1
|
Zubova AV, Groshkov AA, Berdnikov AK, Novikova SV, Rozanova NA, Nikolaeva LV, Salmin VV, Kolotyeva NA, Khaspekov LG, Salmina AB, Yurchenko SO, Illarioshkin SN. Evolution, Possibilities, and Prospects for Application of the Methods of Assessment of Pyridine Nucleotides Pool for Studying Mechanisms of Brain Plasticity in Normal and Pathological Conditions. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:231-246. [PMID: 40254401 DOI: 10.1134/s0006297924604477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 04/22/2025]
Abstract
Nicotinamide adenine dinucleotide and its derivatives - NAD+, NADP+, NADH, NADPH - play an important role in cell metabolism, act as substrates or cofactors for a large number of enzymes involved in the DNA regulation of replication and repair, maintenance of calcium homeostasis in cells, biosynthetic processes, and energy production mechanisms. Changes in the ratio of oxidized and reduced forms of pyridine nucleotides accompanies development of oxidative and reductive stress that significantly contribute to the cell damage and induction of adaptive responses. Currently, a huge number of protocols aimed at quantitative or qualitative assessment of the pyridine nucleotide pool are in use, but all of them have their limitations associated with sample preparation processes, difficulties in the metabolite spectrum assessment, and complexity of data interpretation. Measuring pyridine nucleotide levels is relevant in the studies of pathophysiological regulatory mechanisms of the cell functional activity and intercellular communication. This is of particular relevance when studying the mechanisms of plasticity of the central nervous system in health and disease, since significant changes in the pools of pyridine nucleotides in cells are evident in neurodevelopmental disorders, neurodegeneration, and aging. Simple and reliable non-invasive methods for measuring levels of NAD+ and NADH are necessary to assess the brain cells metabolism with diagnostic and research purposes. The goal of this review is to conduct comparative analysis of the main methods for measuring the levels of oxidized and reduced pyridine nucleotides in cells and to identify key principles of their application for correct interpretation of the obtained data, including those used for studying central nervous system.
Collapse
Affiliation(s)
- Anna V Zubova
- Research Center of Neurology, Moscow, 125367, Russia.
| | | | | | - Svetlana V Novikova
- Research Center of Neurology, Moscow, 125367, Russia
- Bauman Moscow State Technical University, Moscow, 105005, Russia
| | - Natalia A Rozanova
- Research Center of Neurology, Moscow, 125367, Russia
- Bauman Moscow State Technical University, Moscow, 105005, Russia
| | | | - Vladimir V Salmin
- Bauman Moscow State Technical University, Moscow, 105005, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Nataliya A Kolotyeva
- Research Center of Neurology, Moscow, 125367, Russia
- Bauman Moscow State Technical University, Moscow, 105005, Russia
| | | | - Alla B Salmina
- Research Center of Neurology, Moscow, 125367, Russia
- Bauman Moscow State Technical University, Moscow, 105005, Russia
- Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | | | | |
Collapse
|
2
|
Rahimian E, D'Arco F, Sudhakar S, Tahsini MR, Azin N, Morovvati M, Karimzadeh P, Farahvash MA. The full spectrum of MRI findings in 18 patients with Canavan disease: new insights into the areas of selective susceptibility. Neuroradiology 2024; 66:1829-1835. [PMID: 38880823 DOI: 10.1007/s00234-024-03388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Canavan disease (CD) is a rare autosomal recessive neurodegenerative disorder caused by a deficiency of aspartoacylase A, an enzyme that degrades N-acetylaspartate (NAA). The disease is characterized by progressive white matter degeneration, leading to intellectual disability, seizures, and death. This retrospective study aims to describe the full spectrum of magnetic resonance imaging (MRI) findings in a large case series of CD patients. MATERIALS AND METHODS MRI findings in 18 patients with confirmed CD were investigated, and the full spectrum of brain abnormalities was compared with the existing literature to provide new insights regarding the brain MRI findings in these patients. All the cases were proven based on genetic study or NAA evaluation in urine or brain. RESULTS Imaging analysis showed involvement of the deep and subcortical white matter as well as the globus pallidus in all cases, with sparing of the putamen, caudate, and claustrum. The study provides updates on the imaging characteristics of CD and validates some underreported findings such as the involvement of the lateral thalamus with sparing of the pulvinar, involvement of the internal capsules and corpus callosum, and cystic formation during disease progression. CONCLUSION To our knowledge, this is one of the largest case series of patients with CD which includes a detailed description of the brain MRI findings. The study confirmed many of the previously reported MRI findings but also identified abnormalities that were previously rarely or not described. We speculate that areas of ongoing myelination are particularly vulnerable to changes in CD.
Collapse
Affiliation(s)
- Elham Rahimian
- Haghighat medical imaging research center, Haghighat medical imaging center, E Janbazan St, PFJW+269, Tehran, Iran
| | - Felice D'Arco
- Radiology Department, Neuroradiology Unit, Great Ormond Street Hospital, London, UK
| | - Sniya Sudhakar
- Radiology Department, Neuroradiology Unit, Great Ormond Street Hospital, London, UK
| | - Majid R Tahsini
- Haghighat medical imaging research center, Haghighat medical imaging center, E Janbazan St, PFJW+269, Tehran, Iran
| | - Neda Azin
- Radiology department, school of medicine, Isfahan university of medical sciences, Isfahan, Iran
| | - Mahdis Morovvati
- Haghighat medical imaging research center, Haghighat medical imaging center, E Janbazan St, PFJW+269, Tehran, Iran
| | - Parvaneh Karimzadeh
- Department of Pediatric Neurology, School of Medicine, Mofid Children's Hospital, Tehran, Iran
| | - Mohammad Aidin Farahvash
- Haghighat medical imaging research center, Haghighat medical imaging center, E Janbazan St, PFJW+269, Tehran, Iran
| |
Collapse
|
3
|
Trofimova AV, Reddy KM. Imaging of Inherited Metabolic and Endocrine Disorders. Clin Perinatol 2022; 49:657-673. [PMID: 36113928 DOI: 10.1016/j.clp.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
"Inherited metabolic disorders represent a large group of disorders of which approximately 25% present in neonatal period with acute metabolic decompensation, rapid clinical deterioration, and often nonspecific imaging findings. Neonatal onset signifies the profound severity of the metabolic abnormality compared with cases with later presentation and necessitates rapid diagnosis and urgent therapeutic measures in an attempt to decrease the extent of brain injury and prevent grave neurologic sequela or death. Here, the authors discuss classification and clinical and imaging findings in a spectrum of metabolic and endocrine disorders with neonatal presentation."
Collapse
Affiliation(s)
- Anna V Trofimova
- Children's Healthcare of Atlanta, Radiology Department, 1405 Clifton Road NE, Atlanta, GA 30322, USA; Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Road NE, Atlanta, GA, 30322, USA.
| | - Kartik M Reddy
- Children's Healthcare of Atlanta, Radiology Department, 1405 Clifton Road NE, Atlanta, GA 30322, USA; Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Road NE, Atlanta, GA, 30322, USA
| |
Collapse
|
4
|
Whitehead MT, Lai LM, Blüml S. Clinical 1H MRS in childhood neurometabolic diseases — part 2: MRS signatures. Neuroradiology 2022; 64:1111-1126. [DOI: 10.1007/s00234-022-02918-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
|
5
|
Clinical 1H MRS in childhood neurometabolic diseases-part 1: technique and age-related normal spectra. Neuroradiology 2022; 64:1101-1110. [PMID: 35178593 DOI: 10.1007/s00234-022-02917-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022]
Abstract
Despite its vigorous ability to detect and measure metabolic disturbances, 1H MRS remains underutilized in clinical practice. MRS increases diagnostic yield and provides therapeutic measures. Because many inborn metabolic errors are now treatable, early diagnosis is crucial to prevent or curb permanent brain injury. Therefore, patients with known or suspected inborn metabolic errors stand to benefit from the addition of MRS. With education and practice, all neuroradiologists can perform and interpret MRS notwithstanding their training and prior experience. In this two-part review, we cover the requisite concepts for clinical MRS interpretation including technical considerations and normal brain spectral patterns based on age, location, and methodology.
Collapse
|
6
|
Central Nervous System Complications in Cystinosis: The Role of Neuroimaging. Cells 2022; 11:cells11040682. [PMID: 35203331 PMCID: PMC8870159 DOI: 10.3390/cells11040682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Despite improvement in the specific treatment, clinical and anatomo-functional central nervous system (CNS) abnormalities of various severities are still observed in cystinosis patients. Patients who develop CNS complications today have a worse compliance to cysteamine treatment. Radiological studies have shown that cortical or central (ventriculomegaly) atrophy is observed in more than two thirds of cystinosis patients’ magnetic resonance imaging (MRI) and correlates with the intelligence quotient score. Half of cystinosis patients have marked aspecific white matter hyperintensities. The development of advanced neuroimaging techniques provides new tools to further investigate CNS complications. A recent neuroimaging study using a voxel-based morphometry approach showed that cystinosis patients present a decreased grey matter volume in the left middle frontal gyrus. Diffusion tensor imaging studies have shown white matter microstructure abnormalities in children and adults with cystinosis, respectively in areas of the dorsal visual pathway and within the corpus callosum’s body. Finally, leucocyte cystine levels are associated with decreased resting cerebral blood flow, measured by arterial spin labelling, in the frontal cortex, which could be associated with the neurocognitive deficits described in these patients. These results reinforce the relevance of neuroimaging studies to further understand the mechanisms that underline CNS impairments.
Collapse
|
7
|
Whitehead MT, Bluml S. Proton and Multinuclear Spectroscopy of the Pediatric Brain. Magn Reson Imaging Clin N Am 2021; 29:543-555. [PMID: 34717844 DOI: 10.1016/j.mric.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is a valuable adjunct to structural brain imaging. State-of-the-art MRS has benefited greatly from recent technical advancements. Neurometabolic alterations in pediatric brain diseases have implications for diagnosis, prognosis, and therapy. Herein, the authors discuss MRS technical considerations and applications in the setting of various pediatric disease processes including tumors, metabolic diseases, hypoxic/ischemic encephalopathy/stroke, epilepsy, demyelinating disease, and infection.
Collapse
Affiliation(s)
- Matthew T Whitehead
- Department of Radiology, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA; Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA; The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - Stefan Bluml
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 450 Sunset Boulevard, Los Angeles, CA 90027, USA; Rudi Schulte Research Institute, Santa Barbara, CA, USA
| |
Collapse
|
8
|
Liao R, Zhang D, Li X, Ma J, Yu J, Yang C, Xiong H, Zhou B, Huang X, Tang Z. A Preliminary Study on the Diagnostic Efficacy of Proton Magnetic Resonance Spectroscopy at 3.0T in Rabbit With VX2 Liver Tumor. Technol Cancer Res Treat 2021; 20:15330338211036852. [PMID: 34372732 PMCID: PMC8361547 DOI: 10.1177/15330338211036852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: To investigate the diagnostic efficacy of choline (Cho) value of magnetic resonance spectroscopy (MRS) in rabbit with VX2 liver tumor via comparative and quantitative analysis with the choline compounds concentration measured by enzyme linked immunosorbent assay (ELISA). Methods: MRS was performed on normal liver and VX2 tumor. The Cho value of VX2 tumor was compared with that of normal liver. Tissues were harvested for ELISA to detect the concentrations of acetylcholine (ACh), glycophorophosphygholine (GPC) and phosphochorine (PC). The diagnostic performance of Cho value and concentrations of choline compounds were assessed by receiver operating characteristic (ROC) curve and area under ROC curve (AUC). The specificity and sensitivity were discussed by the maximum Youden’s index. Results: The concentration of ACh was obviously higher than that of GPC and PC both in VX2 tumor and normal liver (P < 0.01). Furthermore, the concentration differences among ACh, GPC and PG were the third power of 10. Both the ACh concentration and Cho value of MRS in VX2 tumor were significantly higher than those in normal liver (P < 0.01). The AUC of ACh in VX2 tumor was 0.883, when the cutoff value was 7259000, the sensitivity and specificity of the diagnosis of liver cancer were 94.4% and 77.8%, respectively. The AUC of Cho in VX2 tumor was 0.807, when the cutoff value was 28.35, the sensitivity and specificity of the diagnosis of liver cancer were 83.3% and 77.8%, respectively. Conclusion: The change of Cho value in MRS between liver cancer and normal liver was consistent with the changes of concentrations of choline compounds measured by ELISA, especially the change of ACh concentration. The diagnostic efficiency of Cho value and that of choline compounds concentration in liver cancer were extremely similar, with the AUC more than 0.8. We conclude that MRS may be applied as an important, non-invasive biomarker for the diagnosis of liver cancer.
Collapse
Affiliation(s)
- Ruikun Liao
- Department of Radiology, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China.,Molecular and Functional Imaging Laboratory, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China
| | - Dan Zhang
- Department of Radiology, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China.,Molecular and Functional Imaging Laboratory, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China
| | - Xiaojiao Li
- Department of Radiology, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China.,Molecular and Functional Imaging Laboratory, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China
| | - Jiang Ma
- Department of Radiology, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China
| | - Jiayi Yu
- Department of Radiology, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China.,Molecular and Functional Imaging Laboratory, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China
| | - Chao Yang
- Department of Radiology, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China.,Molecular and Functional Imaging Laboratory, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China
| | - Hua Xiong
- Department of Radiology, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China.,Molecular and Functional Imaging Laboratory, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China
| | - Bi Zhou
- Department of Radiology, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China.,Molecular and Functional Imaging Laboratory, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China
| | - Xianlong Huang
- Department of Radiology, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China
| | - Zhuoyue Tang
- Department of Radiology, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China.,Molecular and Functional Imaging Laboratory, Chongqing General Hospital, 74519University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
9
|
Servais A, Saitovitch A, Hummel A, Boisgontier J, Scemla A, Sberro-Soussan R, Snanoudj R, Lemaitre H, Legendre C, Pontoizeau C, Antignac C, Anglicheau D, Funalot B, Boddaert N. Central nervous system complications in adult cystinosis patients. J Inherit Metab Dis 2020; 43:348-356. [PMID: 31444911 DOI: 10.1002/jimd.12164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 11/06/2022]
Abstract
Little is known about the long-term progression of adult nephropathic cystinosis patients. Our objective was to study central nervous system complications in cystinosis patients in the era of early cysteamine treatment, using advanced neuroimaging techniques. Neurological examination and multimodal brain 3 Tesla MRI were performed in 21 adult cystinosis patients, including 18 infantile cystinosis patients, 20 controls matched for age and renal function, and 12 healthy controls. Differences in gray matter volume and rest cerebral blood flow (CBF) using arterial spin labeling sequence were investigated using whole-brain voxel-based approach. Median age was 33.8 years (18.7-65.8). Seven patients (38.9%) presented with at least one central nervous system clinical abnormality: two (11.1%) with seizures, three (16.7%) with memory defects, five (27.8%) with cognitive defect, and one (5.5%) with stroke-like episode. These patients had a worse compliance to treatment (compliance score 2 vs 1, P = .03) and received a lower median cysteamine dose (0.9 g/day vs 2.1 g/day, P = .02). Among patients with infantile cystinosis, 13 (72.2%) showed cortical atrophy, which was absent in controls, but it was not correlated with symptoms. Cystinosis patients showed a significant gray matter decrease in the middle frontal gyrus compared with healthy controls and a significant negative correlation between the cystine blood level and rest CBF was observed in the right superior frontal gyrus, a region associated with executive function. Compliance to cysteamine treatment is a major concern in these adult patients and could have an impact on the development of neurological and cognitive complications.
Collapse
Affiliation(s)
- Aude Servais
- Department of Nephrology and Transplantation, Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Necker Hospital, APHP, Paris, France
- Inserm U1163, Imagine Institute, Paris Descartes University, Paris, France
| | - Ana Saitovitch
- Department of Pediatric Radiology, Necker hospital, APHP, Inserm U1000, Imagine Institute, Paris Descartes University, Paris, France
| | - Aurélie Hummel
- Department of Nephrology and Transplantation, Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Necker Hospital, APHP, Paris, France
| | - Jennifer Boisgontier
- Department of Pediatric Radiology, Necker hospital, APHP, Inserm U1000, Imagine Institute, Paris Descartes University, Paris, France
| | - Anne Scemla
- Department of Nephrology and Transplantation, Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Necker Hospital, APHP, Paris, France
| | - Rebecca Sberro-Soussan
- Department of Nephrology and Transplantation, Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Necker Hospital, APHP, Paris, France
| | - Renaud Snanoudj
- Department of Nephrology and Transplantation, Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Necker Hospital, APHP, Paris, France
| | - Hervé Lemaitre
- Department of Pediatric Radiology, Necker hospital, APHP, Inserm U1000, Imagine Institute, Paris Descartes University, Paris, France
| | - Christophe Legendre
- Department of Nephrology and Transplantation, Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Necker Hospital, APHP, Paris, France
| | | | - Corinne Antignac
- Inserm U1163, Imagine Institute, Paris Descartes University, Paris, France
- Department of Genetics, Necker hospital, APHP, Paris, France
| | - Dany Anglicheau
- Department of Nephrology and Transplantation, Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Necker Hospital, APHP, Paris, France
| | - Benoît Funalot
- Department of Genetics, Henri Mondor Hospital, APHP, Créteil, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, Necker hospital, APHP, Inserm U1000, Imagine Institute, Paris Descartes University, Paris, France
| |
Collapse
|
10
|
Abstract
Lysosomal storage disorders are a heterogeneous group of genetic diseases characterized by defective function in one of the lysosomal enzymes. In this review paper, we describe neuroradiological findings and clinical characteristics of neuronopathic lysosomal disorders with a focus on differential diagnosis. New insights regarding pathogenesis and therapeutic perspectives are also briefly discussed.
Collapse
|
11
|
Abstract
CLINICAL ISSUE Metabolic disorders of the brain often present a particular challenge for the neuroradiologist, since the disorders are rare, changes on conventional MR are often non-specific and there are numerous differential diagnoses for the white substance lesions. STANDARD RADIOLOGICAL METHODS As a complementary method to conventional brain MRI, MR spectroscopy may help to reduce the scope of the differential diagnosis. Entities with specific MR spectroscopy patterns are Canavan disease, maple syrup urine disease, nonketotic hyperglycinemia and creatine deficiency.
Collapse
|
12
|
In-vivo brain H1-MR-Spectroscopy identification and quantification of 2-hydroxyglutarate in L-2-Hydroxyglutaric aciduria. Brain Res 2016; 1648:506-511. [DOI: 10.1016/j.brainres.2016.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/24/2022]
|
13
|
Febo M, Foster TC. Preclinical Magnetic Resonance Imaging and Spectroscopy Studies of Memory, Aging, and Cognitive Decline. Front Aging Neurosci 2016; 8:158. [PMID: 27468264 PMCID: PMC4942756 DOI: 10.3389/fnagi.2016.00158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/16/2016] [Indexed: 01/14/2023] Open
Abstract
Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, William L. and Evelyn F. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| |
Collapse
|
14
|
Carrera I, Richter H, Beckmann K, Meier D, Dennler M, Kircher PR. Evaluation of intracranial neoplasia and noninfectious meningoencephalitis in dogs by use of short echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla. Am J Vet Res 2016; 77:452-62. [DOI: 10.2460/ajvr.77.5.452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Dahmoush HM, Melhem ER, Vossough A. Metabolic, endocrine, and other genetic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2016; 136:1221-1259. [PMID: 27430466 DOI: 10.1016/b978-0-444-53486-6.00063-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metabolic, endocrine, and genetic diseases of the brain include a very large array of disorders caused by a wide range of underlying abnormalities and involving a variety of brain structures. Often these disorders manifest as recognizable, though sometimes overlapping, patterns on neuroimaging studies that may enable a diagnosis based on imaging or may alternatively provide enough clues to direct further diagnostic evaluation. The diagnostic workup can include various biochemical laboratory or genetic studies. In this chapter, after a brief review of normal white-matter development, we will describe a variety of leukodystrophies resulting from metabolic disorders involving the brain, including mitochondrial and respiratory chain diseases. We will then describe various acidurias, urea cycle disorders, disorders related to copper and iron metabolism, and disorders of ganglioside and mucopolysaccharide metabolism. Lastly, various other hypomyelinating and dysmyelinating leukodystrophies, including vanishing white-matter disease, megalencephalic leukoencephalopathy with subcortical cysts, and oculocerebrorenal syndrome will be presented. In the following section on endocrine disorders, we will examine various disorders of the hypothalamic-pituitary axis, including developmental, inflammatory, and neoplastic diseases. Neonatal hypoglycemia will also be briefly reviewed. In the final section, we will review a few of the common genetic phakomatoses. Throughout the text, both imaging and brief clinical features of the various disorders will be discussed.
Collapse
Affiliation(s)
- Hisham M Dahmoush
- Department of Radiology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Elias R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Arastoo Vossough
- Department of Radiology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Abdelsalam EM, Ashamallah GA, Lateef MA, Fathy K. Proton MR Spectroscopy in leukodystrophies. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2015. [DOI: 10.1016/j.ejrnm.2015.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
17
|
Carrera I, Richter H, Meier D, Kircher PR, Dennler M. Regional metabolite concentrations in the brain of healthy dogs measured by use of short echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla. Am J Vet Res 2015; 76:129-41. [PMID: 25629910 DOI: 10.2460/ajvr.76.2.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate regional differences of relative metabolite concentrations in the brain of healthy dogs with short echo time, single voxel proton magnetic resonance spectroscopy ((1)H MRS) at 3.0 T. ANIMALS 10 Beagles. PROCEDURES Short echo time, single voxel (1)H MRS was performed at the level of the right and left basal ganglia, right and left thalamus, right and left parietal lobes, occipital lobe, and cerebellum. Data were analyzed with an automated fitting method (linear combination model). Metabolite concentrations relative to water content were obtained, including N-acetyl aspartate, total choline, creatine, myoinositol, the sum of glutamine and glutamate (glutamine-glutamate complex), and glutathione. Metabolite ratios with creatine as the reference metabolite were calculated. Concentration differences between right and left hemispheres and sexes were evaluated with a Wilcoxon signed rank test and among various regions of the brain with an independent t test and 1-way ANOVA. RESULTS No significant differences were detected between sexes and right and left hemispheres. All metabolites, except the glutamine-glutamate complex and glutathione, had regional concentrations that differed significantly. The creatine concentration was highest in the basal ganglia and cerebellum and lowest in the parietal lobes. The N-acetyl aspartate concentration was highest in the parietal lobes and lowest in the cerebellum. Total choline concentration was highest in the basal ganglia and lowest in the occipital lobe. CONCLUSIONS AND CLINICAL RELEVANCE Metabolite concentrations differed among brain parenchymal regions in healthy dogs. This study may provide reference values for clinical and research studies involving (1)H MRS performed at 3.0 T.
Collapse
Affiliation(s)
- Inés Carrera
- Clinic of Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland., Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Tarailo-Graovac M, Sinclair G, Stockler-Ipsiroglu S, Van Allen M, Rozmus J, Shyr C, Biancheri R, Oh T, Sayson B, Lafek M, Ross CJ, Robinson WP, Wasserman WW, Rossi A, van Karnebeek CDM. The genotypic and phenotypic spectrum of PIGA deficiency. Orphanet J Rare Dis 2015; 10:23. [PMID: 25885527 PMCID: PMC4348372 DOI: 10.1186/s13023-015-0243-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/18/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Phosphatidylinositol glycan biosynthesis class A protein (PIGA) is one of the enzymes involved in the biosynthesis of glycosylphosphatidylinositol (GPI) anchor proteins, which function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Until recently, only somatic PIGA mutations had been reported in patients with paroxysmal nocturnal hemoglobinuria (PNH), while germline mutations had not been observed, and were suspected to result in lethality. However, in just two years, whole exome sequencing (WES) analyses have identified germline PIGA mutations in male patients with XLIDD (X-linked intellectual developmental disorder) with a wide spectrum of clinical presentations. METHODS AND RESULTS Here, we report on a new missense PIGA germline mutation [g.15342986C>T (p.S330N)] identified via WES followed by Sanger sequencing, in a Chinese male infant presenting with developmental arrest, infantile spasms, a pattern of lesion distribution on brain MRI resembling that typical of maple syrup urine disease, contractures, dysmorphism, elevated alkaline phosphatase, mixed hearing loss (a combination of conductive and sensorineural), liver dysfunction, mitochondrial complex I and V deficiency, and therapy-responsive dyslipidemia with confirmed lipoprotein lipase deficiency. X-inactivation studies showed skewing in the clinically unaffected carrier mother, and CD109 surface expression in patient fibroblasts was 57% of that measured in controls; together these data support pathogenicity of this mutation. Furthermore, we review all reported germline PIGA mutations (1 nonsense, 1 frameshift, 1 in-frame deletion, five missense) in 8 unrelated families. CONCLUSIONS Our case further delineates the heterogeneous phenotype of this condition for which we propose the term 'PIGA deficiency'. While the phenotypic spectrum is wide, it could be classified into two types (severe and less severe) with shared hallmarks of infantile spasms with hypsarrhythmia on EEG and profound XLIDD. In severe PIGA deficiency, as described in our patient, patients also present with dysmorphic facial features, multiple CNS abnormalities, such as thin corpus callosum and delayed myelination, as well as hypotonia and elevated alkaline phosphatase along with liver, renal, and cardiac involvement; its course is often fatal. The less severe form of PIGA deficiency does not involve facial dysmorphism and multiple CNS abnormalities; instead, patients present with milder IDD, treatable seizures and generally a longer lifespan.
Collapse
Affiliation(s)
- Maja Tarailo-Graovac
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada.
| | - Graham Sinclair
- Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada. .,Biochemical Genetics Laboratory, Department of Pathology, BC Children's Hospital, University of British Columbia, Vancouver, Canada.
| | - Sylvia Stockler-Ipsiroglu
- Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| | - Margot Van Allen
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| | - Jacob Rozmus
- Division of Hematology, Oncology & BMT, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| | - Casper Shyr
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada.
| | - Roberta Biancheri
- Department of Paediatric Neurology, Children's Hospital Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Tracey Oh
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| | - Bryan Sayson
- Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada.
| | - Mirafe Lafek
- Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada.
| | - Colin J Ross
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| | - Wendy P Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| | - Andrea Rossi
- Department of Neuroradiology, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, I-16147, Genoa, Italy.
| | - Clara D M van Karnebeek
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada. .,Child & Family Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Kunii M, Doi H, Higashiyama Y, Kugimoto C, Ueda N, Hirata J, Tomita-Katsumoto A, Kashikura-Kojima M, Kubota S, Taniguchi M, Murayama K, Nakashima M, Tsurusaki Y, Miyake N, Saitsu H, Matsumoto N, Tanaka F. A Japanese case of cerebellar ataxia, spastic paraparesis and deep sensory impairment associated with a novel homozygous TTC19 mutation. J Hum Genet 2015; 60:187-91. [DOI: 10.1038/jhg.2015.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/24/2014] [Accepted: 01/08/2015] [Indexed: 12/12/2022]
|
20
|
Krishnan P, Muthusami P, Heyn C, Shroff M. Advances in pediatric neuroimaging. Indian J Pediatr 2015; 82:154-65. [PMID: 25557178 DOI: 10.1007/s12098-014-1657-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
Conventional MRI protocols are an integral part of routine clinical imaging in pediatric patients. The advent of several newer MRI techniques provides crucial insight into the structural integrity and functional aspects of the developing brain, especially with the introduction of 3T MRI systems in clinical practice. The field of pediatric neuroimaging continues to evolve, with greater emphasis on high spatial resolution, faster scan time, as well as a quest for visualization of the functional aspects of the human brain. MR vendors are increasingly focusing on optimizing MR technology to make it suitable for children, in whom as compared to adults the head size is usually smaller and demonstrates inherent neuroanatomical differences relating to brain development. The eventual goal of these advances would be to evolve as potential biomarkers for predicting neurodevelopment outcomes and prognostication, in addition to their utility in routine diagnostic and therapeutic decision-making. Advanced MR techniques like diffusion tensor imaging, functional MRI, MR perfusion, spectroscopy, volumetric imaging and arterial spin labeling add to our understanding of normal brain development and pathophysiology of various neurological disease processes. This review is primarily focused on outlining advanced MR techniques and their current and potential pediatric neuroimaging applications as well as providing a brief overview of advances in hardware and machine design.
Collapse
Affiliation(s)
- Pradeep Krishnan
- Division of Pediatric Neuroradiology, Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada,
| | | | | | | |
Collapse
|
21
|
Carrera I, Kircher PR, Meier D, Richter H, Beckman K, Dennler M. In vivo proton magnetic resonance spectroscopy for the evaluation of hepatic encephalopathy in dogs. Am J Vet Res 2014; 75:818-27. [DOI: 10.2460/ajvr.75.9.818] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Mandal PK. Brain Metabolic Mapping with MRS: A Potent Noninvasive Tool for Clinical Diagnosis of Brain Disorders. AJNR Am J Neuroradiol 2014; 35:S1-3. [DOI: 10.3174/ajnr.a4020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|