1
|
Pieniak M, Rokosz M, Nawrocka P, Reichert A, Zyzelewicz B, Mahmut MK, Oleszkiewicz A. Null cross-modal effects of olfactory training on visual, auditory or olfactory working memory in 6- to 9-year-old children. Neuropsychol Rehabil 2025; 35:524-545. [PMID: 38762780 DOI: 10.1080/09602011.2024.2343484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 05/20/2024]
Abstract
Systematic exposure to odours (olfactory training, OT) is a method of smell loss treatment. Due to olfactory system projections to prefrontal brain areas, OT has been hypothesized to enhance cognitive functions, but its effects have been studied predominantly in adults. This study tested OT effects on working memory (WM), i.e., the ability to store and manipulate information for a short time, in healthy children aged 6-9 years. We expected OT to improve olfactory WM and establish cross-modal transfer to visual and auditory WM. Participants performed 12 weeks of bi-daily OT with either 4 odours (lemon, eucalyptus, rose, cloves; OT group) or odourless propylene glycol (placebo group). Pre- and post-training, participants' WM was measured utilizing odours (olfactory WM) or pictures (visual WM) and a word-span task (auditory WM). 84 children (40 girls) completed the study. The analyses revealed no changes in the WM performance following OT. The olfactory WM task was the most difficult for children, highlighting the need to include olfactory-related tasks in educational programmes to improve children's odour knowledge and memory, just as they learn about sounds and pictures. Further neuroimaging research is needed to fully understand the impact of OT on cognitive functions in children.
Collapse
Affiliation(s)
- Michal Pieniak
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marta Rokosz
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
| | | | - Aleksandra Reichert
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Mehmet K Mahmut
- Food, Flavour and Fragrance Lab, School of Psychological Sciences, Macquarie University, Sydney, Australia
| | - Anna Oleszkiewicz
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Ni Z, Liu Y, Zou L, Zhang Q, Fan W, Yan C. Scenting the Hedonic Connection: Exploring the Impact of Subjective Olfactory Dysfunction on Depressive Symptoms. Psych J 2025. [PMID: 39965576 DOI: 10.1002/pchj.828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025]
Abstract
Olfaction, often regarded as a unique chemical sensation, plays a pivotal role in shaping our quality of life and mental well-being. Numerous studies have highlighted the significant relationship between olfactory function and depressive symptoms. However, the complex mechanisms underlying how olfactory function affects the development of depressive symptoms remain largely unclear. In this study, we investigated the role of hedonic capacity in the link between olfactory function and depressive symptoms. We recruited 1661 young adults, along with an additional 381 participants who had experienced COVID-19-related olfactory dysfunction, to complete a series of self-report questionnaires assessing depressive symptoms, olfactory dysfunction, and hedonic capacity. A subset of 327 participants completed a follow-up survey 3 months later. Our sequential mediation analyses revealed that olfactory function indirectly influenced depressive symptoms through chemosensory pleasure. Moreover, it impacted pleasure derived from social activities by modulating chemosensory pleasure. Notably, this mediating effect persisted over the 3-month period and was evident even in participants with hyposmia, highlighting the lasting importance of chemosensory hedonic capacity. These findings suggest that both chemosensory and social hedonic capacities are crucial in the complex relationship between olfactory function and depressive symptoms. This insight not only deepens our understanding of the developmental psychopathology of depression but also offers a new perspective for its prevention.
Collapse
Affiliation(s)
- Zihan Ni
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Ye Liu
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Laiquan Zou
- Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Wu Fan
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Chao Yan
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Centre, Shanghai, China
- Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei, China
| |
Collapse
|
3
|
Esmaelpoor J, Peng T, Jelfs B, Mao D, Shader MJ, McKay CM. Resting-State Functional Connectivity Predicts Cochlear-Implant Speech Outcomes. Ear Hear 2025; 46:128-138. [PMID: 39680488 PMCID: PMC11637576 DOI: 10.1097/aud.0000000000001564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES Cochlear implants (CIs) have revolutionized hearing restoration for individuals with severe or profound hearing loss. However, a substantial and unexplained variability persists in CI outcomes, even when considering subject-specific factors such as age and the duration of deafness. In a pioneering study, we use resting-state functional near-infrared spectroscopy to predict speech-understanding outcomes before and after CI implantation. Our hypothesis centers on resting-state functional connectivity (FC) reflecting brain plasticity post-hearing loss and implantation, specifically targeting the average clustering coefficient in resting FC networks to capture variation among CI users. DESIGN Twenty-three CI candidates participated in this study. Resting-state functional near-infrared spectroscopy data were collected preimplantation and at 1 month, 3 months, and 1 year postimplantation. Speech understanding performance was assessed using consonant-nucleus-consonant words in quiet and Bamford-Kowal-Bench sentences in noise 1-year postimplantation. Resting-state FC networks were constructed using regularized partial correlation, and the average clustering coefficient was measured in the signed weighted networks as a predictive measure for implantation outcomes. RESULTS Our findings demonstrate a significant correlation between the average clustering coefficient in resting-state functional networks and speech understanding outcomes, both pre- and postimplantation. CONCLUSIONS This approach uses an easily deployable resting-state functional brain imaging metric to predict speech-understanding outcomes in implant recipients. The results indicate that the average clustering coefficient, both pre- and postimplantation, correlates with speech understanding outcomes.
Collapse
Affiliation(s)
- Jamal Esmaelpoor
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- The Bionics Institute of Australia, Melbourne, Australia
| | - Tommy Peng
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- The Bionics Institute of Australia, Melbourne, Australia
| | - Beth Jelfs
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Darren Mao
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- The Bionics Institute of Australia, Melbourne, Australia
| | - Maureen J. Shader
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Colette M. McKay
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- The Bionics Institute of Australia, Melbourne, Australia
| |
Collapse
|
4
|
Lawrence AS, Veach J, Alapati R, Virgen CG, Wright R, Materia F, Villwock JA. Age-related differences in olfactory training outcomes: A prospective cohort study. Int Forum Allergy Rhinol 2025; 15:18-26. [PMID: 39264324 DOI: 10.1002/alr.23451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION While olfactory function decreases with age, it is unknown how age affects olfactory training (OT) efficacy. This study compared OT in two cohorts of subjects: aged ≤50 (younger cohort) and aged 51+ (older cohort) with olfactory dysfunction (OD) primarily from COVID-19 infection. METHODS Subjects with OD primarily secondary to COVID-19 infection were prospectively recruited and enrolled into an OT registry. Baseline data were collected and they were provided with a training kit and asked to complete OT at home twice daily for 6 months. Participants were asked to follow-up at 3 and 6 months during training for olfactory testing and quality-of-life surveys (Sino-Nasal Outcomes Test-22 [SNOT-22] and Questionnaire of Olfactory Disorders Negative Statements [QoD-NS]). RESULTS Fifty-six participants completed OT (younger cohort: n = 26, older cohort: n = 30). There were no significant differences between cohorts' Affordable Rapid Olfactory Measurement Array (AROMA), QoD-NS, or SNOT-22 scores at any time point. Both cohorts showed significant AROMA score improvement of more than 16 points from baseline to 3 months (younger cohort: p = 0.001; older cohort: p = 0.008). The younger cohort had significant improvements in QoD-NS (p = 0.008) and SNOT-22 (p = 0.042) between baseline and 3 months while the older cohort improved from 3 to 6 months (QoD-NS: p = 0.027, SNOT-22: p = 0.049). CONCLUSION Both cohorts demonstrated similar significant improvement in olfactory function after 3 months of OT. The timeline of subjective improvement was different between cohorts, with younger patients experiencing earlier improvement.
Collapse
Affiliation(s)
- Amelia S Lawrence
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jodi Veach
- University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Rahul Alapati
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Celina G Virgen
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Robert Wright
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Frank Materia
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jennifer A Villwock
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
5
|
Rezaeyan A, Asadi S, Kamrava SK, Zare-Sadeghi A. Olfactory training affects the correlation between brain structure and functional connectivity. Neuroradiol J 2024:19714009241303129. [PMID: 39626165 PMCID: PMC11615909 DOI: 10.1177/19714009241303129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 12/06/2024] Open
Abstract
PURPOSE and background: Neuroimaging studies have increasingly found functional connectivity (FC) changes and structural cortical abnormalities in patients with post-traumatic anosmia (PTA). Training and repeated exposure to odorants lead to enhanced olfactory capability. This study is conducted to investigate the correlations between FC and cortical thickness on the olfaction-related regions of the brain in PTA after olfactory training (OT). METHODS Twenty-five PTA patients were randomly divided in three groups: (1) 9 control patients who did not receive any training, (2) 9 patients underwent classical OT by 4 fixed odors, and (3) 7 patients underwent modified OT coming across 4 sets of 4 different odors sequentially. Before and after the training period, all patients performed olfactory function tests, and magnetic resonance imaging (MRI). Sniffin' Sticks test was used to assess olfactory function. MRI data were analyzed using functional connectivity analysis and brain morphometry. RESULTS Modified OT resulted in heightened activation in the medial orbitofrontal cortex and anterior cingulate cortex and increased FC between the piriform cortex (PIRC) and the caudate cortex. Conversely, classical OT induced increased activation in the insula cortex and greater FC between the PIRC and the pre-central gyrus. Furthermore, after OT, both training groups achieved significantly improved scores in the changes in brain connectivity associated with OT, which were attributable to anatomical measures. CONCLUSIONS This study demonstrates that intensive olfactory training can enhance functional connectivity, and this improvement correlates with structural changes in the brain's olfactory processing areas.
Collapse
Affiliation(s)
- Abolhasan Rezaeyan
- Department of Radiology, School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| | - Somayeh Asadi
- Finetech in Medicine Research Center, Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT Research Center, Institute of Five Senses, Hazrat Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Zare-Sadeghi
- Finetech in Medicine Research Center, Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Treder-Rochna N, Mańkowska A, Kujawa W, Harciarek M. The effectiveness of olfactory training for chronic olfactory disorder following COVID-19: a systematic review. Front Hum Neurosci 2024; 18:1457527. [PMID: 39588055 PMCID: PMC11586678 DOI: 10.3389/fnhum.2024.1457527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/07/2024] [Indexed: 11/27/2024] Open
Abstract
Background Chronic olfactory disorders are some of the most frequent post-COVID-19 presentations. Olfactory training (OT) is currently the most popular method used for treating post-viral olfactory dysfunction (PVOD). We evaluated the effect of olfactory training on the chronic olfactory disorders of patients infected with COVID-19. Methodology A systematic literature search was performed per PRISMA guidelines in PubMed, Scopus, Web of Science, EBSCOhost, and the Cochrane Library. Only patients with chronic olfactory disorders of 30 days or more were included. The primary outcome was the olfactory score at the end of follow-up. In all studies, improvement was defined as a positive change over time in the results of objective psychophysical olfactory tests. The most commonly used test was the Sniffin' Sticks. Typically, outcome measures involved comparing the mean olfactory scores. In the Sniffin' Sticks test, an improvement was also indicated by a change of 5.5 points or more in the Threshold, Discrimination, and Identification scores. Results Fourteen studies (1.596 participants) were included in this review. Among the included studies, up to 10 were RCTs. Nine studies assessed the combined effects of adjuvant therapy and olfactory training, while five studies assessed only OT. Conclusions In our assessment, olfactory training alone produces significant improvements in chronic olfactory dysfunctions. However, a combined therapy approach is essential to achieve more effective outcomes. Integrating olfactory training with adjuvants like CoUltraPEALut, Cerebrolysin, and oral Vitamin A has demonstrated substantial benefits in enhancing post-COVID-19 olfactory function. Strict adherence to the OT protocol and extending the duration of OT to 3 months or more significantly enhance treatment outcomes.
Collapse
Affiliation(s)
- Natalia Treder-Rochna
- Faculty of Social Sciences, Institute of Psychology, University of Gdansk, Gdansk, Poland
| | | | | | - Michał Harciarek
- Faculty of Social Sciences, Institute of Psychology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
7
|
Delgado-Lima AH, Bouhaben J, Delgado-Losada ML. The efficacy of olfactory training in improving olfactory function: a meta-analysis. Eur Arch Otorhinolaryngol 2024; 281:5267-5284. [PMID: 38802578 PMCID: PMC11416427 DOI: 10.1007/s00405-024-08733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE Study the efficacy of olfactory training in smell recovery. METHODS An extensive search was performed through different databases in order to find articles analyzing the efficacy of olfactory training as a treatment for olfactory dysfunction. Methodological quality of primary studies within the final sample was assessed following PRISMA guidelines. Standardized mean differences in pre-post olfactory training groups, and also in experimental-control and pre-follow up if possible, were computed by Hedges' g effect size statistic. Each effect size was weighted by its inverse variance. RESULTS Final sample was composed of 36 articles (45 pre-post effect sizes). Contrasts were performed separately for odor identification, odor discrimination, odor threshold and general olfactory function. Moderate to large and heterogeneous effect was obtained for olfactory function (g = 0.755, k = 45, SE = 0.093, CI 95% = [0.572, 0.937]), different moderators had a significant effects, such as, training duration, age and anosmia diagnosis. CONCLUSION Olfactory training was found to have a positive and significant effect on rehabilitating the olfactory function.
Collapse
Affiliation(s)
- Alice Helena Delgado-Lima
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, 28223, Pozuelo de Alarcón, Spain
| | - Jaime Bouhaben
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, 28223, Pozuelo de Alarcón, Spain
| | - María Luisa Delgado-Losada
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, 28223, Pozuelo de Alarcón, Spain.
| |
Collapse
|
8
|
Francavilla B, Velletrani G, Fiorelli D, Maurantonio S, Passali FM, Schirinzi T, Bernardini S, Di Girolamo S, Nuccetelli M. Circulating calprotectin as a potential biomarker of persistent olfactory dysfunctions in Post-COVID-19 patients. Cytokine 2024; 181:156688. [PMID: 38963942 DOI: 10.1016/j.cyto.2024.156688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND This longitudinal prospective study aims to investigate the potential of circulating calprotectin (cCLP) as a biomarker in persistent olfactory dysfunctions following COVID-19 infection. METHODS Thirty-six patients with persistent hyposmia or anosmia post COVID-19 were enrolled (HT0) and re-evaluated after three months of olfactory training (HT1). Two control groups included 18 subjects without olfactory defects post COVID-19 (CG1) and 18 healthy individuals (CG2). Nasal brushing of the olfactory cleft and blood collection were performed to assess circulating calprotectin levels. RESULTS Higher calprotectin levels were observed in serum and nasal supernatant of hyposmic patients (HT0) compared to control groups (CG1 and CG2). Post-olfactory training (HT1), olfactory function improved significantly, paralleled by decreased calprotectin levels in serum and nasal samples. Circulating calprotectin holds potential as a biomarker in persistent olfactory dysfunctions after COVID-19. The decrease in calprotectin levels post-olfactory training implies a role in monitoring and evaluating treatment responses. DISCUSSION AND CONCLUSIONS These findings contribute to the growing literature on potential biomarkers in post-COVID-19 olfactory dysfunctions and underscore the importance of investigating novel biomarkers for personalized patient management. Nevertheless, further studies are needed to validate the application of calprotectin assay in nasal diseases and its correlation with nasal cytology.
Collapse
Affiliation(s)
- Beatrice Francavilla
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome 00133 Italy
| | - Gianluca Velletrani
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome 00133 Italy.
| | - Denise Fiorelli
- Department of Experimental Medicine, University of "Tor Vergata", Rome 00133 Italy
| | - Sara Maurantonio
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome 00133 Italy
| | | | - Tommaso Schirinzi
- Department of Neurology, University of Rome "Tor Vergata", Rome 00133 Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of "Tor Vergata", Rome 00133 Italy
| | - Stefano Di Girolamo
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome 00133 Italy
| | - Marzia Nuccetelli
- Department of Experimental Medicine, University of "Tor Vergata", Rome 00133 Italy
| |
Collapse
|
9
|
Duffy A, Naimi B, Garvey E, Hunter S, Kumar A, Kahn C, Farquhar D, D'Souza G, Rawson N, Dalton P, Toskala E, Rabinowitz M, Rosen M, Nyquist G, Rosen D. Topical platelet-rich plasma as a possible treatment for olfactory dysfunction-A randomized controlled trial. Int Forum Allergy Rhinol 2024; 14:1455-1464. [PMID: 38722276 DOI: 10.1002/alr.23363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Olfactory dysfunction (OD) affects many survivors of COVID-19. Prior studies have investigated the use of platelet-rich plasma (PRP) injections for OD. We describe the first randomized controlled trial investigating topical PRP for OD treatment and contribute to existing literature illustrating PRP as an emerging therapeutic. METHODS This is a single-blinded, randomized controlled trial conducted from July 2022 to December 2023. Adult patients with OD ≥6 months secondary to COVID-19 with Brief Smell Identification Test (BSIT) scores of ≤8/12 or SCENTinel odor intensity of ≤40/100 were included. Patients were randomized to three, monthly PRP or placebo-impregnated Surgifoam treatments into bilateral olfactory clefts. The BSIT, SCENTinel, and Questionnaire of Olfactory Disorders-Negative Statements (QOD-NS) were completed monthly through month 12. RESULTS Of 104 patients screened, 83 participated. No significant differences in age, OD duration, BSIT, SCENTinel, or QOD-NS scores were found between PRP (n = 42) and placebo (n = 41) patients at baseline. PRP patients experienced a statistically significant increase in BSIT scores from baseline at months 5‒9, 11, and 12, while placebo patients did not (p < 0.05). However, total BSIT scores were similar between the two groups throughout the study. Neither the SCENTinel odor intensity scores nor the change from baseline were significantly different between the treatment groups. At month 12, PRP patients experienced minor improvement in OD-related quality-of-life compared with placebo. CONCLUSIONS This study is the first to describe topical PRP as a safe, experimental treatment for OD in humans. PRP may impact odor identification in post-COVID-19 OD patients, although the lack of difference in total BSIT scores highlights the need for further study.
Collapse
Affiliation(s)
- Alexander Duffy
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Bita Naimi
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Emily Garvey
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | | | - Ayan Kumar
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Chase Kahn
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Douglas Farquhar
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Glen D'Souza
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Nancy Rawson
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Pamela Dalton
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Elina Toskala
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Mindy Rabinowitz
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Marc Rosen
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Gurston Nyquist
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - David Rosen
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Delgado-Lima AH, Bouhaben J, Delgado-Losada ML. Maximizing Participation in Olfactory Training in a Sample with Post-COVID-19 Olfactory Loss. Brain Sci 2024; 14:730. [PMID: 39061470 PMCID: PMC11274705 DOI: 10.3390/brainsci14070730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
PURPOSE This study aims to highlight the feasibility of an olfactory training program entirely monitored through online media in COVID-19 patients. METHODS Classic olfactory training was performed with a sample with olfactory loss due COVID-19 (n = 11). Participants were engaged on a weekly video call in order to improve adherence and collect information regarding the number of correct answers and the individuals' perception of olfactory function. The olfactory status after training was compared to two groups, one composed of participants who contracted COVID-19 but did not report olfactory loss (n = 11) and a sample composed of healthy participants (n = 11). RESULTS The experimental group showed improvements throughout the training period (TDI score on week 0 was 20.3 (5.6) and 24.6 (4.3) for week 12, and on week 24 was 25.4 (6.2) (F = 5.115, df = 2, 20, p = 0.016), and post hoc tests showed that participants significantly improved their TDI score in W12 compared to W0 (SMD = 0.869, p = 0.041) and in W24 compared to W0 (SMD = 0.859, p = 0.041). The experimental group showed lower scores when compared with both groups, and the no OT COVID-19 group showed lower scores than the healthy control group, even though they did not report olfactory alterations. CONCLUSIONS Findings suggest that the strategies applied to improve adherence were successful since 100% of the sample completed the training adherence, offering a valuable framework for future olfactory training studies.
Collapse
Affiliation(s)
| | | | - María Luisa Delgado-Losada
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain; (A.H.D.-L.); (J.B.)
| |
Collapse
|
11
|
Pieniak M, Höfer B, Knipping J, Faria V, Richter M, Schriever VA, Haehner A, Gossrau G. Children and adolescents with primary headaches exhibit altered sensory profiles - a multi-modal investigation. J Headache Pain 2024; 25:111. [PMID: 38982389 PMCID: PMC11234718 DOI: 10.1186/s10194-024-01819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Pediatric headache is an increasing medical problem that has adverse effects on children's quality of life, academic performance, and social functioning. Children with primary headaches exhibit enhanced sensory sensitivity compared to their healthy peers. However, comprehensive investigations including multimodal sensory sensitivity assessment are lacking. This study aimed to compare sensory sensitivity of children with primary headaches with their healthy peers across multiple sensory domains. METHODS The study included 172 participants aged 6 to 17 years (M = 13.09, SD = 3.02 years; 120 girls). Of these 80 participants were patients with migraine, 23 were patients with tension-type headache, and 69 were healthy controls. The following sensory measures were obtained: Mechanical Detection Threshold (MDT), Mechanical Pain Threshold (MPT), Mechanical Pain Sensitivity (MPS), detection and pain threshold for Transcutaneous Electrical Nerve Stimulation (TENS), olfactory and intranasal trigeminal detection threshold, and odor identification ability. Sensory sensitivity was compared between groups with a series of Kruskal-Wallis tests. Binomial regression models were used to compare the relative utility of sensory sensitivity measures in classifying participants into patients and healthy controls, as well as into patients with migraine and tension-type headache. RESULTS Patients with migraine had lower MPT measured at the forearm than patients with tension-type headaches and healthy controls. MPS was higher in patients with migraine than in healthy controls. All patients with headaches had lower detection threshold of TENS and higher olfactory sensitivity. Healthy controls showed increased intranasal trigeminal sensitivity. Scores in MPS, TENS, and olfactory and trigeminal thresholds were significantly predicting presence of primary headaches. Additionally, scores in MPT, olfactory and trigeminal threshold were positive predictors of type of headache. CONCLUSIONS Children with primary headaches exhibit different sensory profiles than healthy controls. The obtained results suggest presence of increased overall, multimodal sensitivity in children with primary headaches, what may negatively impact daily functioning and contribute to further pain chronification. TRIAL REGISTRATION The study was registered in the German Registry of Clinical Trials (DRKS) DRKS00021062.
Collapse
Affiliation(s)
- Michal Pieniak
- Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Smell & Taste Clinic, University Hospital, TU Dresden, Dresden, Germany
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
| | - Berit Höfer
- Interdisciplinary Pain Center, Faculty of Medicine Carl Gustav Carus, University Hospital, TU Dresden, Dresden, Germany
| | - Jenny Knipping
- Department of Pediatric Neurology, Faculty of Medicine Carl Gustav Carus, University Hospital, TU Dresden, Dresden, Germany
| | - Vanda Faria
- Interdisciplinary Pain Center, Faculty of Medicine Carl Gustav Carus, University Hospital, TU Dresden, Dresden, Germany
| | - Matthias Richter
- Department of Pediatrics, Faculty of Medicine Carl Gustav Carus, University Hospital, Dresden, TU, Germany
| | - Valentin A Schriever
- Department of Pediatric Neurology, Faculty of Medicine Carl Gustav Carus, University Hospital, TU Dresden, Dresden, Germany
- Department of Pediatrics, Pediatric Neurology, Neurometabolics and Prevention, Goethe University Frankfurt, Frankfurt, Germany
| | - Antje Haehner
- Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Smell & Taste Clinic, University Hospital, TU Dresden, Dresden, Germany
| | - Gudrun Gossrau
- Interdisciplinary Pain Center, Faculty of Medicine Carl Gustav Carus, University Hospital, TU Dresden, Dresden, Germany.
- Interdisciplinary Pain Center, Faculty of Medicine Carl Gustav Carus, University Hospital, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
12
|
Nakamura Y, Miwa T, Shiga H, Sakata H, Shigeta D, Hatta T. Histological changes in the olfactory bulb and rostral migratory stream due to interruption of olfactory input. Auris Nasus Larynx 2024; 51:517-524. [PMID: 38522356 DOI: 10.1016/j.anl.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVE Periglomerular and granule cells in the adult mammalian olfactory bulb modulate olfactory signal transmission. These cells originate from the subventricular zone, migrate to the olfactory bulb via the Rostral Migratory Stream (RMS), and differentiate into mature cells within the olfactory bulb throughout postnatal life. While the regulation of neuroblast development is known to be affected by external stimuli, there is a lack of information concerning changes that occur during the recovery process after injury caused by external stimuli. To address this gap in research, the present study conducted histological observations to investigate changes in the olfactory bulb and RMS occurring after the degeneration and regeneration of olfactory neurons. METHODS To create a model of olfactory neurodegeneration, adult mice were administered methimazole intraperitoneally. Nasal tissue and whole brains were removed 3, 7, 14 and 28 days after methimazole administration, and EdU was administered 2 and 4 h before removal of these tissues to monitor dividing cells in the RMS. Methimazole-untreated mice were used as controls. Olfactory nerve fibers entering the olfactory glomerulus were observed immunohistochemically using anti-olfactory marker protein. In the brain tissue, the entire RMS was observed and the volume and total number of cells in the RMS were measured. In addition, the number of neuroblasts and dividing neuroblasts passing through the RMS were measured using anti-doublecortin and anti-EdU antibodies, respectively. Statistical analysis was performed using the Tukey test. RESULTS Olfactory epithelium degenerated was observed after methimazole administration, and recovered after 28 days. In the olfactory glomeruli, degeneration of OMP fibers began after methimazole administration, and after day 14, OMP fibers were reduced or absent by day 28, and overall OMP positive fibers were less than 20%. Glomerular volume tended to decrease after methimazole administration and did not appear to recover, even 28 days after recovery of the olfactory epithelium. In the RMS, EdU-positive cells decreased on day 3 and began to increase on day 7. However, they did not recover to the same levels as the control methimazole-untreated mice even after 28 days. CONCLUSION These results suggest that the division and maturation of neuroblasts migrating from the RMS was suppressed by olfactory nerve degeneration or the disruption of olfactory input.
Collapse
Affiliation(s)
- Yukari Nakamura
- Department of Otorhinolaryngology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| | - Takaki Miwa
- Department of Otorhinolaryngology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan.
| | - Hideaki Shiga
- Department of Otorhinolaryngology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| | - Hiromi Sakata
- Department of Anatomy I, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| | - Daichi Shigeta
- Department of Anatomy I, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| | - Toshihisa Hatta
- Department of Anatomy I, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| |
Collapse
|
13
|
Dias M, Shaida Z, Haloob N, Hopkins C. Recovery rates and long-term olfactory dysfunction following COVID-19 infection. World J Otorhinolaryngol Head Neck Surg 2024; 10:121-128. [PMID: 38855291 PMCID: PMC11156684 DOI: 10.1002/wjo2.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 06/11/2024] Open
Abstract
Objectives Olfactory dysfunction is one of the most recognized symptoms of COVID-19, significantly impacting quality of life, particularly in cases where recovery is prolonged. This review aims to explore patterns of olfactory recovery post-COVID-19 infection, with particular focus on delayed recovery. Data Sources Published literature in the English language, including senior author's own work, online and social media platforms, and patients' anecdotal reports. Method A comprehensive review of the literature was undertaken by the authors with guidance from the senior author with expertise in the field of olfaction. Results Based on self-report, an estimated 95% of patients recover their olfactory function within 6 months post-COVID-19 infection. However, psychophysical testing detects higher rates of persistent olfactory dysfunction. Recovery has been found to continue for at least 2 years postinfection; negative prognostic indicators include severe olfactory loss in the acute phase, female sex, and older age. Variability in quantitative and qualitative disturbance in prolonged cases likely reflects both peripheral and central pathophysiological mechanisms. Limitations of many of the reviewed studies reflect lack of psychophysical testing and baseline olfactory assessment. Conclusions Post-COVID-19 olfactory dysfunction remains a significant health and psychosocial burden. Emerging evidence is improving awareness and knowledge among clinicians to better support patients through their olfactory rehabilitation, with hope of recovery after several months or years. Further research is needed to better understand the underlying pathogenesis of delayed recovery, identify at risk individuals earlier in the disease course, and develop therapeutic targets.
Collapse
|
14
|
Frank C, Albertazzi A, Murphy C. The effect of the apolipoprotein E ε4 allele and olfactory function on odor identification networks. Brain Behav 2024; 14:e3524. [PMID: 38702902 PMCID: PMC11069025 DOI: 10.1002/brb3.3524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION The combination of apolipoprotein E ε4 (ApoE ε4) status, odor identification, and odor familiarity predicts conversion to mild cognitive impairment (MCI) and Alzheimer's disease (AD). METHODS To further understand olfactory disturbances and AD risk, ApoE ε4 carrier (mean age 76.38 ± 5.21) and ε4 non-carrier (mean age 76.8 ± 3.35) adults were given odor familiarity and identification tests and performed an odor identification task during fMRI scanning. Five task-related functional networks were detected using independent components analysis. Main and interaction effects of mean odor familiarity ratings, odor identification scores, and ε4 status on network activation and task-modulation of network functional connectivity (FC) during correct and incorrect odor identification (hits and misses), controlling for age and sex, were explored using multiple linear regression. RESULTS Findings suggested that sensory-olfactory network activation was positively associated with odor identification scores in ε4 carriers with intact odor familiarity. The FC of sensory-olfactory, multisensory-semantic integration, and occipitoparietal networks was altered in ε4 carriers with poorer odor familiarity and identification. In ε4 carriers with poorer familiarity, connectivity between superior frontal areas and the sensory-olfactory network was negatively associated with odor identification scores. CONCLUSIONS The results contribute to the clarification of the neurocognitive structure of odor identification processing and suggest that poorer odor familiarity and identification in ε4 carriers may signal multi-network dysfunction. Odor familiarity and identification assessment in ε4 carriers may contribute to the predictive value of risk for MCI and AD due to the breakdown of sensory-cognitive network integration. Additional research on olfactory processing in those at risk for AD is warranted.
Collapse
Affiliation(s)
- Conner Frank
- SDSU/UC San Diego Joint Doctoral Program in Clinical PsychologySan DiegoCaliforniaUSA
| | - Abigail Albertazzi
- Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Claire Murphy
- Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
15
|
Deshpande G, Zhao S, Waggoner P, Beyers R, Morrison E, Huynh N, Vodyanoy V, Denney TS, Katz JS. Two Separate Brain Networks for Predicting Trainability and Tracking Training-Related Plasticity in Working Dogs. Animals (Basel) 2024; 14:1082. [PMID: 38612321 PMCID: PMC11010877 DOI: 10.3390/ani14071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Functional brain connectivity based on resting-state functional magnetic resonance imaging (fMRI) has been shown to be correlated with human personality and behavior. In this study, we sought to know whether capabilities and traits in dogs can be predicted from their resting-state connectivity, as in humans. We trained awake dogs to keep their head still inside a 3T MRI scanner while resting-state fMRI data was acquired. Canine behavior was characterized by an integrated behavioral score capturing their hunting, retrieving, and environmental soundness. Functional scans and behavioral measures were acquired at three different time points across detector dog training. The first time point (TP1) was prior to the dogs entering formal working detector dog training. The second time point (TP2) was soon after formal detector dog training. The third time point (TP3) was three months' post detector dog training while the dogs were engaged in a program of maintenance training for detection work. We hypothesized that the correlation between resting-state FC in the dog brain and behavior measures would significantly change during their detection training process (from TP1 to TP2) and would maintain for the subsequent several months of detection work (from TP2 to TP3). To further study the resting-state FC features that can predict the success of training, dogs at TP1 were divided into a successful group and a non-successful group. We observed a core brain network which showed relatively stable (with respect to time) patterns of interaction that were significantly stronger in successful detector dogs compared to failures and whose connectivity strength at the first time point predicted whether a given dog was eventually successful in becoming a detector dog. A second ontologically based flexible peripheral network was observed whose changes in connectivity strength with detection training tracked corresponding changes in behavior over the training program. Comparing dog and human brains, the functional connectivity between the brain stem and the frontal cortex in dogs corresponded to that between the locus coeruleus and left middle frontal gyrus in humans, suggestive of a shared mechanism for learning and retrieval of odors. Overall, the findings point toward the influence of phylogeny and ontogeny in dogs producing two dissociable functional neural networks.
Collapse
Affiliation(s)
- Gopikrishna Deshpande
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
- Department of Psychological Sciences, Auburn University, Auburn, AL 36849, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL 36849, USA
- Center for Neuroscience, Auburn University, Auburn, AL 36849, USA
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
- Department of Heritage Science and Technology, Indian Institute of Technology, Hyderabad 502285, India
| | - Sinan Zhao
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
| | - Paul Waggoner
- Canine Performance Sciences Program, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| | - Ronald Beyers
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
| | - Edward Morrison
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, AL 36849, USA; (E.M.); (V.V.)
| | - Nguyen Huynh
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
| | - Vitaly Vodyanoy
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, AL 36849, USA; (E.M.); (V.V.)
| | - Thomas S. Denney
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
- Department of Psychological Sciences, Auburn University, Auburn, AL 36849, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL 36849, USA
- Center for Neuroscience, Auburn University, Auburn, AL 36849, USA
| | - Jeffrey S. Katz
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
- Department of Psychological Sciences, Auburn University, Auburn, AL 36849, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL 36849, USA
- Center for Neuroscience, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
16
|
Terrier C, Greco-Vuilloud J, Cavelius M, Thevenet M, Mandairon N, Didier A, Richard M. Long-term olfactory enrichment promotes non-olfactory cognition, noradrenergic plasticity and remodeling of brain functional connectivity in older mice. Neurobiol Aging 2024; 136:133-156. [PMID: 38364691 DOI: 10.1016/j.neurobiolaging.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Brain functional and structural changes lead to cognitive decline during aging, but a high level of cognitive stimulation during life can improve cognitive performances in the older adults, forming the cognitive reserve. Noradrenaline has been proposed as a molecular link between environmental stimulation and constitution of the cognitive reserve. Taking advantage of the ability of olfactory stimulation to activate noradrenergic neurons of the locus coeruleus, we used repeated olfactory enrichment sessions over the mouse lifespan to enable the cognitive reserve buildup. Mice submitted to olfactory enrichment, whether started in early or late adulthood, displayed improved olfactory discrimination at late ages and interestingly, improved spatial memory and cognitive flexibility. Moreover, olfactory and non-olfactory cognitive performances correlated with increased noradrenergic innervation in the olfactory bulb and dorsal hippocampus. Finally, c-Fos mapping and connectivity analysis revealed task-specific remodeling of functional neural networks in enriched older mice. Long-term olfactory enrichment thus triggers structural noradrenergic plasticity and network remodeling associated with better cognitive aging and thereby forms a promising mouse model of the cognitive reserve buildup.
Collapse
Affiliation(s)
- Claire Terrier
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Juliette Greco-Vuilloud
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Matthias Cavelius
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Marc Thevenet
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Nathalie Mandairon
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Anne Didier
- Institut universitaire de France (IUF), France
| | - Marion Richard
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France.
| |
Collapse
|
17
|
Vance DE, Del Bene VA, Kamath V, Frank JS, Billings R, Cho DY, Byun JY, Jacob A, Anderson JN, Visscher K, Triebel K, Martin KM, Li W, Puga F, Fazeli PL. Does Olfactory Training Improve Brain Function and Cognition? A Systematic Review. Neuropsychol Rev 2024; 34:155-191. [PMID: 36725781 PMCID: PMC9891899 DOI: 10.1007/s11065-022-09573-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 12/01/2022] [Indexed: 02/03/2023]
Abstract
Olfactory training (OT), or smell training,consists of repeated exposure to odorants over time with the intended neuroplastic effect of improving or remediating olfactory functioning. Declines in olfaction parallel declines in cognition in various pathological conditions and aging. Research suggests a dynamic neural connection exists between olfaction and cognition. Thus, if OT can improve olfaction, could OT also improve cognition and support brain function? To answer this question, we conducted a systematic review of the literature to determine whether there is evidence that OT translates to improved cognition or altered brain morphology and connectivity that supports cognition. Across three databases (MEDLINE, Scopus, & Embase), 18 articles were identified in this systematic review. Overall, the reviewed studies provided emerging evidence that OT is associated with improved global cognition, and in particular, verbal fluency and verbal learning/memory. OT is also associated with increases in the volume/size of olfactory-related brain regions, including the olfactory bulb and hippocampus, and altered functional connectivity. Interestingly, these positive effects were not limited to patients with smell loss (i.e., hyposmia & anosmia) but normosmic (i.e., normal ability to smell) participants benefitted as well. Implications for practice and research are provided.
Collapse
Affiliation(s)
- David E Vance
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA.
| | - Victor A Del Bene
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer Sandson Frank
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA
| | - Rebecca Billings
- UAB Libraries, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Do-Yeon Cho
- Department of Surgery, Veterans Affairs, University of Alabama at Birmingham, & Division of Otolaryngology, Birmingham, AL, USA
| | - Jun Y Byun
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA
| | - Alexandra Jacob
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joseph N Anderson
- School of Medicine, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristina Visscher
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristen Triebel
- School of Medicine, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karli M Martin
- School of Medicine, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Li
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frank Puga
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA
| | - Pariya L Fazeli
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA
| |
Collapse
|
18
|
Boot E, Levy A, Gaeta G, Gunasekara N, Parkkinen E, Kontaris E, Jacquot M, Tachtsidis I. fNIRS a novel neuroimaging tool to investigate olfaction, olfactory imagery, and crossmodal interactions: a systematic review. Front Neurosci 2024; 18:1266664. [PMID: 38356646 PMCID: PMC10864673 DOI: 10.3389/fnins.2024.1266664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Olfaction is understudied in neuroimaging research compared to other senses, but there is growing evidence of its therapeutic benefits on mood and well-being. Olfactory imagery can provide similar health benefits as olfactory interventions. Harnessing crossmodal visual-olfactory interactions can facilitate olfactory imagery. Understanding and employing these cross-modal interactions between visual and olfactory stimuli could aid in the research and applications of olfaction and olfactory imagery interventions for health and wellbeing. This review examines current knowledge, debates, and research on olfaction, olfactive imagery, and crossmodal visual-olfactory integration. A total of 56 papers, identified using the PRISMA method, were evaluated to identify key brain regions, research themes and methods used to determine the suitability of fNIRS as a tool for studying these topics. The review identified fNIRS-compatible protocols and brain regions within the fNIRS recording depth of approximately 1.5 cm associated with olfactory imagery and crossmodal visual-olfactory integration. Commonly cited regions include the orbitofrontal cortex, inferior frontal gyrus and dorsolateral prefrontal cortex. The findings of this review indicate that fNIRS would be a suitable tool for research into these processes. Additionally, fNIRS suitability for use in naturalistic settings may lead to the development of new research approaches with greater ecological validity compared to existing neuroimaging techniques.
Collapse
Affiliation(s)
| | - Andrew Levy
- Metabolight Ltd., London, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College, London, United Kingdom
| | - Giuliano Gaeta
- Health and Well-being Centre of Excellence, Givaudan UK Limited, Ashford, United Kingdom
| | - Natalie Gunasekara
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Emilia Parkkinen
- Health and Well-being Centre of Excellence, Givaudan UK Limited, Ashford, United Kingdom
| | - Emily Kontaris
- Health and Well-being Centre of Excellence, Givaudan UK Limited, Ashford, United Kingdom
| | - Muriel Jacquot
- Health and Well-being Centre of Excellence, Givaudan UK Limited, Ashford, United Kingdom
| | - Ilias Tachtsidis
- Metabolight Ltd., London, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
19
|
Hosseini SF, Farhadi M, Alizadeh R, Ghanbari H, Maleki S, Zare-Sadeghi A, Kamrava SK. The brain functional connectivity alterations in traumatic patients with olfactory disorder after low-level laser therapy demonstrated by fMRI. Neuroradiol J 2023; 36:716-727. [PMID: 37533379 PMCID: PMC10649526 DOI: 10.1177/19714009231188589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Low-level laser therapy (LLLT) has been clinically accepted to accelerate the nerve regeneration process after a nerve injury or transection. We aimed to investigate the neuronal basis and the influence of LLLT on brain functional networks in traumatic patients with olfactory dysfunction. METHODS Twenty-four Patients with traumatic anosmia/hyposmia were exposed to pleasant olfactory stimuli during a block-designed fMRI session. After a 10-week period, patients as control group and patients who had completed the sessions of LLLT were invited for follow-up testing using the same fMRI protocol. Two-sample t-tests were conducted to explore group differences in activation responding to odorants (p-FDR-corrected <0.05). Differences of functional connectivity were compared between the two groups and the topological features of the olfactory network were calculated. Correlation analysis was performed between graph parameters and TDI score. RESULTS Compared to controls, laser-treated patients showed increased activation in the cingulate, rectus gyrus, and some parts of the frontal gyrus. Shorter pathlength (p = 0.047) and increased local efficiency (p = 0.043) within the olfactory network, as well as decreased inter-network connectivity within the whole brain were observed in patients after laser surgery. Moreover, higher clustering and local efficiency were related to higher TDI score, as manifested in increased sensitivity to identify odors. CONCLUSIONS The results support that low-level laser induces neural reorganization process and make new connections in the olfactory structures. Furthermore, the connectivity parameters may serve as potential biomarkers for traumatic anosmia or hyposmia by revealing the underlying neural mechanisms of LLLT.
Collapse
Affiliation(s)
- Seyedeh Fahimeh Hosseini
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rafieh Alizadeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Ghanbari
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Maleki
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Zare-Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Zhu Y, Joshi A, Thaploo D, Hummel T. Exploring brain functional connectivity in patients with taste loss: a pilot study. Eur Arch Otorhinolaryngol 2023; 280:4491-4499. [PMID: 37198301 PMCID: PMC10477147 DOI: 10.1007/s00405-023-08019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE In a previous neuroimaging study, patients with taste loss showed stronger activations in gustatory cortices compared to people with normal taste function during taste stimulations. The aim of the current study was to examine whether there are changes in central-nervous functional connectivity in patients with taste loss. METHODS We selected 26 pairs of brain regions related to taste processing as our regions of interests (ROIs). Functional magnetic resonance imaging (fMRI) was used to measure brain responses in seven patients with taste loss and 12 healthy controls as they received taste stimulations (taste condition) and water (water condition). The data were analysed using ROI-to-ROI functional connectivity analysis (FCA). RESULTS We observed weaker functional connectivity in the patient group between the left and right orbitofrontal cortex in the taste condition and between the left frontal pole and the left superior frontal gyrus in the water condition. CONCLUSION These results suggested that patients with taste loss experience changes of functional connectivity between brain regions not only relevant to taste processing but also to cognitive functions. While further studies are needed, fMRI might be helpful in diagnosing taste loss as an additional tool in exceptional cases.
Collapse
Affiliation(s)
- Yunmeng Zhu
- Interdisciplinary Center Smell & Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Akshita Joshi
- Interdisciplinary Center Smell & Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Divesh Thaploo
- Interdisciplinary Center Smell & Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Thomas Hummel
- Interdisciplinary Center Smell & Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
21
|
Pieniak M, Seidel K, Oleszkiewicz A, Gellrich J, Karpinski C, Fitze G, Schriever VA. Olfactory training effects in children after mild traumatic brain injury. Brain Inj 2023; 37:1272-1284. [PMID: 37486172 DOI: 10.1080/02699052.2023.2237889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE Mild traumatic brain injury (mTBI) might impair the sense of smell and cognitive functioning. Repeated, systematic exposure to odors, i.e., olfactory training (OT) has been proposed for treatment of olfactory dysfunctions, including post-traumatic smell loss. Additionally, OT has been shown to mitigate cognitive deterioration in older population and enhance selected cognitive functions in adults. We aimed to investigate olfactory and cognitive effects of OT in the pediatric population after mTBI, likely to exhibit cognitive and olfactory deficits. METHODS Our study comprised 159 children after mTBI and healthy controls aged 6-16 years (M = 9.68 ± 2.78 years, 107 males), who performed 6-months-long OT with a set of 4 either high- or low-concentrated odors. Before and after OT we assessed olfactory functions, fluid intelligence, and executive functions. RESULTS OT with low-concentrated odors increased olfactory sensitivity in children after mTBI. Regardless of health status, children who underwent OT with low-concentrated odors had higher fluid intelligence scores at post-training measurement, whereas scores of children performing OT with high-concentrated odors did not change. CONCLUSION Our study suggests that OT with low-concentrated odors might accelerate rehabilitation of olfactory sensitivity in children after mTBI and support cognitive functions in the area of fluid intelligence regardless of head trauma.
Collapse
Affiliation(s)
- Michal Pieniak
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Historical and Pedagogical Sciences, Institute of Psychology, University of Wrocław, Wroclaw, Poland
| | - Katharina Seidel
- Abteilung Neuropädiatrie, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Oleszkiewicz
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Historical and Pedagogical Sciences, Institute of Psychology, University of Wrocław, Wroclaw, Poland
| | - Janine Gellrich
- Abteilung Neuropädiatrie, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian Karpinski
- Klinik Und Poliklinik Für Kinderchirurgie, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Guido Fitze
- Klinik Und Poliklinik Für Kinderchirurgie, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Valentin A Schriever
- Abteilung Neuropädiatrie, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
Liu ZY, Vaira LA, Boscolo-Rizzo P, Walker A, Hopkins C. Post-viral olfactory loss and parosmia. BMJ MEDICINE 2023; 2:e000382. [PMID: 37841969 PMCID: PMC10568123 DOI: 10.1136/bmjmed-2022-000382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/26/2023] [Indexed: 10/17/2023]
Abstract
The emergence of SARS-CoV-2 has brought olfactory dysfunction to the forefront of public awareness, because up to half of infected individuals could develop olfactory dysfunction. Loss of smell-which can be partial or total-in itself is debilitating, but the distortion of sense of smell (parosmia) that can occur as a consequence of a viral upper respiratory tract infection (either alongside a reduction in sense of smell or as a solo symptom) can be very distressing for patients. Incidence of olfactory loss after SARS-CoV-2 infection has been estimated by meta-analysis to be around 50%, with more than one in three who will subsequently report parosmia. While early loss of sense of smell is thought to be due to infection of the supporting cells of the olfactory epithelium, the underlying mechanisms of persistant loss and parosmia remain less clear. Depletion of olfactory sensory neurones, chronic inflammatory infiltrates, and downregulation of receptor expression are thought to contribute. There are few effective therapeutic options, so support and olfactory training are essential. Further research is required before strong recommendations can be made to support treatment with steroids, supplements, or interventions applied topically or injected into the olfactory epithelium in terms of improving recovery of quantitative olfactory function. It is not yet known whether these treatments will also achieve comparable improvements in parosmia. This article aims to contextualise parosmia in the setting of post-viral olfactory dysfunction, explore some of the putative molecular mechanisms, and review some of the treatment options available.
Collapse
Affiliation(s)
- Zhen Yu Liu
- Department of ENT Surgery, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Luigi Angelo Vaira
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Sardegna, Italy
| | - Paolo Boscolo-Rizzo
- Department of Medical, Surgical, and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Abigail Walker
- Department of ENT, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | | |
Collapse
|
23
|
Chung TWH, Zhang H, Wong FKC, Sridhar S, Lee TMC, Leung GKK, Chan KH, Lau KK, Tam AR, Ho DTY, Cheng VCC, Yuen KY, Hung IFN, Mak HKF. A Pilot Study of Short-Course Oral Vitamin A and Aerosolised Diffuser Olfactory Training for the Treatment of Smell Loss in Long COVID. Brain Sci 2023; 13:1014. [PMID: 37508945 PMCID: PMC10377650 DOI: 10.3390/brainsci13071014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Background: Olfactory dysfunction (OD) is a common neurosensory manifestation in long COVID. An effective and safe treatment against COVID-19-related OD is needed. Methods: This pilot trial recruited long COVID patients with persistent OD. Participants were randomly assigned to receive short-course (14 days) oral vitamin A (VitA; 25,000 IU per day) and aerosolised diffuser olfactory training (OT) thrice daily (combination), OT alone (standard care), or observation (control) for 4 weeks. The primary outcome was differences in olfactory function by butanol threshold tests (BTT) between baseline and end-of-treatment. Secondary outcomes included smell identification tests (SIT), structural MRI brain, and serial seed-based functional connectivity (FC) analyses in the olfactory cortical network by resting-state functional MRI (rs-fMRI). Results: A total of 24 participants were randomly assigned to receive either combination treatment (n = 10), standard care (n = 9), or control (n = 5). Median OD duration was 157 days (IQR 127-175). Mean baseline BTT score was 2.3 (SD 1.1). At end-of-treatment, mean BTT scores were significantly higher for the combination group than control (p < 0.001, MD = 4.4, 95% CI 1.7 to 7.2) and standard care (p = 0.009) groups. Interval SIT scores increased significantly (p = 0.009) in the combination group. rs-fMRI showed significantly higher FC in the combination group when compared to other groups. At end-of-treatment, positive correlations were found in the increased FC at left inferior frontal gyrus and clinically significant improvements in measured BTT (r = 0.858, p < 0.001) and SIT (r = 0.548, p = 0.042) scores for the combination group. Conclusions: Short-course oral VitA and aerosolised diffuser OT was effective as a combination treatment for persistent OD in long COVID.
Collapse
Affiliation(s)
- Tom Wai-Hin Chung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hui Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, China
| | - Fergus Kai-Chuen Wong
- Department of Ear, Nose and Throat, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Siddharth Sridhar
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Tatia Mei-Chun Lee
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Gilberto Ka-Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Koon-Ho Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kui-Kai Lau
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anthony Raymond Tam
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Deborah Tip-Yin Ho
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Chi-Chung Cheng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Ivan Fan-Ngai Hung
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Henry Ka-Fung Mak
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Donelli D, Antonelli M, Valussi M. Olfactory training with essential oils for patients with post-COVID-19 smell dysfunction: A case series. Eur J Integr Med 2023; 60:102253. [PMID: 37163157 PMCID: PMC10102705 DOI: 10.1016/j.eujim.2023.102253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023]
Abstract
Introduction It is estimated that up to one third of COVID-19 patients can develop long-lasting smell dysfunction. Viral infections, especially COVID-19, can cause anosmia through different pathomechanisms, and different strategies have been proposed for effectively managing post-COVID-19 olfactory dysfunction in clinical practice, with olfactory training being recommended as a first-line treatment option. Methods This report describes a non-consecutive series of clinical cases. After COVID-19, eight cases (5 females, 3 males) of adult patients with long-lasting (3+ months) post-viral smell dysfunction followed a 30-day olfactory training protocol with a set of plant-derived essential oils. At baseline and at the end of the treatment, the patients were administered the Assessment of Self-reported Olfactory Functioning (ASOF) questionnaire, an inventory used to measure olfactory dysfunction and health-related quality of life. Results For any of the outcomes assessed with the ASOF scale, a significant improvement from baseline was reported, even though mean value ameliorations were more pronounced for olfactory function per se (Subjective Olfactory Capability: from 3.6 to 5.6 out of 10; Self-Reported capability of Perceiving specific odors: from 1.8 to 3.0 out of 5), rather than for health-related quality of life (Olfactory-Related Quality of life: from 2.9 to 3.9 out of 6). Conclusions It was observed that patients with long-lasting COVID-19-related smell dysfunction improved after a 30-day olfactory training protocol. Further controlled clinical studies would be useful to better investigate the role of olfactory training in patients with postviral smell dysfunction.
Collapse
Affiliation(s)
- Davide Donelli
- Servizio di Consulenza in Medicina Integrativa e Complementare, Croce Arancione, 42123 Reggio Emilia, Italy
| | - Michele Antonelli
- Servizio di Consulenza in Medicina Integrativa e Complementare, Croce Arancione, 42123 Reggio Emilia, Italy
| | - Marco Valussi
- European Herbal and Traditional Medicine Practitioners Association (EHTPA), Norwich, UK
| |
Collapse
|
25
|
Hummel T, Power Guerra N, Gunder N, Hähner A, Menzel S. Olfactory Function and Olfactory Disorders. Laryngorhinootologie 2023; 102:S67-S92. [PMID: 37130532 PMCID: PMC10184680 DOI: 10.1055/a-1957-3267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The sense of smell is important. This became especially clear to patients with infection-related olfactory loss during the SARS-CoV-2 pandemic. We react, for example, to the body odors of other humans. The sense of smell warns us of danger, and it allows us to perceive flavors when eating and drinking. In essence, this means quality of life. Therefore, anosmia must be taken seriously. Although olfactory receptor neurons are characterized by regenerative capacity, anosmia is relatively common with about 5 % of anosmic people in the general population. Olfactory disorders are classified according to their causes (e. g., infections of the upper respiratory tract, traumatic brain injury, chronic rhinosinusitis, age) with the resulting different therapeutic options and prognoses. Thorough history taking is therefore important. A wide variety of tools are available for diagnosis, ranging from short screening tests and detailed multidimensional test procedures to electrophysiological and imaging methods. Thus, quantitative olfactory disorders are easily assessable and traceable. For qualitative olfactory disorders such as parosmia, however, no objectifying diagnostic procedures are currently available. Therapeutic options for olfactory disorders are limited. Nevertheless, there are effective options consisting of olfactory training as well as various additive drug therapies. The consultation and the competent discussion with the patients are of major importance.
Collapse
Affiliation(s)
- T Hummel
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| | - N Power Guerra
- Rudolf-Zenker-Institut für Experimentelle Chirurgie, Medizinische Universität Rostock, Rostock
| | - N Gunder
- Universitäts-HNO Klinik Dresden, Dresden
| | - A Hähner
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| | - S Menzel
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| |
Collapse
|
26
|
Whitcroft KL, Mancini L, Yousry T, Hummel T, Andrews PJ. Functional septorhinoplasty alters brain structure and function: Neuroanatomical correlates of olfactory dysfunction. FRONTIERS IN ALLERGY 2023; 4:1079945. [PMID: 37089704 PMCID: PMC10117949 DOI: 10.3389/falgy.2023.1079945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/09/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionWe previously demonstrated functionally significant structural plasticity within the central olfactory networks, in association with improved olfaction after surgical treatment of chronic rhinosinusitis (CRS). In order to confirm and expand on these findings, the primary aim of this study was to determine whether these same regions undergo functionally significant structural plasticity following functional septorhinoplasty (fSRP), in patients with non-CRS olfactory dysfunction (OD) of mixed cause. fSRP has previously been shown to improve olfactory function, and the secondary aim of this study was to provide initial insights into the mechanism by which fSRP affects olfaction.MethodsWe performed a pilot prospective, multimodal neuroimaging study in 20 participants undergoing fSRP, including patients with non-CRS OD of mixed cause, as well as normosmic surgical controls. Participants underwent psychophysical olfactory testing, assessment of nasal airway, structural and functional neuroimaging. This was performed pre- and postoperatively in patients, and preoperatively in controls.ResultsThere was a statistically and clinically significant improvement in mean psychophysical olfactory scores after surgery. This was associated with structural and functional plasticity within areas of the central olfactory network (anterior cingulate, orbitofrontal cortex, insula, temporal pole). Improved psychophysical scores were significantly correlated with change in bilateral measures of nasal airflow, not measures of airflow symmetry, suggesting that improved overall airflow was more important than correction of septal deviation.ConclusionThis work highlights the importance of these neuroanatomical regions as potential structural correlates of olfactory function and dysfunction. Our results also provide initial insight into the mechanistic effects of fSRP on olfaction. Further work could investigate the utility of these regions as personalised biomarkers of OD, as well as the role of fSRP in treating OD.
Collapse
Affiliation(s)
- Katherine L. Whitcroft
- UCL Ear Institute, University College London, London, United Kingdom
- Centre for the Study of the Senses, Institute of Philosophy, School of Advanced Study, University of London, London, United Kingdom
- Department of Rhinology and Facial Plastics, Royal National Throat Nose and Ear Hospital, London, United Kingdom
- Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
- Correspondence: Katherine L. Whitcroft
| | - Laura Mancini
- Lysholm Department of Neuroradiology, the National Hospital for Neurology & Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Tarek Yousry
- Lysholm Department of Neuroradiology, the National Hospital for Neurology & Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas Hummel
- Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Peter J. Andrews
- UCL Ear Institute, University College London, London, United Kingdom
- Department of Rhinology and Facial Plastics, Royal National Throat Nose and Ear Hospital, London, United Kingdom
| |
Collapse
|
27
|
Tai APL, Leung MK, Lau BWM, Ngai SPC, Lau WKW. Olfactory dysfunction: A plausible source of COVID-19-induced neuropsychiatric symptoms. Front Neurosci 2023; 17:1156914. [PMID: 37021130 PMCID: PMC10067586 DOI: 10.3389/fnins.2023.1156914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Olfactory dysfunction and neuropsychiatric symptoms are commonly reported by patients of coronavirus disease 2019 (COVID-19), a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidence from recent research suggests linkages between altered or loss of smell and neuropsychiatric symptoms after infection with the coronavirus. Systemic inflammation and ischemic injury are believed to be the major cause of COVID-19-related CNS manifestation. Yet, some evidence suggest a neurotropic property of SARS-CoV-2. This mini-review article summarizes the neural correlates of olfaction and discusses the potential of trans-neuronal transmission of SARS-CoV-2 or its particles within the olfactory connections in the brain. The impact of the dysfunction in the olfactory network on the neuropsychiatric symptoms associated with COVID-19 will also be discussed.
Collapse
Affiliation(s)
- Alan Pui-Lun Tai
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Integrated Centre for Wellbeing, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bioanalytical Laboratory for Educational Sciences, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mei-Kei Leung
- Department of Counselling and Psychology, Hong Kong Shue Yan University, Hong Kong, Hong Kong SAR, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Shirley Pui-Ching Ngai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Way Kwok-Wai Lau
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Integrated Centre for Wellbeing, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bioanalytical Laboratory for Educational Sciences, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
28
|
Khan AM, Piccirillo J, Kallogjeri D, Piccirillo JF. Efficacy of Combined Visual-Olfactory Training With Patient-Preferred Scents as Treatment for Patients With COVID-19 Resultant Olfactory Loss: A Randomized Clinical Trial. JAMA Otolaryngol Head Neck Surg 2023; 149:141-149. [PMID: 36580304 PMCID: PMC9857399 DOI: 10.1001/jamaoto.2022.4112] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/21/2022] [Indexed: 12/30/2022]
Abstract
Importance The number of olfactory dysfunction cases has increased dramatically because of the COVID-19 pandemic. Identifying therapies that aid and accelerate recovery is essential. Objective To determine the efficacy of bimodal visual-olfactory training and patient-preferred scents vs unimodal olfactory training and physician-assigned scents in COVID-19 olfactory loss. Design, Setting, and Participants This was a randomized, single-blinded trial with a 2-by-2 factorial design (bimodal, patient preferred; unimodal, physician assigned; bimodal, physician assigned; unimodal, patient preferred) and an independent control group. Enrollment occurred from February 1 to May 27, 2021. Participants were adults 18 to 71 years old with current olfactory loss defined as University of Pennsylvania Smell Identification Test (UPSIT) score less than 34 for men and less than 35 for women and duration of 3 months or longer. Olfactory loss was initially diagnosed within 2 weeks of COVID-19 infection. Interventions Participants sniffed 4 essential oils for 15 seconds with a 30-second rest in between odors for 3 months. Participants in the physician-assigned odor arms trained with rose, lemon, eucalyptus, and clove. Participants randomized to the patient-preferred arms chose 4 of 24 available scents. If assigned to the bimodal arm, participants were shown digital images of the essential oil they were smelling. Main Outcomes and Measures The primary end point was postintervention change in UPSIT score from baseline; measures used were the UPSIT (validated, objective psychometric test of olfaction), Clinical Global Impressions Impression-Improvement (CGI-I; self-report improvement scale), and Olfactory Dysfunction Outcomes Rating (ODOR; olfaction-related quality-of-life questionnaire). Results Among the 275 enrolled participants, the mean (SD) age was 41 (12) years, and 236 (86%) were female. The change in UPSIT scores preintervention to postintervention was similar between the study arms. The marginal mean difference for change in UPSIT scores preintervention to postintervention between participants randomized to patient-preferred vs physician-assigned olfactory training was 0.73 (95% CI, -1.10 to 2.56), and between participants randomized to bimodal vs unimodal olfactory training was 1.10 (95% CI, -2.92 to 0.74). Five (24%) participants in the control arm had clinically important improvement on UPSIT compared with 18 (53%) in the bimodal, patient-preferred arm for a difference of 29% (95% CI, 4%-54%). Four (19%) participants in the control group self-reported improvement on CGI-I compared with 12 (35%) in the bimodal, patient-preferred arm for a difference of 16% (95% CI, -7% to 39%). The mean change in ODOR score preintervention to postintervention was 11.6 points (95% CI, 9.2-13.9), which was not deemed clinically important nor significantly different between arms. Conclusions and Relevance Based on the change in UPSIT scores, this randomized clinical trial did not show any difference between intervention arms, but when exploring within-patient change in UPSIT as well as self-reported impression of improvement, active interventions were associated with larger improvement than controls with a potential advantage of bimodal intervention. While not definitive, these results suggest that patients with COVID-19 olfactory loss may benefit from bimodal visual-olfactory training with patient-preferred scents. Trial Registration ClinicalTrials.gov Identifier: NCT04710394.
Collapse
Affiliation(s)
- Amish M. Khan
- Clinical Outcomes Research Office, Department of Otolaryngology–Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Jeffrey Piccirillo
- Clinical Outcomes Research Office, Department of Otolaryngology–Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Dorina Kallogjeri
- Clinical Outcomes Research Office, Department of Otolaryngology–Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri
- Statistics Editor, JAMA Otolaryngology–Head & Neck Surgery
| | - Jay F. Piccirillo
- Clinical Outcomes Research Office, Department of Otolaryngology–Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri
- Editor in Chief, JAMA Otolaryngology–Head & Neck Surgery
| |
Collapse
|
29
|
Meller AE, Fokeev VA, Shakhova MA, Shakhov AV. [COVID-19-associated anosmia]. Vestn Otorinolaringol 2023; 88:63-68. [PMID: 37450393 DOI: 10.17116/otorino20228803163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The article is a systematic review of the literature data summarizes to date on the issue of COVID-19-associated anosmia. We mainly used full-text and abstract electronic databases (PubMed, Scopus and Web of Science). The paper discusses hypothetical mechanisms of development, clinical features, as well as methods of diagnosis and treatment of COVID-19-associated anosmia.
Collapse
Affiliation(s)
- A E Meller
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | - V A Fokeev
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | - M A Shakhova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | - A V Shakhov
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| |
Collapse
|
30
|
Casares N, Alfaro M, Cuadrado-Tejedor M, Lasarte-Cia A, Navarro F, Vivas I, Espelosin M, Cartas-Cejudo P, Fernández-Irigoyen J, Santamaría E, García-Osta A, Lasarte JJ. Improvement of cognitive function in wild-type and Alzheimer´s disease mouse models by the immunomodulatory properties of menthol inhalation or by depletion of T regulatory cells. Front Immunol 2023; 14:1130044. [PMID: 37187754 PMCID: PMC10175945 DOI: 10.3389/fimmu.2023.1130044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
A complex network of interactions exists between the olfactory, immune and central nervous systems. In this work we intend to investigate this connection through the use of an immunostimulatory odorant like menthol, analyzing its impact on the immune system and the cognitive capacity in healthy and Alzheimer's Disease Mouse Models. We first found that repeated short exposures to menthol odor enhanced the immune response against ovalbumin immunization. Menthol inhalation also improved the cognitive capacity of immunocompetent mice but not in immunodeficient NSG mice, which exhibited very poor fear-conditioning. This improvement was associated with a downregulation of IL-1β and IL-6 mRNA in the brain´s prefrontal cortex, and it was impaired by anosmia induction with methimazole. Exposure to menthol for 6 months (1 week per month) prevented the cognitive impairment observed in the APP/PS1 mouse model of Alzheimer. Besides, this improvement was also observed by the depletion or inhibition of T regulatory cells. Treg depletion also improved the cognitive capacity of the APPNL-G-F/NL-G-F Alzheimer´s mouse model. In all cases, the improvement in learning capacity was associated with a downregulation of IL-1β mRNA. Blockade of the IL-1 receptor with anakinra resulted in a significant increase in cognitive capacity in healthy mice as well as in the APP/PS1 model of Alzheimer´s disease. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals, highlighting the potential of odors and immune modulators as therapeutic agents for CNS-related diseases.
Collapse
Affiliation(s)
- Noelia Casares
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- *Correspondence: Juan José Lasarte, ; Noelia Casares,
| | - María Alfaro
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Mar Cuadrado-Tejedor
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Aritz Lasarte-Cia
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Flor Navarro
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Isabel Vivas
- Department of Radiology, Clínica Universidad de Navarra, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - María Espelosin
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Ana García-Osta
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- *Correspondence: Juan José Lasarte, ; Noelia Casares,
| |
Collapse
|
31
|
Bérubé S, Demers C, Bussière N, Cloutier F, Pek V, Chen A, Bolduc-Bégin J, Frasnelli J. Olfactory Training Impacts Olfactory Dysfunction Induced by COVID-19: A Pilot Study. ORL J Otorhinolaryngol Relat Spec 2022; 85:57-66. [PMID: 36529118 PMCID: PMC9843729 DOI: 10.1159/000528188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Olfactory dysfunction is one of the main symptoms of COVID-19 and may last beyond resolution of the infection. The most promising intervention for post-viral olfactory dysfunction is olfactory training (OT), which involves exposing the olfactory system to a range of odors daily. This approach is thought of promoting the regeneration of olfactory receptor cells, but its effectiveness in patients with post-COVID-19 olfactory dysfunction has yet to be confirmed. METHODS This double-blind randomized pilot study compared the effectiveness of OT versus placebo in the treatment of post-COVID-19 olfactory dysfunction. Twenty-five participants were recruited in each group. OT protocol consisted of sniffing 4 scents (rose, orange, clove, and eucalyptus) for 5 min twice daily for 12 weeks. Olfactory function was assessed before and after the training using (1) a validated odor identification test (UPSIT-40) and (2) a 10-point visual analog scale; we further assessed the presence of (3) parosmia. RESULTS While we did not observe any effect of OT on olfactory test scores, we observed a significant improvement of subjective olfactory function in the intervention group, while no such effect was observed in the placebo group. Finally, the frequency of parosmia was significantly lower in the intervention group. CONCLUSIONS This study highlights an increase in subjective but not objective olfactory function when performing OT for 12 weeks. Further, parosmia seems to be positively affected by OT. These results may serve as a starting point for larger scale studies to assess the efficacy of OT for treatment of post-COVID-19 olfactory dysfunction.
Collapse
Affiliation(s)
- Simon Bérubé
- Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada,*Simon Bérubé,
| | - Claudia Demers
- Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada,Department of Psychiatry and Neurosciences, Université Laval, Québec, Québec, Canada
| | - Nicholas Bussière
- Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Frank Cloutier
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Valérie Pek
- Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Angela Chen
- Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Josiane Bolduc-Bégin
- Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada,Division of Otolaryngology, Head and Neck Surgery, Centre Hospitalier Régional de Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Johannes Frasnelli
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada,Research Centre, Sacré-Coeur Hospital Montréal, CIUSSS-NIM, Montréal, Québec, Canada,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden,**Johannes Frasnelli,
| |
Collapse
|
32
|
Kapoor D, Verma N, Gupta N, Goyal A. Post Viral Olfactory Dysfunction After SARS-CoV-2 Infection: Anticipated Post-pandemic Clinical Challenge. Indian J Otolaryngol Head Neck Surg 2022; 74:4571-4578. [PMID: 34249668 PMCID: PMC8260324 DOI: 10.1007/s12070-021-02730-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
Persistent olfactory dysfunction (OD) is the second most common symptom of post coronavirus disease-19 (COVID-19) now being termed long-COVID. Its prevalence after recovery from COVID-19 is estimated to be 12% after nearly 6 months of follow-up. It thus becomes imperative for the treating clinicians to update themselves with the pathophysiology of this post COVID disability as well as the tools for diagnosis and the available treatment options. A systematic literature search was performed as per PRISMA guidelines in MEDLINE, Cochrane Library, LILACS, Google Scholar, ClinicalTrials.gov, and medRxiv databases. The keywords used were covid-19, Olfactory Disorders, Smell, Anosmia, PVOD, Post Viral Olfactory Disorders, post-covid and post haul. All articles were studied for definition, mechanism, diagnostic tests and treatment options for post COVID OD. 33 published articles and 8 ongoing trials were found relevant and included after full-text review. SARS-CoV-2 can cause conductive, neural and central OD. Olfactory evaluation can be done both subjectively (visual analogue scale) and objectively (Sniffin' sticks, Sinonasal Outcome Test, University of Pennsylvania Smell Identification Test and modified Davidson's alcohol sniff test). They can be used to detect and follow-up patients. Despite several on-going clinical trials, the most reliable and advisable treatment option available till date is olfactory training.
Collapse
Affiliation(s)
- Dhruv Kapoor
- Department of Otorhinolaryngology, University College of Medical Sciences, Delhi, India
| | - Neha Verma
- Department of Otorhinolaryngology, University College of Medical Sciences, Delhi, India
- Present Address: Department of Otorhinolaryngology, Guru Teg Bahadur Hospital, Ward 25, Delhi, 110 095 India
| | - Neelima Gupta
- Department of Otorhinolaryngology, University College of Medical Sciences, Delhi, India
| | - Arun Goyal
- Department of Otorhinolaryngology, University College of Medical Sciences, Delhi, India
| |
Collapse
|
33
|
Hwang SH, Kim JS, Choi BY, Kim JK, Kim BG. Practical Review of Olfactory Training and COVID-19. JOURNAL OF RHINOLOGY 2022; 29:127-133. [PMID: 39664302 PMCID: PMC11524376 DOI: 10.18787/jr.2022.00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Olfactory disorders one of the most frequent distinctive symptoms of COVID-19 infection. COVID-19-induced olfactory disorder can be classified as post-infectious olfactory dysfunction (PIOD). The effect of drugs on olfactory disorder following upper respiratory infection, including PIOD, has not been clearly established, which adds to the difficulty with treating the disorder. However, the effect of olfactory training on PIOD has been confirmed by numerous studies. As such, olfactory training is gaining attention, and has taken on greater importance, as the sole treatment for COVID-19-induced olfactory disorder in this pandemic age. This review describes the effect of olfactory training for COVID-19-induced olfactory disorder by analyzing the relevant literature.
Collapse
Affiliation(s)
- Se Hwan Hwang
- Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Sun Kim
- Department of Otolaryngology-Head and Neck Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bo Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jin Kook Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Byung Guk Kim
- Department of Otolaryngology-Head and Neck Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
34
|
Van Regemorter V, Rombaux P, Dricot L, Kupers R, Grégoire A, Hox V, Huart C. Functional Imaging in Olfactory Disorders. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022; 10:421-426. [PMID: 36276577 PMCID: PMC9579609 DOI: 10.1007/s40136-022-00433-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Purpose of Review The aim was to synthesize key findings regarding the use of functional MRI (fMRI) to assess olfactory dysfunction (OD), and thus, to evaluate whether fMRI could be a reliable clinical diagnostic tool. Recent Findings In response to olfactory stimulation, patients with quantitative OD display reduced activation in olfactory-related brain regions but also stronger activation in non-olfactory brain areas. Parosmic patients also seem to show both weaker and higher brain signals. As to trigeminal chemosensory system, fMRI suggests that central processing may be declined in patients with OD. Functional connectivity studies report a possible correlation between altered neuronal connections within brain networks and olfactory performances. Summary fMRI emerges as a valuable and promising objective method in OD evaluation. Yet, its high inter-individual variability still precludes its routine clinical use for diagnostic purpose. Future research should focus on optimizing stimulation paradigms and analysis methods.
Collapse
Affiliation(s)
- V. Van Regemorter
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Department of Anesthesiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Ph. Rombaux
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - L. Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - R. Kupers
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- School of Optometry, University of Montreal, Montreal, QC Canada
- BRAINlab, University of Copenhagen, Copenhagen, Denmark
| | - A. Grégoire
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - V. Hox
- Department of Otorhinolaryngology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - C. Huart
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
35
|
Pieniak M, Oleszkiewicz A, Avaro V, Calegari F, Hummel T. Olfactory training - Thirteen years of research reviewed. Neurosci Biobehav Rev 2022; 141:104853. [PMID: 36064146 DOI: 10.1016/j.neubiorev.2022.104853] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
The sense of smell is interrelated with psychosocial functioning. Olfactory disorders often decrease quality of life but treatment options for people with olfactory loss are limited. Additionally, olfactory loss accompanies and precedes psychiatric and neurodegenerative diseases. Regular, systematic exposure to a set of odors, i.e., olfactory training (OT) has been offered for rehabilitation of the sense of smell in clinical practice. As signals from the olfactory bulb are directly projected to the limbic system it has been also debated whether OT might benefit psychological functioning, i.e., mitigate cognitive deterioration or improve emotional processing. In this review we synthesize key findings on OT utility in the clinical practice and highlight the molecular, cellular, and neuroanatomical changes accompanying olfactory recovery in people with smell loss as well as in experimental animal models. We discuss how OT and its modifications have been used in interventions aiming to support cognitive functions and improve well-being. We delineate main methodological challenges in research on OT and suggest areas requiring further scientific attention.
Collapse
Affiliation(s)
- Michal Pieniak
- Smell and Taste Clinic, Technische Universitat Dresden, Dresden, Germany; University of Wrocław, Faculty of Historical and Pedagogical Sciences, Institute of Psychology, Wroclaw, Poland.
| | - Anna Oleszkiewicz
- Smell and Taste Clinic, Technische Universitat Dresden, Dresden, Germany; University of Wrocław, Faculty of Historical and Pedagogical Sciences, Institute of Psychology, Wroclaw, Poland
| | - Vittoria Avaro
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Federico Calegari
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hummel
- Smell and Taste Clinic, Technische Universitat Dresden, Dresden, Germany
| |
Collapse
|
36
|
Hippocampal subfield volumes and olfactory performance: Emerging longitudinal associations over a 5-year interval. Neuropsychologia 2022; 176:108353. [DOI: 10.1016/j.neuropsychologia.2022.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022]
|
37
|
Improving taste sensitivity in healthy adults using taste recall training: a randomized controlled trial. Sci Rep 2022; 12:13849. [PMID: 35974039 PMCID: PMC9379898 DOI: 10.1038/s41598-022-18255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Although many patients suffer from taste disorder, methods to improve taste sensitivity are limited. To develop a taste recall training method to improve the perception of taste, 42 healthy individuals were randomly assigned to either the training or the control group. Using the filter paper disc method, participants in the training group were asked to match the four tastes (sweetness, saltiness, sourness, and bitterness) between those of taste recognition thresholds and those of a one-step higher concentration until they get them right. Then, they were asked to match the four tastes between those of one-step lower and one-step higher in concentration from their taste recognition thresholds until they get them right. Finally, they were asked to match the four tastes between those of one-step lower concentration and those of their taste recognition thresholds until they get them right. This training was repeated until perfectly matched. The taste recall training program led to a lowered taste recognition threshold in healthy adults for each taste quality, suggesting the improvement of taste sensitivity. This lowered threshold for each taste was observed with each additional training session. We conclude that this taste recall training method might be a therapeutic approach for treating taste disorder.
Collapse
|
38
|
SARS-CoV-2 Infection (COVID-19) and Rhinologic Manifestation: Narrative Review. J Pers Med 2022; 12:jpm12081234. [PMID: 36013183 PMCID: PMC9409980 DOI: 10.3390/jpm12081234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
Patients with severe pneumonia of unknown etiology presented in December 2019 in Wuhan, China. A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), was isolated from the respiratory tracts of these patients. The World Health Organization (WHO) defined respiratory diseases due to SARS-CoV-2 infection as coronavirus disease 2019 (COVID-19). Many researchers have reported that the nasal cavity is an important initial route for SARS-CoV-2 infection and that the spike protein of this virus binds to angiotensin-converting enzyme 2 (ACE2) on epithelial cell surfaces. Therefore, COVID-19 is thought to significantly affect nasal symptoms and various rhinological diseases. In this review, we summarize the association between COVID-19 and various rhinological diseases, such as olfactory dysfunction, rhinosinusitis, and allergic rhinitis.
Collapse
|
39
|
Searching for individual multi-sensory fingerprints and their links with adiposity – New insights from meta-analyses and empirical data. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2022.104574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Farruggia MC, Pellegrino R, Scheinost D. Functional Connectivity of the Chemosenses: A Review. Front Syst Neurosci 2022; 16:865929. [PMID: 35813269 PMCID: PMC9257046 DOI: 10.3389/fnsys.2022.865929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/05/2022] [Indexed: 01/01/2023] Open
Abstract
Functional connectivity approaches have long been used in cognitive neuroscience to establish pathways of communication between and among brain regions. However, the use of these analyses to better understand how the brain processes chemosensory information remains nascent. In this review, we conduct a literature search of all functional connectivity papers of olfaction, gustation, and chemesthesis, with 103 articles discovered in total. These publications largely use approaches of seed-based functional connectivity and psychophysiological interactions, as well as effective connectivity approaches such as Granger Causality, Dynamic Causal Modeling, and Structural Equation Modeling. Regardless of modality, studies largely focus on elucidating neural correlates of stimulus qualities such as identity, pleasantness, and intensity, with task-based paradigms most frequently implemented. We call for further "model free" or data-driven approaches in predictive modeling to craft brain-behavior relationships that are free from a priori hypotheses and not solely based on potentially irreproducible literature. Moreover, we note a relative dearth of resting-state literature, which could be used to better understand chemosensory networks with less influence from motion artifacts induced via gustatory or olfactory paradigms. Finally, we note a lack of genomics data, which could clarify individual and heritable differences in chemosensory perception.
Collapse
Affiliation(s)
- Michael C. Farruggia
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States,*Correspondence: Michael C. Farruggia,
| | | | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States,Child Study Center, Yale School of Medicine, New Haven, CT, United States,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, United States,Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States,Wu Tsai Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
41
|
Vandersteen C, Payne M, Dumas LÉ, Cancian É, Plonka A, D’Andréa G, Chirio D, Demonchy É, Risso K, Askenazy-Gittard F, Savoldelli C, Guevara N, Robert P, Castillo L, Manera V, Gros A. Olfactory Training in Post-COVID-19 Persistent Olfactory Disorders: Value Normalization for Threshold but Not Identification. J Clin Med 2022; 11:jcm11123275. [PMID: 35743346 PMCID: PMC9224948 DOI: 10.3390/jcm11123275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Persistent post-viral olfactory disorders (PPVOD) are estimated at 30% of patients one year after COVID-19 infection. No treatment is, to date, significantly effective on PPVOD with the exception of olfactory training (OT). The main objective of this work was to evaluate OT efficiency on post-COVID-19 PPVOD. (2) Methods: Consecutive patients consulting to the ENT department with post-COVID-19 PPVOD were included after completing clinical examination, the complete Sniffin’ Stick Test (TDI), the short version of the Questionnaire of olfactory disorders and the SF-36. Patients were trained to practice a self-olfactory training with a dedicated olfactory training kit twice a day for 6 months before returning to undergo the same assessments. (3) Results: Forty-three patients were included and performed 3.5 months of OT in average. We observed a significant TDI score improvement, increasing from 24.7 (±8.9) before the OT to 30.9 (±9.8) (p < 0.001). Based on normative data, a significant increase in the number of normosmic participants was observed only for the threshold values (p < 0.001). Specific and general olfaction-related quality of life improved after the OT. (4) Conclusions: Olfactory function appeared to improve only in peripheral aspects of post-COVID-19 PPVOD after OT. Future controlled studies must be performed to confirm the OT role and justify new therapeutic strategies that may focus on the central aspects of post-COVID-19 PPVOD.
Collapse
Affiliation(s)
- Clair Vandersteen
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire, Université Côte d’Azur, 31 Avenue de Valombrose, 06100 Nice, France; (É.C.); (G.D.); (C.S.); (N.G.); (L.C.)
- Laboratoire CoBTeK, Université Côte d’Azur, 06100 Nice, France; (M.P.); (L.-É.D.); (A.P.); (F.A.-G.); (P.R.); (V.M.); (A.G.)
- Correspondence: ; Tel.: +33-4-9203-1705
| | - Magali Payne
- Laboratoire CoBTeK, Université Côte d’Azur, 06100 Nice, France; (M.P.); (L.-É.D.); (A.P.); (F.A.-G.); (P.R.); (V.M.); (A.G.)
- Département d’Orthophonie de Nice (DON), UFR Médecine, Université Côte d’Azur, 06107 Nice, France
| | - Louise-Émilie Dumas
- Laboratoire CoBTeK, Université Côte d’Azur, 06100 Nice, France; (M.P.); (L.-É.D.); (A.P.); (F.A.-G.); (P.R.); (V.M.); (A.G.)
- Hôpitaux Pédiatriques de Nice CHU-LENVAL, Centre Hospitalier Universitaire, Université Côte d’Azur, 57 Avenue de la Californie, 06200 Nice, France
| | - Élisa Cancian
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire, Université Côte d’Azur, 31 Avenue de Valombrose, 06100 Nice, France; (É.C.); (G.D.); (C.S.); (N.G.); (L.C.)
| | - Alexandra Plonka
- Laboratoire CoBTeK, Université Côte d’Azur, 06100 Nice, France; (M.P.); (L.-É.D.); (A.P.); (F.A.-G.); (P.R.); (V.M.); (A.G.)
- Institut NeuroMod, INRIA Centre de Recherche Sophia Antipolis, Université Côte d’Azur, 2004 Route des Lucioles, 06902 Valbonne, France
- Service Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, 06000 Nice, France
| | - Grégoire D’Andréa
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire, Université Côte d’Azur, 31 Avenue de Valombrose, 06100 Nice, France; (É.C.); (G.D.); (C.S.); (N.G.); (L.C.)
| | - David Chirio
- Département de Médecine Infectiologique, Hôpital de l’archet, Centre Hospitalier Universitaire, Université Côte d’Azur, 151 Route de Saint-Antoine, 06200 Nice, France; (D.C.); (É.D.); (K.R.)
| | - Élisa Demonchy
- Département de Médecine Infectiologique, Hôpital de l’archet, Centre Hospitalier Universitaire, Université Côte d’Azur, 151 Route de Saint-Antoine, 06200 Nice, France; (D.C.); (É.D.); (K.R.)
| | - Karine Risso
- Département de Médecine Infectiologique, Hôpital de l’archet, Centre Hospitalier Universitaire, Université Côte d’Azur, 151 Route de Saint-Antoine, 06200 Nice, France; (D.C.); (É.D.); (K.R.)
| | - Florence Askenazy-Gittard
- Laboratoire CoBTeK, Université Côte d’Azur, 06100 Nice, France; (M.P.); (L.-É.D.); (A.P.); (F.A.-G.); (P.R.); (V.M.); (A.G.)
- Hôpitaux Pédiatriques de Nice CHU-LENVAL, Centre Hospitalier Universitaire, Université Côte d’Azur, 57 Avenue de la Californie, 06200 Nice, France
| | - Charles Savoldelli
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire, Université Côte d’Azur, 31 Avenue de Valombrose, 06100 Nice, France; (É.C.); (G.D.); (C.S.); (N.G.); (L.C.)
| | - Nicolas Guevara
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire, Université Côte d’Azur, 31 Avenue de Valombrose, 06100 Nice, France; (É.C.); (G.D.); (C.S.); (N.G.); (L.C.)
| | - Philippe Robert
- Laboratoire CoBTeK, Université Côte d’Azur, 06100 Nice, France; (M.P.); (L.-É.D.); (A.P.); (F.A.-G.); (P.R.); (V.M.); (A.G.)
- Département d’Orthophonie de Nice (DON), UFR Médecine, Université Côte d’Azur, 06107 Nice, France
- Service Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, 06000 Nice, France
| | - Laurent Castillo
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire, Université Côte d’Azur, 31 Avenue de Valombrose, 06100 Nice, France; (É.C.); (G.D.); (C.S.); (N.G.); (L.C.)
| | - Valeria Manera
- Laboratoire CoBTeK, Université Côte d’Azur, 06100 Nice, France; (M.P.); (L.-É.D.); (A.P.); (F.A.-G.); (P.R.); (V.M.); (A.G.)
- Département d’Orthophonie de Nice (DON), UFR Médecine, Université Côte d’Azur, 06107 Nice, France
| | - Auriane Gros
- Laboratoire CoBTeK, Université Côte d’Azur, 06100 Nice, France; (M.P.); (L.-É.D.); (A.P.); (F.A.-G.); (P.R.); (V.M.); (A.G.)
- Département d’Orthophonie de Nice (DON), UFR Médecine, Université Côte d’Azur, 06107 Nice, France
- Service Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, 06000 Nice, France
| |
Collapse
|
42
|
Hura N, Yi JS, Lin SY, Roxbury CR. Magnetic Resonance Imaging as a Diagnostic and Research Tool in Patients with Olfactory Dysfunction: A Systematic Review. Am J Rhinol Allergy 2022; 36:668-683. [PMID: 35585698 DOI: 10.1177/19458924221096913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Patients with acquired, idiopathic olfactory dysfunction (OD) commonly undergo magnetic resonance imaging (MRI) evaluation to rule out intracranial pathologies. This practice is highly debated given the expense of MRI relative to the probability of detecting a treatable lesion. This, combined with the increasing use of MRI in research to investigate the mechanisms underlying OD, provided the impetus for this comprehensive review. OBJECTIVE The purpose of this systematic review was to both assess the utility of MRI in diagnosis of idiopathic OD and to describe MRI findings among mixed OD etiologies to better understand its role as a research tool in this patient population. METHODS A literature search of PubMed, Embase, Cochrane, Web of Science, and Scopus for studies with original MRI data for patients with OD was completed. Studies exclusively investigating patients with neurocognitive deficits or those studying traumatic or congenital etiologies of OD were excluded. RESULTS From 1758 candidate articles, 33 studies were included. Four studies reviewed patients with idiopathic OD for structural pathologies on MRI, of which 17 of 372 (4.6%) patients had a potential central cause identified, and 3 (0.8%) had an olfactory meningioma or olfactory neuroblastoma. Fourteen studies (42.4%) reported significant correlation between olfactory bulb volume and olfactory outcomes, and 6 studies (18.8%) reported gray matter volume reduction, specifically in the orbitofrontal cortex, anterior cingulate cortex, insular cortex, parahippocampal, and piriform cortex areas, in patients with mixed OD etiologies. Functional MRI studies reported reduced brain activation and functional connectivity in olfactory network areas. CONCLUSION MRI uncommonly detects intracranial pathology in patients with idiopathic OD. Among patients with mixed OD etiologies, reduced olfactory bulb and gray matter volume are the most common abnormal findings on MRI. Further research is required to better understand the role of MRI and its cost-effectiveness in patients with acquired, idiopathic OD.
Collapse
Affiliation(s)
- Nanki Hura
- Department of Otolaryngology - Head and Neck Surgery, 1500The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Otolaryngology - Head and Neck Surgery, 6595University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Julie S Yi
- Department of Otolaryngology - Head and Neck Surgery, 1500The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sandra Y Lin
- Department of Otolaryngology - Head and Neck Surgery, 1500The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher R Roxbury
- Section of Otolaryngology - Head and Neck Surgery, 21727The University of Chicago Medical Center, Chicago, Illinois, USA
| |
Collapse
|
43
|
Changes in the Intranetwork and Internetwork Connectivity of the Default Mode Network and Olfactory Network in Patients with COVID-19 and Olfactory Dysfunction. Brain Sci 2022; 12:brainsci12040511. [PMID: 35448042 PMCID: PMC9029634 DOI: 10.3390/brainsci12040511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022] Open
Abstract
Olfactory dysfunction (OD) is a common symptom in coronavirus disease 2019 (COVID-19) patients. Moreover, many neurological manifestations have been reported in these patients, suggesting central nervous system involvement. The default mode network (DMN) is closely associated with olfactory processing. In this study, we investigated the internetwork and intranetwork connectivity of the DMN and the olfactory network (ON) in 13 healthy controls and 22 patients presenting with COVID-19-related OD using independent component analysis and region of interest functional magnetic resonance imaging (fMRI) analysis. There was a significant correlation between the butanol threshold test (BTT) and the intranetwork connectivity in ON. Meanwhile, the COVID-19 patients with OD showed significantly higher intranetwork connectivity in the DMN, as well as higher internetwork connectivity between ON and DMN. However, no significant difference was found between groups in the intranetwork connectivity within ON. We postulate that higher intranetwork functional connectivities compensate for the deficits in olfactory processing and general well-being in COVID-19 patients. Nevertheless, the compensation process in the ON may not be obvious at this stage. Our results suggest that resting-state fMRI is a potentially valuable tool to evaluate neurosensory dysfunction in COVID-19 patients.
Collapse
|
44
|
Patel ZM, Holbrook EH, Turner JH, Adappa ND, Albers MW, Altundag A, Appenzeller S, Costanzo RM, Croy I, Davis GE, Dehgani-Mobaraki P, Doty RL, Duffy VB, Goldstein BJ, Gudis DA, Haehner A, Higgins TS, Hopkins C, Huart C, Hummel T, Jitaroon K, Kern RC, Khanwalkar AR, Kobayashi M, Kondo K, Lane AP, Lechner M, Leopold DA, Levy JM, Marmura MJ, Mclelland L, Miwa T, Moberg PJ, Mueller CA, Nigwekar SU, O'Brien EK, Paunescu TG, Pellegrino R, Philpott C, Pinto JM, Reiter ER, Roalf DR, Rowan NR, Schlosser RJ, Schwob J, Seiden AM, Smith TL, Soler ZM, Sowerby L, Tan BK, Thamboo A, Wrobel B, Yan CH. International consensus statement on allergy and rhinology: Olfaction. Int Forum Allergy Rhinol 2022; 12:327-680. [PMID: 35373533 DOI: 10.1002/alr.22929] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/01/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The literature regarding clinical olfaction, olfactory loss, and olfactory dysfunction has expanded rapidly over the past two decades, with an exponential rise in the past year. There is substantial variability in the quality of this literature and a need to consolidate and critically review the evidence. It is with that aim that we have gathered experts from around the world to produce this International Consensus on Allergy and Rhinology: Olfaction (ICAR:O). METHODS Using previously described methodology, specific topics were developed relating to olfaction. Each topic was assigned a literature review, evidence-based review, or evidence-based review with recommendations format as dictated by available evidence and scope within the ICAR:O document. Following iterative reviews of each topic, the ICAR:O document was integrated and reviewed by all authors for final consensus. RESULTS The ICAR:O document reviews nearly 100 separate topics within the realm of olfaction, including diagnosis, epidemiology, disease burden, diagnosis, testing, etiology, treatment, and associated pathologies. CONCLUSION This critical review of the existing clinical olfaction literature provides much needed insight and clarity into the evaluation, diagnosis, and treatment of patients with olfactory dysfunction, while also clearly delineating gaps in our knowledge and evidence base that we should investigate further.
Collapse
Affiliation(s)
- Zara M Patel
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric H Holbrook
- Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Justin H Turner
- Otolaryngology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Nithin D Adappa
- Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark W Albers
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytug Altundag
- Otolaryngology, Biruni University School of Medicine, İstanbul, Turkey
| | - Simone Appenzeller
- Rheumatology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Richard M Costanzo
- Physiology and Biophysics and Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ilona Croy
- Psychology and Psychosomatic Medicine, TU Dresden, Dresden, Germany
| | - Greg E Davis
- Otolaryngology, Proliance Surgeons, Seattle and Puyallup, Washington, USA
| | - Puya Dehgani-Mobaraki
- Associazione Naso Sano, Umbria Regional Registry of Volunteer Activities, Corciano, Italy
| | - Richard L Doty
- Smell and Taste Center, Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - David A Gudis
- Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Antje Haehner
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | - Thomas S Higgins
- Otolaryngology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Claire Hopkins
- Otolaryngology, Guy's and St. Thomas' Hospitals, London Bridge Hospital, London, UK
| | - Caroline Huart
- Otorhinolaryngology, Cliniques universitaires Saint-Luc, Institute of Neuroscience, Université catholgique de Louvain, Brussels, Belgium
| | - Thomas Hummel
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | | | - Robert C Kern
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashoke R Khanwalkar
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Masayoshi Kobayashi
- Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Kenji Kondo
- Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andrew P Lane
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matt Lechner
- Otolaryngology, Barts Health and University College London, London, UK
| | - Donald A Leopold
- Otolaryngology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Joshua M Levy
- Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Marmura
- Neurology Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisha Mclelland
- Otolaryngology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Takaki Miwa
- Otolaryngology, Kanazawa Medical University, Ishikawa, Japan
| | - Paul J Moberg
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Sagar U Nigwekar
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin K O'Brien
- Otolaryngology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Teodor G Paunescu
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Carl Philpott
- Otolaryngology, University of East Anglia, Norwich, UK
| | - Jayant M Pinto
- Otolaryngology, University of Chicago, Chicago, Illinois, USA
| | - Evan R Reiter
- Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - David R Roalf
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas R Rowan
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rodney J Schlosser
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - James Schwob
- Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Allen M Seiden
- Otolaryngology, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Timothy L Smith
- Otolaryngology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Zachary M Soler
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - Leigh Sowerby
- Otolaryngology, University of Western Ontario, London, Ontario, Canada
| | - Bruce K Tan
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Thamboo
- Otolaryngology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bozena Wrobel
- Otolaryngology, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Carol H Yan
- Otolaryngology, School of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
45
|
Hu B, Zhang J, Gong M, Deng Y, Cao Y, Xiang Y, Ye D. Research Progress of Olfactory Nerve Regeneration Mechanism and Olfactory Training. Ther Clin Risk Manag 2022; 18:185-195. [PMID: 35281777 PMCID: PMC8906848 DOI: 10.2147/tcrm.s354695] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
The olfactory nerve (ON) is the only cranial nerve exposed to the external environment. Hence, it is susceptible to damage from head trauma, viral infection, inflammatory stimulation, and chemical toxins, which can lead to olfactory dysfunction. However, compared with all other cranial nerves, the ON is unique due to its inherent ability to regenerate. This characteristic provides a theoretical basis for treatment of olfactory dysfunction. Olfactory training (OT) is one of the main treatments for olfactory dysfunction. It is easy to apply and has few side-effects, and has been shown to be efficacious for patients with olfactory dysfunction of various causes. To further understand the application value of ON regeneration and OT on olfactory dysfunction, we review the research progress on the mechanism of ON regeneration and OT.
Collapse
Affiliation(s)
- Bian Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
- Department of Otorhinolaryngology-Head and Neck Surgery, Ninghai First Hospital, Ningbo, 315699, Zhejiang, People’s Republic of China
| | - Jingyu Zhang
- Shanghai Jiao Tong University, Shanghai, 200030, People’s Republic of China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Yujie Cao
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
- Correspondence: Dong Ye, Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China, Tel +86 13819861213, Fax +86 574-87392232, Email
| |
Collapse
|
46
|
Helman SN, Adler J, Jafari A, Bennett S, Vuncannon JR, Cozart AC, Wise SK, Kuruvilla ME, Levy JM. Treatment strategies for postviral olfactory dysfunction: A systematic review. Allergy Asthma Proc 2022; 43:96-105. [PMID: 35317886 DOI: 10.2500/aap.2022.43.210107] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: The coronavirus disease 2019 (COVID-19) pandemic has been associated with a dramatic increase in postviral olfactory dysfunction (PVOD) among patients who are infected. A contemporary evidence-based review of current treatment options for PVOD is both timely and relevant to improve patient care. Objective: This review seeks to impact patient care by qualitatively reviewing available evidence in support of medical and procedural treatment options for PVOD. Systematic evaluation of data quality and of the level of evidence was completed to generate current treatment recommendations. Methods: A systematic review was conducted to identify primary studies that evaluated treatment outcomes for PVOD. A number of medical literature data bases were queried from January 1998 to May 2020, with completion of subsequent reference searches of retrieved articles to identify all relevant studies. Validated tools for the assessment of bias among both interventional and observational studies were used to complete quality assessment. The summary level of evidence and associated outcomes were used to generate treatment recommendations. Results: Twenty-two publications were identified for qualitative review. Outcomes of alpha-lipoic acid, intranasal and systemic corticosteroids, minocycline, zinc sulfate, vitamin A, sodium citrate, caroverine, intranasal insulin, theophylline, and Gingko biloba are reported. In addition, outcomes of traditional Chinese acupuncture and olfactory training are reviewed. Conclusion: Several medical and procedural treatments may expedite the return of olfactory function after PVOD. Current evidence supports olfactory training as a first-line intervention. Additional study is required to define specific treatment recommendations and expected outcomes for PVOD in the setting of COVID-19.
Collapse
Affiliation(s)
- Samuel N. Helman
- From the Department of Otolaryngology - Head and Neck Surgery, Weill Cornell Medical College, New York, New York
| | - Jonah Adler
- School of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Aria Jafari
- Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, Washington
| | - Sasha Bennett
- School of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jackson R. Vuncannon
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Ashley C. Cozart
- College of Medicine, University of Central Florida College of Medicine, Orlando, Florida; and
| | - Sarah K. Wise
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Merin E. Kuruvilla
- Division of Pulmonary, Allergy, Critical Care, and Sleep, Emory University School of Medicine, Atlanta, Georgia
| | - Joshua M. Levy
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
47
|
郭 怡, 姚 淋, 孙 智, 黄 小, 刘 佳, 魏 永. [Predictors of posttreatment olfactory improvement in patients with postviral olfactory dysfunction]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:1057-1062. [PMID: 34886616 PMCID: PMC10127640 DOI: 10.13201/j.issn.2096-7993.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Objective:To analyzed the results of olfactory function test in patients with post-viral olfactory dysfunction(PVOD), and evaluated the prognostic factors, so as to provide a basis for clinical diagnosis and treatment. Methods:This study included patients who were diagnosed with PVOD at least one year ago in Beijing Anzhen Hospital and whose telephone interviews of subjective olfactory function were available. The general condition of the patients, the results Sniffin' Sticks olfactory test and the event-related potentials(ERPs) were analyzed in different improvement groups. This study retrospectively analyzed PVOD patients treated in the outpatient department of Beijing Anzhen Hospital. They were given olfactory training for 4 months. The Sniffin' Sticks test was performed on the patients before and after the treatment. The Sniffin' Sticks test and event-related potentials(ERPs) results were used to evaluate the prognostic factors. Results:In this study, the olfactory improvement rate of 63 PVOD patients was 52.38%(33/63). Compared to the non-improvement group, the course of disease in the group with improved subjective olfactory function was significantly shorter(P<0.001), the initial olfactory function was significantly better(P<0.001), and the olfactory threshold was much lower(P<0.001). The presence of olfactory event-related potentials and trigeminal ERPs(tERPs) were 52.38%(33/63) and 87.30%(55/63), respectively. The presence of oERPs in the olfactory function improvement group was significantly higher than that in the non-improvement group(P<0.05), but there was no difference in the presence of tERPs(P>0.05). Latency of N1 and P2 waves in oERPs with improvement group(ON1L, OP2L) were longer than those in the non-improvement group(P<0.05), N1 and P2 wave amplitudes(ON1A, OP2A) had no difference(P>0.05). The N1 and P2 amplitudes and latency of tERPs showed no difference between the two groups. Multivariate Logistic regression analysis showed that threshold value before treatment(OR=21.376, 95%CI: 2.172-210.377, P=0.009); ON1L(OR=0.994, 95%CI: 0.988-0.999, P=0.029) and course of disease(OR=0.607, 95%CI: 0.405-0.920, P=0.016) was significantly associated with olfactory prognosis. Conclusion:The course of olfactory dysfunction, the severity of olfactory dysfunction, the threshold of olfactory function, and the latency of N1 wave of oERPs can be used to evaluate the prognosis of PVOD patients. However, age, olfactory discrimination, recognition ability, oERPs amplitude and tERPs wave value had less prognostic value.
Collapse
Affiliation(s)
- 怡辰 郭
- 首都医科大学附属北京安贞医院耳鼻咽喉头颈外科(北京,100029)Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - 淋尹 姚
- 首都医科大学附属北京安贞医院耳鼻咽喉头颈外科(北京,100029)Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - 智甫 孙
- 首都医科大学附属北京安贞医院耳鼻咽喉头颈外科(北京,100029)Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - 小兵 黄
- 首都医科大学附属北京安贞医院耳鼻咽喉头颈外科(北京,100029)Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - 佳 刘
- 首都儿科研究所耳鼻咽喉头颈外科Department of Otorhinolaryngology Head and Neck Surgery, Capital Institute of Pediatrics
| | - 永祥 魏
- 首都儿科研究所耳鼻咽喉头颈外科Department of Otorhinolaryngology Head and Neck Surgery, Capital Institute of Pediatrics
| |
Collapse
|
48
|
Chen B, Espin M, Haussmann R, Matthes C, Donix M, Hummel T, Haehner A. The Effect of Olfactory Training on Olfaction, Cognition, and Brain Function in Patients with Mild Cognitive Impairment. J Alzheimers Dis 2021; 85:745-754. [PMID: 34864678 DOI: 10.3233/jad-215257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The olfactory system is affected very early in Alzheimer's disease and olfactory loss can already be observed in patients with mild cognitive impairment (MCI), an early stage of AD. OBJECTIVE The aim of this randomized, prospective, controlled, blinded study was to evaluate whether olfactory training (OT) may have an effect on olfactory function, cognitive impairment, and brain activation in MCI patients after a 4-month period of frequent short-term exposure to various odors. METHODS A total of 38 MCI outpatients were randomly assigned to OT or a control training condition, which were performed twice a day for 4 months. Olfactory testing, comprehensive neuropsychological assessment, and magnetic resonance imaging were performed before and after training. RESULTS The results suggested that OT exhibited no significant effect on olfaction and cognitive function. However, OT exhibited a positive effect on frontal lobe activation (left middle frontal gyrus and orbital-frontal cortex) but exhibited no effect on grey matter volume. Moreover, the change of olfactory scores was positively associated with the change of frontal activation. CONCLUSION OT was found to have a limited effect on olfaction and cognition in patients with MCI compared to a non-OT condition but increased their functional response to odors in frontal area.
Collapse
Affiliation(s)
- Ben Chen
- Department of Otorhinolaryngology, Smell & Taste Clinic, TU Dresden, Dresden, Germany.,Department of Geriatric Psychiatry, Memory Clinic, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Melanie Espin
- Department of Otorhinolaryngology, Smell & Taste Clinic, TU Dresden, Dresden, Germany
| | - Robert Haussmann
- Department of Psychiatry and Psychotherapy, TU Dresden, Dresden, Germany
| | - Claudia Matthes
- Department of Psychiatry and Psychotherapy, TU Dresden, Dresden, Germany
| | - Markus Donix
- Department of Psychiatry and Psychotherapy, TU Dresden, Dresden, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Dresden, Germany
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell & Taste Clinic, TU Dresden, Dresden, Germany
| | - Antje Haehner
- Department of Otorhinolaryngology, Smell & Taste Clinic, TU Dresden, Dresden, Germany
| |
Collapse
|
49
|
Cha H, Kim S, Kim H, Kim G, Kwon KY. Effect of intensive olfactory training for cognitive function in patients with dementia. Geriatr Gerontol Int 2021; 22:5-11. [PMID: 34749425 DOI: 10.1111/ggi.14287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 01/22/2023]
Abstract
AIM Recent evidence has revealed an association between neurodegenerative disorders and olfactory dysfunction. However, whether olfactory training can improve cognitive impairment in patients with dementia requires further study. The present study aimed to resolve this by developing an intensive olfactory training (IOT) protocol and assessing its impact on each of the cognitive domains in patients with dementia. METHODS Patients were prospectively recruited between June 2020 and September 2020. Baseline evaluations included demographic data, olfactory function test, depression scale and detailed cognitive function tests. Thirty-four patients in the experimental group underwent IOT twice a day with a 40-odor set for 15 days, while 31 individuals in the control group received conservative management. Follow-up evaluations using the depression scale and detailed cognitive function tests were performed after IOT. RESULTS Baseline characteristics were not different between the two groups. The IOT group showed significant improvements in depression, attention, memory and language functions, but not global cognition, frontal executive, or visuospatial functions compared with the control group. CONCLUSION This study shows the ability of IOT to alleviate depression and improve some cognitive functions in patients with dementia. These results suggest that IOT may be an effective non-pharmacological approach for improving the symptoms of dementia. Geriatr Gerontol Int ••; ••: ••-•• Geriatr Gerontol Int 2021; ••: ••-••.
Collapse
Affiliation(s)
- Hyegyeong Cha
- Department of Nursing, Namseoul University, Cheonan-si, Republic of Korea
| | - Sisook Kim
- Department of Nursing, Namseoul University, Cheonan-si, Republic of Korea
| | - Hansong Kim
- Namgung Hospital, Cheongju-si, Republic of Korea
| | - Gaeyoung Kim
- Department of Nursing, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Kyum-Yil Kwon
- Department of Neurology, Soonchunhyang University Seoul Hospital, Soonchunhyang University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
50
|
Damon F, Mezrai N, Magnier L, Leleu A, Durand K, Schaal B. Olfaction in the Multisensory Processing of Faces: A Narrative Review of the Influence of Human Body Odors. Front Psychol 2021; 12:750944. [PMID: 34675855 PMCID: PMC8523678 DOI: 10.3389/fpsyg.2021.750944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
A recent body of research has emerged regarding the interactions between olfaction and other sensory channels to process social information. The current review examines the influence of body odors on face perception, a core component of human social cognition. First, we review studies reporting how body odors interact with the perception of invariant facial information (i.e., identity, sex, attractiveness, trustworthiness, and dominance). Although we mainly focus on the influence of body odors based on axillary odor, we also review findings about specific steroids present in axillary sweat (i.e., androstenone, androstenol, androstadienone, and estratetraenol). We next survey the literature showing body odor influences on the perception of transient face properties, notably in discussing the role of body odors in facilitating or hindering the perception of emotional facial expression, in relation to competing frameworks of emotions. Finally, we discuss the developmental origins of these olfaction-to-vision influences, as an emerging literature indicates that odor cues strongly influence face perception in infants. Body odors with a high social relevance such as the odor emanating from the mother have a widespread influence on various aspects of face perception in infancy, including categorization of faces among other objects, face scanning behavior, or facial expression perception. We conclude by suggesting that the weight of olfaction might be especially strong in infancy, shaping social perception, especially in slow-maturing senses such as vision, and that this early tutoring function of olfaction spans all developmental stages to disambiguate a complex social environment by conveying key information for social interactions until adulthood.
Collapse
Affiliation(s)
- Fabrice Damon
- Developmental Ethology and Cognitive Psychology Laboratory, Centre des Sciences du Goût et de l’Alimentation, Inrae, AgroSup Dijon, CNRS (UMR 6265), Université Bourgogne Franche-Comté, Dijon, France
| | | | | | | | | | | |
Collapse
|