling pathways. CNS alleviated LPS-induced M1 polarization and the release of inflammatory factors in BV-2 cells. Transcriptomic analysis and validation revealed that CNS reduced inflammatory polarization, lipid peroxidation, and ferroptosis via the IRF1/SLC7A11/GPX4 signaling pathway. In vivo experiments showed that CNS treatment had effects similar to those of fluoxetine (FLX). It effectively ameliorated anxiety-, despair-, and anhedonia-like states in chronic unpredictable mild stress (CUMS)-induced mice and reduced microglial activation in the hippocampus. Thus, we conclude that CNS exerts its therapeutic effect on depression by inhibiting microglial cells from polarizing into the M1 phenotype and reducing inflammation and ferroptosis levels. This study provides further evidence that CNS is a potential antidepressant, offering new avenues for the treatment of depression.
Collapse
Affiliation(s)
- Yiwei Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuhan Huang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Ye
- School Of Chinese Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zijie Chen
- Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Zhengzhong Yuan
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
8
|
Chen M, Yan R, Ding L, Luo J, Ning J, Zhou R. Research Advances of Mitochondrial Dysfunction in Perioperative Neurocognitive Disorders. Neurochem Res 2023; 48:2983-2995. [PMID: 37294392 DOI: 10.1007/s11064-023-03962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023]
Abstract
Perioperative neurocognitive disorders (PND) increases postoperative dementia and mortality in patients and has no effective treatment. Although the detailed pathogenesis of PND is still elusive, a large amount of evidence suggests that damaged mitochondria may play an important role in the pathogenesis of PND. A healthy mitochondrial pool not only provides energy for neuronal metabolism but also maintains neuronal activity through other mitochondrial functions. Therefore, exploring the abnormal mitochondrial function in PND is beneficial for finding promising therapeutic targets for this disease. This article summarizes the research advances of mitochondrial energy metabolism disorder, inflammatory response and oxidative stress, mitochondrial quality control, mitochondria-associated endoplasmic reticulum membranes, and cell death in the pathogenesis of PND, and briefly describes the application of mitochondria-targeted therapies in PND.
Collapse
Affiliation(s)
- Mengjie Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruyu Yan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lingling Ding
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Jiansheng Luo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jiaqi Ning
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruiling Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| |
Collapse
|
9
|
Caddye E, Pineau J, Reyniers J, Ronen I, Colasanti A. Lactate: A Theranostic Biomarker for Metabolic Psychiatry? Antioxidants (Basel) 2023; 12:1656. [PMID: 37759960 PMCID: PMC10526106 DOI: 10.3390/antiox12091656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Alterations in neurometabolism and mitochondria are implicated in the pathophysiology of psychiatric conditions such as mood disorders and schizophrenia. Thus, developing objective biomarkers related to brain mitochondrial function is crucial for the development of interventions, such as central nervous system penetrating agents that target brain health. Lactate, a major circulatory fuel source that can be produced and utilized by the brain and body, is presented as a theranostic biomarker for neurometabolic dysfunction in psychiatric conditions. This concept is based on three key properties of lactate that make it an intriguing metabolic intermediate with implications for this field: Firstly, the lactate response to various stimuli, including physiological or psychological stress, represents a quantifiable and dynamic marker that reflects metabolic and mitochondrial health. Second, lactate concentration in the brain is tightly regulated according to the sleep-wake cycle, the dysregulation of which is implicated in both metabolic and mood disorders. Third, lactate universally integrates arousal behaviours, pH, cellular metabolism, redox states, oxidative stress, and inflammation, and can signal and encode this information via intra- and extracellular pathways in the brain. In this review, we expand on the above properties of lactate and discuss the methodological developments and rationale for the use of functional magnetic resonance spectroscopy for in vivo monitoring of brain lactate. We conclude that accurate and dynamic assessment of brain lactate responses might contribute to the development of novel and personalized therapies that improve mitochondrial health in psychiatric disorders and other conditions associated with neurometabolic dysfunction.
Collapse
Affiliation(s)
- Edward Caddye
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Julien Pineau
- Independent Researcher, Florianópolis 88062-300, Brazil
| | - Joshua Reyniers
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- School of Life Sciences, University of Sussex, Falmer BN1 9RR, UK
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Alessandro Colasanti
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| |
Collapse
|