1
|
Puri BK, Lee GS, Schwarzbach A. Reaction Time in Fibromyalgia Patients. Curr Rheumatol Rev 2024; 20:514-521. [PMID: 38314594 DOI: 10.2174/0115733971276641231201055731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Fibromyalgia has unknown aetiology and is associated with reduced information processing speed and therefore prolonged reaction time. However, the processes underlying this are unknown. OBJECTIVES First, to compare the reaction time in a cohort of fibromyalgia patients and a matched group of normal controls. Second, to assess whether detailed symptoms of pain and autonomic function, as well as measures of tinnitus, fatigue, daytime sleepiness and Mycoplasma pneumoniae infection are predictors of reaction time in fibromyalgia. METHODS The between-groups mean serial five-choice reaction time difference was assessed in a cohort of fibromyalgia patients and in a matched group of normal controls in an analytical casecontrolled study. With the mean serial five-choice reaction time as the dependent variable for the fibromyalgia group, a mixed stepwise multiple linear regression was performed with inputs relating to pain, dysautonomia, tinnitus, fatigue, daytime sleepiness and Mycoplasma pneumoniae infection. RESULTS The mean (standard error) serial five-choice reaction time for the fibromyalgia group was 448.4 (23.0) ms, compared with 386.3 (8.3) ms for the control group (p = 0.007). The final multiple linear regression model (p < 0.001; adjusted R2 = 0.772) contained 13 predictors: eight sensory pain and three affective pain parameters, and Mycoplasma pneumoniae IgG and IgA assay results. CONCLUSION Certain sensory and affective pain parameters, as well as Mycoplasma pneumoniae infection, appear to be predictors of reaction time in fibromyalgia. Further research into the pathophysiological mechanisms by which they affect information processing is warranted and may shed light on the aetiology of fibromyalgia.
Collapse
Affiliation(s)
- Basant K Puri
- Department of Molecular Biology and Medicine, Faculty of Health and Well-Being, University of Winchester & C.A.R., Cambridge, UK
| | - Gary S Lee
- Department of Psychology, University of Southampton, Southampton, UK
| | | |
Collapse
|
2
|
Carreras I, Jung Y, Lopez-Benitez J, Tognoni CM, Dedeoglu A. Fingolimod mitigates memory loss in a mouse model of Gulf War Illness amid decreasing the activation of microglia, protein kinase R, and NFκB. Neurotoxicology 2023; 96:197-206. [PMID: 37160207 PMCID: PMC10334821 DOI: 10.1016/j.neuro.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023]
Abstract
Gulf War Illness (GWI) is an unrelenting multi-symptom illness with chronic central nervous system and peripheral pathology affecting veterans from the 1991 Gulf War and for which effective treatment is lacking. An increasing number of studies indicate that persistent neuroinflammation is likely the underlying cause of cognitive and mood dysfunction that affects veterans with GWI. We have previously reported that fingolimod, a drug approved for the treatment of relapsing-remitting multiple sclerosis, decreases neuroinflammation and improves cognition in a mouse model of Alzheimer's disease. In this study, we investigated the effect of fingolimod treatment on cognition and neuroinflammation in a mouse model of GWI. We exposed C57BL/6 J male mice to GWI-related chemicals pyridostigmine bromide, DEET, and permethrin, and to mild restraint stress for 28 days (GWI mice). Control mice were exposed to the chemicals' vehicle only. Starting 3 months post-exposure, half of the GWI mice and control mice were orally treated with fingolimod (1 mg/kg/day) for 1 month, and the other half were left untreated. Decreased memory on the Morris water maze test was detected in GWI mice compared to control mice and was reversed by fingolimod treatment. Immunohistochemical analysis of brain sections with antibodies to Iba1 and GFAP revealed that GWI mice had increased microglia activation in the hippocampal dentate gyrus, but no difference in reactive astrocytes was detected. The increased activation of microglia in GWI mice was decreased to the level in control mice by treatment with fingolimod. No effect of fingolimod treatment on gliosis in control mice was detected. To explore the signaling pathways by which decreased memory and increased neuroinflammation in GWI may be protected by fingolimod, we investigated the involvement of the inflammatory signaling pathways of protein kinase R (PKR) in the cerebral cortex of these mice. We found increased phosphorylation of PKR in the brain of GWI mice compared to controls, as well as increased phosphorylation of its most recognized downstream effectors: the α subunit of eukaryotic initiation factor 2 (eIF2α), IκB kinase (IKK), and the p65 subunit of nuclear factor-κB (NFκB-p65). Furthermore, we found that the increased phosphorylation level of these three proteins were suppressed in GWI mice treated with fingolimod. These results suggest that activation of PKR and NFκB signaling may be important for the regulation of cognition and neuroinflammation in the GWI condition and that fingolimod, a drug already approved for human use, may be a potential candidate for the treatment of GWI.
Collapse
Affiliation(s)
- Isabel Carreras
- Department of Veterans Affairs, VA Boston Healthcare System,150 S Huntington Av, Boston, MA 02130, USA; Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Younghun Jung
- Department of Veterans Affairs, VA Boston Healthcare System,150 S Huntington Av, Boston, MA 02130, USA; Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA 02118, USA; The Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, 73 High St, Boston, MA 02114, USA
| | - Jonathan Lopez-Benitez
- Department of Veterans Affairs, VA Boston Healthcare System,150 S Huntington Av, Boston, MA 02130, USA; Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA 02118, USA
| | - Christina M Tognoni
- Department of Veterans Affairs, VA Boston Healthcare System,150 S Huntington Av, Boston, MA 02130, USA; Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA 02118, USA
| | - Alpaslan Dedeoglu
- Department of Veterans Affairs, VA Boston Healthcare System,150 S Huntington Av, Boston, MA 02130, USA; Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA 02118, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 73 High St, Boston, MA 02114, USA
| |
Collapse
|
3
|
Haley RW, Kramer G, Xiao J, Dever JA, Teiber JF. Evaluation of a Gene-Environment Interaction of PON1 and Low-Level Nerve Agent Exposure with Gulf War Illness: A Prevalence Case-Control Study Drawn from the U.S. Military Health Survey's National Population Sample. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:57001. [PMID: 35543525 PMCID: PMC9093163 DOI: 10.1289/ehp9009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Consensus on the etiology of 1991 Gulf War illness (GWI) has been limited by lack of objective individual-level environmental exposure information and assumed recall bias. OBJECTIVES We investigated a prestated hypothesis of the association of GWI with a gene-environment (GxE) interaction of the paraoxonase-1 (PON1) Q192R polymorphism and low-level nerve agent exposure. METHODS A prevalence sample of 508 GWI cases and 508 nonpaired controls was drawn from the 8,020 participants in the U.S. Military Health Survey, a representative sample survey of military veterans who served during the Gulf War. The PON1 Q192R genotype was measured by real-time polymerase chain reaction (RT-PCR), and the serum Q and R isoenzyme activity levels were measured with PON1-specific substrates. Low-level nerve agent exposure was estimated by survey questions on having heard nerve agent alarms during deployment. RESULTS The GxE interaction of the Q192R genotype and hearing alarms was strongly associated with GWI on both the multiplicative [prevalence odds ratio (POR) of the interaction=3.41; 95% confidence interval (CI): 1.20, 9.72] and additive (synergy index=4.71; 95% CI: 1.82, 12.19) scales, adjusted for measured confounders. The Q192R genotype and the alarms variable were independent (adjusted POR in the controls=1.18; 95% CI: 0.81, 1.73; p=0.35), and the associations of GWI with the number of R alleles and quartiles of Q isoenzyme were monotonic. The adjusted relative excess risk due to interaction (aRERI) was 7.69 (95% CI: 2.71, 19.13). Substituting Q isoenzyme activity for the genotype in the analyses corroborated the findings. Sensitivity analyses suggested that recall bias had forced the estimate of the GxE interaction toward the null and that unmeasured confounding is unlikely to account for the findings. We found a GxE interaction involving the Q-correlated PON1 diazoxonase activity and a weak possible GxE involving the Khamisiyah plume model, but none involving the PON1 R isoenzyme activity, arylesterase activity, paraoxonase activity, butyrylcholinesterase genotypes or enzyme activity, or pyridostigmine. DISCUSSION Given gene-environment independence and monotonicity, the unconfounded aRERI>0 supports a mechanistic interaction. Together with the direct evidence of exposure to fallout from bombing of chemical weapon storage facilities and the extensive toxicologic evidence of biochemical protection from organophosphates by the Q isoenzyme, the findings provide strong evidence for an etiologic role of low-level nerve agent in GWI. https://doi.org/10.1289/EHP9009.
Collapse
Affiliation(s)
- Robert W. Haley
- Division of Epidemiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gerald Kramer
- Division of Epidemiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Junhui Xiao
- Division of Epidemiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jill A. Dever
- RTI International, Washington, District of Columbia, USA
| | - John F. Teiber
- Division of Epidemiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Circulating HMGB1 is elevated in veterans with Gulf War Illness and triggers the persistent pro-inflammatory microglia phenotype in male C57Bl/6J mice. Transl Psychiatry 2021; 11:390. [PMID: 34253711 PMCID: PMC8275600 DOI: 10.1038/s41398-021-01517-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Gulf War Illness (GWI) is a chronic, multi-symptom peripheral and CNS condition with persistent microglial dysregulation, but the mechanisms driving the continuous neuroimmune pathology are poorly understood. The alarmin HMGB1 is an autocrine and paracrine pro-inflammatory signal, but the role of circulating HMGB1 in persistent neuroinflammation and GWI remains largely unknown. Using the LPS model of the persistent microglial pro-inflammatory response, male C57Bl/6J mice injected with LPS (5 mg/kg IP) exhibited persistent changes in microglia morphology and elevated pro-inflammatory markers in the hippocampus, cortex, and midbrain 7 days after LPS injection, while the peripheral immune response had resolved. Ex vivo serum analysis revealed an augmented pro-inflammatory response to LPS when microglia cells were cultured with the 7-day LPS serum, indicating the presence of bioactive circulating factors that prime the microglial pro-inflammatory response. Elevated circulating HMGB1 levels were identified in the mouse serum 7 days after LPS administration and in the serum of veterans with GWI. Tail vein injection of rHMGB1 in male C57Bl/6 J mice elevated TNFα mRNA levels in the liver, hippocampus, and cortex, demonstrating HMGB1-induced peripheral and CNS effects. Microglia isolated at 7 days after LPS injection revealed a unique transcriptional profile of 17 genes when compared to the acute 3 H LPS response, 6 of which were also upregulated in the midbrain by rHMGB1, highlighting a distinct signature of the persistent pro-inflammatory microglia phenotype. These findings indicate that circulating HMGB1 is elevated in GWI, regulates the microglial neuroimmune response, and drives chronic neuroinflammation that persists long after the initial instigating peripheral stimulus.
Collapse
|
5
|
Turner MP, Hubbard NA, Sivakolundu DK, Himes LM, Hutchison JL, Hart J, Spence JS, Frohman EM, Frohman TC, Okuda DT, Rypma B. Preserved canonicality of the BOLD hemodynamic response reflects healthy cognition: Insights into the healthy brain through the window of Multiple Sclerosis. Neuroimage 2019; 190:46-55. [PMID: 29454932 DOI: 10.1016/j.neuroimage.2017.12.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022] Open
Abstract
The hemodynamic response function (HRF), a model of brain blood-flow changes in response to neural activity, reflects communication between neurons and the vasculature that supplies these neurons in part by means of glial cell intermediaries (e.g., astrocytes). Intact neural-vascular communication might play a central role in optimal cognitive performance. This hypothesis can be tested by comparing healthy individuals to those with known white-matter damage and impaired performance, as seen in Multiple Sclerosis (MS). Glial cell intermediaries facilitate the ability of neurons to adequately convey metabolic needs to cerebral vasculature for sufficient oxygen and nutrient perfusion. In this study, we isolated measurements of the HRF that could quantify the extent to which white-matter affects neural-vascular coupling and cognitive performance. HRFs were modeled from multiple brain regions during multiple cognitive tasks using piecewise cubic spline functions, an approach that minimized assumptions regarding HRF shape that may not be valid for diseased populations, and were characterized using two shape metrics (peak amplitude and time-to-peak). Peak amplitude was reduced, and time-to-peak was longer, in MS patients relative to healthy controls. Faster time-to-peak was predicted by faster reaction time, suggesting an important role for vasodilatory speed in the physiology underlying processing speed. These results support the hypothesis that intact neural-glial-vascular communication underlies optimal neural and cognitive functioning.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nicholas A Hubbard
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Lyndahl M Himes
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - John Hart
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Elliot M Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Teresa C Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darin T Okuda
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Rayhan RU, Washington SD, Garner R, Zajur K, Martinez Addiego F, VanMeter JW, Baraniuk JN. Exercise challenge alters Default Mode Network dynamics in Gulf War Illness. BMC Neurosci 2019; 20:7. [PMID: 30791869 PMCID: PMC6385399 DOI: 10.1186/s12868-019-0488-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/12/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Gulf War Illness (GWI) affects 30% of veterans from the 1991 Gulf War and has no known cause. Everyday symptoms include pain, fatigue, migraines, and dyscognition. A striking syndromic feature is post-exertional malaise (PEM). This is recognized as an exacerbation of everyday symptoms following a physically stressful or cognitively demanding activity. The underlying mechanism of PEM is unknown. We previously reported a novel paradigm that possibly captured evidence of PEM by utilizing fMRI scans taken before and after sub-maximal exercises. We hypothesized that A) exercise would be a sufficient physically stressful activity to induce PEM and B) Comparison of brain activity before and after exercise would provide evidence of PEM's effect on cognition. We reported two-exercise induced GWI phenotypes with distinct changes in brain activation patterns during the completion of a 2-back working memory task (also known as two-back > zero-back). RESULTS Here we report unanticipated findings from the reverse contrast (zero-back > two-back), which allowed for the identification of task-related deactivation patterns. Following exercise, patients developed a significant increase in deactivation patterns within the Default Mode Network (DMN) that was not seen in controls. The DMN is comprised of regions that are consistently down regulated during external goal-directed activities and is often altered within many neurological disease states. CONCLUSIONS Exercise-induced alterations within the DMN provides novel evidence of GWI pathophysiology. More broadly, results suggest that task-related deactivation patterns may have biomarker potential in Gulf War Illness.
Collapse
Affiliation(s)
- Rakib U Rayhan
- Department of Physiology and Biophysics, Howard University College of Medicine, Adams Building Rm 2420, 520 W Street NW, Washington, DC, 20059, USA. .,Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA.
| | - Stuart D Washington
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - Richard Garner
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - Kristina Zajur
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - Florencia Martinez Addiego
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - John W VanMeter
- Center for Functional and Molecular Imaging, Georgetown University Medical Center, 3900 Reservoir Road Suite LM14, Washington, DC, 20007, USA
| | - James N Baraniuk
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| |
Collapse
|
7
|
Tillman GD, Spence JS, Briggs RW, Haley RW, Hart J, Kraut MA. Gulf War illness associated with abnormal auditory P1 event-related potential: Evidence of impaired cholinergic processing replicated in a national sample. Psychiatry Res Neuroimaging 2019; 283:7-15. [PMID: 30453127 DOI: 10.1016/j.pscychresns.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/05/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Our team previously reported event-related potential (ERP) and hyperarousal patterns from a study of one construction battalion of the U.S. Naval Reserve who served during the 1991 Persian Gulf War. We sought to replicate these findings in a sample that was more representative of the entire Gulf War-era veteran population, including male and female participants from four branches of the military. We collected ERP data from 40 veterans meeting Haley criteria for Gulf War syndromes 1-3 and from 22 matched Gulf War veteran controls while they performed an auditory oddball task. Reports of hyperarousal from the ill veterans were significantly greater than those from the control veterans, and P1 amplitudes in Syndromes 2 and 3 were significantly higher than P1 amplitudes in Syndrome 1, replicating our previous findings. Many of the contributors to the generation of the P1 potential are also involved in the regulation of arousal and are modulated by cholinergic and dopaminergic systems-two systems whose dysfunction has been implicated in Gulf War illness. These differences among the three syndrome groups where their means were on either side of controls is a replication of our previous ERP study and is consistent with previous imaging studies of this population.
Collapse
Affiliation(s)
- Gail D Tillman
- Center for BrainHealth, The University of Texas at Dallas
| | - Jeffrey S Spence
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Richard W Briggs
- Departments of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Robert W Haley
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John Hart
- Center for BrainHealth, The University of Texas at Dallas; Departments of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Michael A Kraut
- Center for BrainHealth, The University of Texas at Dallas; Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Cui F, Zhou L, Wang Z, Lang C, Park J, Tan Z, Yu Y, Sun C, Gao Y, Kong J. Altered Functional Connectivity of Striatal Subregions in Patients with Multiple Sclerosis. Front Neurol 2017; 8:129. [PMID: 28484419 PMCID: PMC5401875 DOI: 10.3389/fneur.2017.00129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/20/2017] [Indexed: 02/04/2023] Open
Abstract
Abnormal corticostriatal resting-state functional connectivity (rsFC) has been implicated in the neuropathology of multiple sclerosis. The striatum, a component of the basal ganglia, is involved in diverse functions including movement, cognition, emotion, and limbic information processing. However, the brain circuits of the striatal subregions contributing to the changes in rsFC in relapsing–remitting multiple sclerosis (RRMS) patients remain unknown. We used six subdivisions of the striatum in each hemisphere as seeds to investigate the rsFC of striatal subregions between RRMS patients and matched healthy controls (HCs). In addition, we also scanned a subcohort of RRMS patients after an average of 7 months to test the reliability of our findings. Compared to HCs, we found significantly increased dorsal caudal putamen (DCP) connectivity with the premotor area, dorsal lateral prefrontal cortex (DLPFC), insula, precuneus, and superior parietal lobule, and significantly increased connectivity between the superior ventral striatum and posterior cingulate cortex (PCC) in RRMS patients following both scans. Furthermore, we found significant associations between the Expanded Disability Status Scale and the rsFC of the left DCP with the DLPFC and parietal areas in RRMS patients. Our results suggest that the DCP may be a critical striatal subregion in the pathophysiology of RRMS.
Collapse
Affiliation(s)
- Fangyuan Cui
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Li Zhou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zengjian Wang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Joel Park
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhongjian Tan
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Yu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chunyan Sun
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|