1
|
Sylvester AL, Hensenne E, Ivanov D, Poser BA, Linden DEJ, van Amelsvoort T, Vingerhoets C. Neural excitation/inhibition imbalance and neurodevelopmental pathology in human copy number variant syndromes: a systematic review. J Neurodev Disord 2025; 17:31. [PMID: 40490701 DOI: 10.1186/s11689-025-09614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/12/2025] [Indexed: 06/11/2025] Open
Abstract
Cumulative evidence suggests neurodevelopmental disorders are closely related. The risk of these disorders is increased by a series of copy number variant syndromes - phenotypically heterogeneous genetic disorders, present in a minority of the population. Recent models suggest that a disruption in the balance between excitatory and inhibitory neural activity may contribute to the aetiology of neurodevelopmental disorders, and may be additionally disturbed in copy number variant syndromes. In this systematic review, the databases PubMed, Embase, and Scopus were searched for studies of excitation/inhibition imbalance in relation to neurodevelopmental disorders in human copy number variant samples. A total of 53 studies were included, representing a variety of copy number variants and research methodologies. The resulting data suggests excitation/inhibition balance is indeed disrupted in different copy number variant populations, providing insight into a putative mechanism of both idiopathic and genetic neurodevelopmental disorders. However, the high level of heterogeneity in the data set, alongside emerging techniques for excitation/inhibition assessment, prompts further investigation of this field.
Collapse
Affiliation(s)
- Amy L Sylvester
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, Netherlands.
| | - Eva Hensenne
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
- Cooperative Brain Imaging Center - CoBIC, Frankfurt, Germany
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, Netherlands
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, Netherlands
- Advisium 's Heeren Loo Zorggroep, Amersfoort, Netherlands
| |
Collapse
|
2
|
Nelson EA, Kraguljac NV, Bashir A, Cofield SS, Maximo JO, Armstrong W, Lahti AC. A longitudinal study of hippocampal subfield volumes and hippocampal glutamate levels in antipsychotic-naïve first episode psychosis patients. Mol Psychiatry 2025; 30:2017-2026. [PMID: 39580605 PMCID: PMC12014507 DOI: 10.1038/s41380-024-02812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Previous studies have implicated hippocampal abnormalities in the neuropathology of psychosis spectrum disorders. Reduced hippocampal volume has been reported across all illness stages, and this atrophy has been hypothesized to be the result of glutamatergic excess. To test this hypothesis, we measured hippocampal subfield volumes and hippocampal glutamate levels in antipsychotic naïve first episode psychosis patients (FEP) and the progression of volume decline and changes in glutamate levels over a 16-week antipsychotic drug (APD) trial. We aimed to determine if subfield volumes at baseline were associated with glutamate levels, and if baseline glutamate levels were predictive of change in subfield volumes over time. METHODS We enrolled ninety-three medication-naïve FEP participants and 80 matched healthy controls (HC). T1 and T2 weighted images and magnetic resonance spectroscopy (MRS) data from a voxel prescribed in the left hippocampus were collected from participants at baseline and after 6 and 16 weeks of APD treatment. Hippocampal subfield volumes were assessed using FreeSurfer 7.1.1., while glutamate levels were quantified using jMRUI version 6.0. Data were analyzed using linear mixed models. RESULTS We found regional subfield volume deficits in the CA1, and presubiculum in FEP at baseline, that further expanded to include the molecular and granule cell layer of the dentate gyrus (GC/ML/DG) and CA4 by week 16. Baseline hippocampal glutamate levels in FEP were not significantly different than those of HC, and there was no effect of treatment on glutamate. Glutamate levels were not related to initial subfield volumes or volume changes over 16 weeks. CONCLUSION We report a progressive loss of hippocampal subfield volumes over a period of 16 weeks after initiation of treatment, suggestive of early progression in neuropathology. Our results do not suggest a role for glutamate as a driving factor. This study underscores the need to further research the mechanism(s) underlying this phenomenon as it has implications for early intervention to preserve cognitive decline in FEP participants.
Collapse
Affiliation(s)
- Eric A Nelson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, USA
| | - Adil Bashir
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Stacey S Cofield
- Department of Electrical and Computer Engineering, Auburn University, Auburn, USA
| | - Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, USA
| | - William Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, USA.
| |
Collapse
|
3
|
Sun X, Xia M. Schizophrenia and Neurodevelopment: Insights From Connectome Perspective. Schizophr Bull 2025; 51:309-324. [PMID: 39209793 PMCID: PMC11908871 DOI: 10.1093/schbul/sbae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Schizophrenia is conceptualized as a brain connectome disorder that can emerge as early as late childhood and adolescence. However, the underlying neurodevelopmental basis remains unclear. Recent interest has grown in children and adolescent patients who experience symptom onset during critical brain development periods. Inspired by advanced methodological theories and large patient cohorts, Chinese researchers have made significant original contributions to understanding altered brain connectome development in early-onset schizophrenia (EOS). STUDY DESIGN We conducted a search of PubMed and Web of Science for studies on brain connectomes in schizophrenia and neurodevelopment. In this selective review, we first address the latest theories of brain structural and functional development. Subsequently, we synthesize Chinese findings regarding mechanisms of brain structural and functional abnormalities in EOS. Finally, we highlight several pivotal challenges and issues in this field. STUDY RESULTS Typical neurodevelopment follows a trajectory characterized by gray matter volume pruning, enhanced structural and functional connectivity, improved structural connectome efficiency, and differentiated modules in the functional connectome during late childhood and adolescence. Conversely, EOS deviates with excessive gray matter volume decline, cortical thinning, reduced information processing efficiency in the structural brain network, and dysregulated maturation of the functional brain network. Additionally, common functional connectome disruptions of default mode regions were found in early- and adult-onset patients. CONCLUSIONS Chinese research on brain connectomes of EOS provides crucial evidence for understanding pathological mechanisms. Further studies, utilizing standardized analyses based on large-sample multicenter datasets, have the potential to offer objective markers for early intervention and disease treatment.
Collapse
Affiliation(s)
- Xiaoyi Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Maximo J, Nelson E, Kraguljac N, Patton R, Bashir A, Lahti A. Changes in glutamate levels in anterior cingulate cortex following 16 weeks of antipsychotic treatment in antipsychotic-naïve first-episode psychosis patients. Psychol Med 2025; 55:e35. [PMID: 39927517 PMCID: PMC12017365 DOI: 10.1017/s0033291724003386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND Previous findings in psychosis have revealed mixed findings on glutamate (Glu) levels in the dorsal anterior cingulate cortex (dACC). Factors such as illness chronicity, methodology, and medication status have impeded a more nuanced evaluation of Glu in psychosis. The goal of this longitudinal neuroimaging study was to investigate the role of antipsychotics on Glu in the dACC in antipsychotic-naïve first-episode psychosis (FEP) patients. METHODS We enrolled 117 healthy controls (HCs) and 113 antipsychotic-naïve FEP patients for this study. 3T proton magnetic resonance spectroscopy (1H-MRS; PRESS; TE = 80 ms) data from a voxel prescribed in the dACC were collected from all participants at baseline, 6, and 16 weeks following antipsychotic treatment. Glutamate levels were quantified using the QUEST algorithm and analyzed longitudinally using linear mixed-effects models. RESULTS We found that baseline dACC glutamate levels in FEP were not significantly different than those of HCs. Examining Glu levels in FEP revealed a decrease in Glu levels after 16 weeks of antipsychotic treatment; this effect was weaker in HC. Finally, baseline Glu levels were associated with decreases in positive symptomology. CONCLUSIONS We report a progressive decrease of Glu levels over a period of 16 weeks after initiation of treatment and a baseline Glu level association with a reduction in positive symptomology, suggestive of a potential mechanism of antipsychotic drug (APD) action. Overall, these findings suggest that APDs can influence Glu within a period of 16 weeks, which has been deemed as an optimal window for symptom alleviation using APDs.
Collapse
Affiliation(s)
- Jose Maximo
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric Nelson
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina Kraguljac
- Department of Psychiatry and Behavioral Health, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Rita Patton
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, USA
| | - Adrienne Lahti
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Fan L, Zhang Z, Ma X, Liang L, Wang Y, Yuan L, Ouyang L, Li Z, Chen X, He Y, Palaniyappan L. Glutamate levels and symptom burden in high-risk and first-episode schizophrenia: a dual-voxel study of the anterior cingulate cortex. J Psychiatry Neurosci 2024; 49:E367-E376. [PMID: 39542650 PMCID: PMC11573428 DOI: 10.1503/jpn.240094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Reduced glutamatergic excitability of the anterior cingulate cortex (ACC) has been long suspected in schizophrenia; recent observations support low glutamatergic tone as the primary pathophysiology contributing to subtle early features of this illness, with a secondary disinhibition (higher glutamate tone) resulting in more prominent clinical symptoms later in its course. We sought to investigate whether people with genetic high risk (GHR) for schizophrenia have lower glutamate levels in the ACC than those at later stages of clinical high risk (CHR) and those with first-episode schizophrenia (FES), among whom symptoms are already prominent. METHODS We recruited people with CHR, GHR, or FES, as well as healthy controls. Using proton magnetic resonance spectroscopy, we determined glutamate levels in the perigenual ACC (pACC) and dorsal ACC (dACC) using a 3 T scanner. RESULTS We recruited 302 people across multiple stages of psychosis, including 63 with CHR, 76 with GHR, and 96 with FES, as well as 67 healthy controls. Those with GHR had lower glutamate levels in the dACC than those with CHR, while those with CHR had higher glutamate levels in the pACC than those with FES. Higher disorganization, but not any other symptom domain, was associated with lower levels of glutamate in the GHR group (dACC and pACC) and in the CHR group (pACC). LIMITATIONS The cross-sectional design precluded inferences regarding individual clinical trajectory and resolution at 3 T was insufficient to separate spectra of glutamine from glutamate. CONCLUSION Reduced glutamatergic tone among people genetically predisposed to schizophrenia supports diminished excitability as an early feature of schizophrenia, contributing to the subtle symptom of disorganization across high-risk states. Higher glutamate levels become apparent when psychotic symptoms become prominent, possibly as a disinhibitory effect and, at the full-blown stage of psychosis, the relationship between glutamate concentrations and symptoms ceases to be simply linear.
Collapse
Affiliation(s)
- Lejia Fan
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Zhenmei Zhang
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Xiaoqian Ma
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Liangbing Liang
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Yujue Wang
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Liu Yuan
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Lijun Ouyang
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Zongchang Li
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Xiaogang Chen
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Ying He
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Lena Palaniyappan
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| |
Collapse
|
6
|
Maximo JO, Armstrong WP, Kraguljac NV, Lahti AC. Higher-Order Intrinsic Brain Network Trajectories After Antipsychotic Treatment in Medication-Naïve Patients With First-Episode Psychosis. Biol Psychiatry 2024; 96:198-206. [PMID: 38272288 DOI: 10.1016/j.biopsych.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Intrinsic brain network connectivity is already altered in first-episode psychosis (FEP), but the longitudinal trajectories of network connectivity, especially in response to antipsychotic treatment, remain poorly understood. The goal of this study was to investigate how antipsychotic medications affect higher-order intrinsic brain network connectivity in FEP. METHODS Data from 87 antipsychotic medication-naïve patients with FEP and 87 healthy control participants were used. Medication-naïve patients received antipsychotic treatment for 16 weeks. Resting-state functional connectivity (FC) of the default mode, salience, dorsal attention, and executive control networks were assessed prior to treatment and at 6 and 16 weeks after treatment. We evaluated baseline and FC changes using linear mixed models to test group × time interactions within each network. Associations between FC changes after 16 weeks and response to treatment were also evaluated. RESULTS Prior to treatment, significant group differences in all networks were found. However, significant trajectory changes in FC were found only in the default mode and executive control networks. Changes in FC in these networks were associated with treatment response. Several sensitivity analyses showed a consistent normalization of executive control network FC in response to antipsychotic treatment. CONCLUSIONS Here, we found that alterations in intrinsic brain network FC were not only alleviated with antipsychotic treatment, but the extent of this normalization was also associated with the degree of reduction in symptom severity. Taken together, our data suggest modulation of intrinsic brain network connectivity (mainly frontoparietal connectivity) as a mechanism underlying antipsychotic treatment response in FEP.
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - William P Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
7
|
De Paolis ML, Paoletti I, Zaccone C, Capone F, D'Amelio M, Krashia P. Transcranial alternating current stimulation (tACS) at gamma frequency: an up-and-coming tool to modify the progression of Alzheimer's Disease. Transl Neurodegener 2024; 13:33. [PMID: 38926897 PMCID: PMC11210106 DOI: 10.1186/s40035-024-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Ilaria Paoletti
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Claudio Zaccone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy.
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| |
Collapse
|
8
|
Maximo JO, Briend F, Armstrong WP, Kraguljac NV, Lahti AC. Higher-order functional brain networks and anterior cingulate glutamate + glutamine (Glx) in antipsychotic-naïve first episode psychosis patients. Transl Psychiatry 2024; 14:183. [PMID: 38600117 PMCID: PMC11006887 DOI: 10.1038/s41398-024-02854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 04/12/2024] Open
Abstract
Human connectome studies have provided abundant data consistent with the hypothesis that functional dysconnectivity is predominant in psychosis spectrum disorders. Converging lines of evidence also suggest an interaction between dorsal anterior cingulate cortex (dACC) cortical glutamate with higher-order functional brain networks (FC) such as the default mode (DMN), dorsal attention (DAN), and executive control networks (ECN) in healthy controls (HC) and this mechanism may be impaired in psychosis. Data from 70 antipsychotic-medication naïve first-episode psychosis (FEP) and 52 HC were analyzed. 3T Proton magnetic resonance spectroscopy (1H-MRS) data were acquired from a voxel in the dACC and assessed correlations (positive FC) and anticorrelations (negative FC) of the DMN, DAN, and ECN. We then performed regressions to assess associations between glutamate + glutamine (Glx) with positive and negative FC of these same networks and compared them between groups. We found alterations in positive and negative FC in all networks (HC > FEP). A relationship between dACC Glx and positive and negative FC was found in both groups, but when comparing these relationships between groups, we found contrasting associations between these variables in FEP patients compared to HC. We demonstrated that both positive and negative FC in three higher-order resting state networks are already altered in antipsychotic-naïve FEP, underscoring the importance of also considering anticorrelations for optimal characterization of large-scale functional brain networks as these represent biological processes as well. Our data also adds to the growing body of evidence supporting the role of dACC cortical Glx as a mechanism underlying alterations in functional brain network connectivity. Overall, the implications for these findings are imperative as this particular mechanism may differ in untreated or chronic psychotic patients; therefore, understanding this mechanism prior to treatment could better inform clinicians.Clinical trial registration: Trajectories of Treatment Response as Window into the Heterogeneity of Psychosis: A Longitudinal Multimodal Imaging Study, NCT03442101 . Glutamate, Brain Connectivity and Duration of Untreated Psychosis (DUP), NCT02034253 .
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frederic Briend
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- UMR1253, iBrain, Université de Tours, Inserm, Tours, France
| | - William P Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Harikumar A, Solovyeva KP, Misiura M, Iraji A, Plis SM, Pearlson GD, Turner JA, Calhoun VD. Revisiting Functional Dysconnectivity: a Review of Three Model Frameworks in Schizophrenia. Curr Neurol Neurosci Rep 2023; 23:937-946. [PMID: 37999830 PMCID: PMC11126894 DOI: 10.1007/s11910-023-01325-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Over the last decade, evidence suggests that a combination of behavioral and neuroimaging findings can help illuminate changes in functional dysconnectivity in schizophrenia. We review the recent connectivity literature considering several vital models, considering connectivity findings, and relationships with clinical symptoms. We reviewed resting state fMRI studies from 2017 to 2023. We summarized the role of two sets of brain networks (cerebello-thalamo-cortical (CTCC) and the triple network set) across three hypothesized models of schizophrenia etiology (neurodevelopmental, vulnerability-stress, and neurotransmitter hypotheses). RECENT FINDINGS The neurotransmitter and neurodevelopmental models best explained CTCC-subcortical dysfunction, which was consistently connected to symptom severity and motor symptoms. Triple network dysconnectivity was linked to deficits in executive functioning, and the salience network (SN)-default mode network dysconnectivity was tied to disordered thought and attentional deficits. This paper links behavioral symptoms of schizophrenia (symptom severity, motor, executive functioning, and attentional deficits) to various hypothesized mechanisms.
Collapse
Affiliation(s)
- Amritha Harikumar
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Kseniya P Solovyeva
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Maria Misiura
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Armin Iraji
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Sergey M Plis
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Jessica A Turner
- The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vince D Calhoun
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA.
| |
Collapse
|
10
|
Jones KT, Gallen CL, Ostrand AE, Rojas JC, Wais P, Rini J, Chan B, Lago AL, Boxer A, Zhao M, Gazzaley A, Zanto TP. Gamma neuromodulation improves episodic memory and its associated network in amnestic mild cognitive impairment: a pilot study. Neurobiol Aging 2023; 129:72-88. [PMID: 37276822 PMCID: PMC10583532 DOI: 10.1016/j.neurobiolaging.2023.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 06/07/2023]
Abstract
Amnestic mild cognitive impairment (aMCI) is a predementia stage of Alzheimer's disease associated with dysfunctional episodic memory and limited treatment options. We aimed to characterize feasibility, clinical, and biomarker effects of noninvasive neurostimulation for aMCI. 13 individuals with aMCI received eight 60-minute sessions of 40-Hz (gamma) transcranial alternating current stimulation (tACS) targeting regions related to episodic memory processing. Feasibility, episodic memory, and plasma Alzheimer's disease biomarkers were assessed. Neuroplastic changes were characterized by resting-state functional connectivity (RSFC) and neuronal excitatory/inhibitory balance. Gamma tACS was feasible and aMCI participants demonstrated improvement in multiple metrics of episodic memory, but no changes in biomarkers. Improvements in episodic memory were most pronounced in participants who had the highest modeled tACS-induced electric fields and exhibited the greatest changes in RSFC. Increased RSFC was also associated with greater hippocampal excitability and higher baseline white matter integrity. This study highlights initial feasibility and the potential of gamma tACS to rescue episodic memory in an aMCI population by modulating connectivity and excitability within an episodic memory network.
Collapse
Affiliation(s)
- Kevin T Jones
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA.
| | - Courtney L Gallen
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Avery E Ostrand
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Julio C Rojas
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Peter Wais
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - James Rini
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Brandon Chan
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Argentina Lario Lago
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Adam Boxer
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Min Zhao
- Departments of Ophthalmology and Vision Science and Dermatology, Institute for Regenerative Cures, University of California-Davis, Davis, CA
| | - Adam Gazzaley
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA; Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA
| | - Theodore P Zanto
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA.
| |
Collapse
|
11
|
Demler VF, Sterner EF, Wilson M, Zimmer C, Knolle F. Association between increased anterior cingulate glutamate and psychotic-like experiences, but not autistic traits in healthy volunteers. Sci Rep 2023; 13:12792. [PMID: 37550354 PMCID: PMC10406950 DOI: 10.1038/s41598-023-39881-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
Despite many differences, autism spectrum disorder and schizophrenia spectrum disorder share environmental risk factors, genetic predispositions as well as neuronal abnormalities, and show similar cognitive deficits in working memory, perspective taking, or response inhibition. These shared abnormalities are already present in subclinical traits of these disorders. The literature proposes that changes in the inhibitory GABAergic and the excitatory glutamatergic system could explain underlying neuronal commonalities and differences. Using magnetic resonance spectroscopy (1H-MRS), we investigated the associations between glutamate concentrations in the anterior cingulate cortex (ACC), the left/right putamen, and left/right dorsolateral prefrontal cortex and psychotic-like experiences (Schizotypal Personality Questionnaire) and autistic traits (Autism Spectrum Quotient) in 53 healthy individuals (26 women). To investigate the contributions of glutamate concentrations in different cortical regions to symptom expression and their interactions, we used linear regression analyses. We found that only glutamate concentration in the ACC predicted psychotic-like experiences, but not autistic traits. Supporting this finding, a binomial logistic regression predicting median-split high and low risk groups for psychotic-like experiences revealed ACC glutamate levels as a significant predictor for group membership. Taken together, this study provides evidence that glutamate levels in the ACC are specifically linked to the expression of psychotic-like experiences, and may be a potential candidate in identifying early risk individuals prone to developing psychotic-like experiences.
Collapse
Affiliation(s)
- Verena F Demler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Elisabeth F Sterner
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Franziska Knolle
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Sigvard AK, Bojesen KB, Ambrosen KS, Nielsen MØ, Gjedde A, Tangmose K, Kumakura Y, Edden R, Fuglø D, Jensen LT, Rostrup E, Ebdrup BH, Glenthøj BY. Dopamine Synthesis Capacity and GABA and Glutamate Levels Separate Antipsychotic-Naïve Patients With First-Episode Psychosis From Healthy Control Subjects in a Multimodal Prediction Model. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:500-509. [PMID: 37519478 PMCID: PMC10382695 DOI: 10.1016/j.bpsgos.2022.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Disturbances in presynaptic dopamine activity and levels of GABA (gamma-aminobutyric acid) and glutamate plus glutamine collectively may have a role in the pathophysiology of psychosis, although separately they are poor diagnostic markers. We tested whether these neurotransmitters in combination improve the distinction of antipsychotic-naïve patients with first-episode psychosis from healthy control subjects. Methods We included 23 patients (mean age 22.3 years, 9 male) and 20 control subjects (mean age 22.4 years, 8 male). We determined dopamine metabolism in the nucleus accumbens and striatum from 18F-fluorodopa (18F-FDOPA) positron emission tomography. We measured GABA levels in the anterior cingulate cortex (ACC) and glutamate plus glutamine levels in the ACC and left thalamus with 3T proton magnetic resonance spectroscopy. We used binominal logistic regression for unimodal prediction when we modeled neurotransmitters individually and for multimodal prediction when we combined the 3 neurotransmitters. We selected the best combination based on Akaike information criterion. Results Individual neurotransmitters failed to predict group. Three triple neurotransmitter combinations significantly predicted group after Benjamini-Hochberg correction. The best model (Akaike information criterion 48.5) carried 93.5% of the cumulative model weight. It reached a classification accuracy of 83.7% (p = .003) and included dopamine synthesis capacity (Ki4p) in the nucleus accumbens (p = .664), GABA levels in the ACC (p = .019), glutamate plus glutamine levels in the thalamus (p = .678), and the interaction term Ki4p × GABA (p = .016). Conclusions Our multimodal approach proved superior classification accuracy, implying that the pathophysiology of patients represents a combination of neurotransmitter disturbances rather than aberrations in a single neurotransmitter. Particularly aberrant interrelations between Ki4p in the nucleus accumbens and GABA values in the ACC appeared to contribute diagnostic information.
Collapse
Affiliation(s)
- Anne K. Sigvard
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Karen S. Ambrosen
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Albert Gjedde
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Yoshitaka Kumakura
- Department of Diagnostic Radiology and Nuclear Medicine, Saitama Medical Center, Saitama Medical University, Japan
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- FM. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Dan Fuglø
- Department of Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars Thorbjørn Jensen
- Department of Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Bjørn H. Ebdrup
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Chen X, Song X, Öngür D, Du F. Association of default-mode network neurotransmitters and inter-network functional connectivity in first episode psychosis. Neuropsychopharmacology 2023; 48:781-788. [PMID: 36788375 PMCID: PMC10066209 DOI: 10.1038/s41386-023-01546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Multiple psychiatric disorders are characterized by a failure to suppress default-mode network (DMN) activity during tasks and by weaker anti-correlations between DMN and other brain networks at rest. However, the cellular and molecular mechanisms underlying this phenomenon are poorly understood. At the cellular level, neuronal activity is regulated by multiple neurochemical processes including cycling of glutamate and GABA, the major excitatory and inhibitory neurotransmitters in brain. By combining functional MRI and magnetic resonance spectroscopy techniques, it has been shown that the neurotransmitter concentrations in DMN modulate not only functional activity during cognitive tasks, but also the functional connectivity between DMN and other brain networks such as frontoparietal executive control network (CN) at rest in the healthy brain. In the current study, we extend previous research to first episode psychosis (FEP) patients and their relatives. We detected higher glutamate (Glu) levels in the medial prefrontal cortex (MPFC) in FEP compared to healthy controls without a significant difference in GABA. We also observed a significantly lower functional anti-correlated connectivity between critical nodes within the DMN (MPFC) and CN (DLPFC) in FEP. Furthermore, the relationship between MPFC Glu and GABA concentrations and the functional anti-correlation that is seen in healthy people was absent in FEP patients. These findings imply that both the DMN Glu level and the interaction between DMN and CN are affected by the illness, as is the association between neurochemistry and functional connectivity. A better understanding of this observation could provide opportunities for developing novel treatment strategies for psychosis.
Collapse
Affiliation(s)
- Xi Chen
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, CA, 02478, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaopeng Song
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, CA, 02478, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Wuhan Zhongke Industrial Research Institute of Medical Science, Wuhan, Hubei, 430075, China
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, CA, 02478, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Lahti AC. Discovery of early schizophrenia through neuroimaging. Psychiatry Res 2023; 322:114993. [PMID: 36773467 DOI: 10.1016/j.psychres.2022.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022]
Abstract
In order to understand the pathophysiology of schizophrenia we carried out a number of brain imaging studies in both medicated and unmedicated patients. In addition, to help unravel the pathophysiological mechanisms without the confound of prior exposure to antipsychotic medication or chronicity, we enrolled a large group of antipsychotic medication-naïve first episode psychosis patients at first treatment contact, and performed longitudinal multimodal neuroimaging studies over several months. In unmedicated patients we found both functional and structural connectivity alterations. Similarly, in medication-naïve patients we replicated many of our prior findings, suggesting that functional and structural connectivity alterations are core pathological features of the illness. We found that a longer duration of untreated psychosis, i.e. the time between first symptom onset and initial treatment contact, was associated with greater structural and functional connectivity abnormalities, which in turn was associated with worse subsequent clinical response to treatment. These results underscore the critical importance of early identification and treatment in patients with psychosis spectrum disorders.
Collapse
Affiliation(s)
- Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
15
|
Li Q, Xu X, Qian Y, Cai H, Zhao W, Zhu J, Yu Y. Resting-state brain functional alterations and their genetic mechanisms in drug-naive first-episode psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:13. [PMID: 36841861 PMCID: PMC9968350 DOI: 10.1038/s41537-023-00338-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
Extensive research has established the presence of resting-state brain functional damage in psychosis. However, the genetic mechanisms of such disease phenotype are yet to be unveiled. We investigated resting-state brain functional alterations in patients with drug-naive first-episode psychosis (DFP) by performing a neuroimaging meta-analysis of 8 original studies comprising 500 patients and 469 controls. Combined with the Allen Human Brain Atlas, we further conducted transcriptome-neuroimaging spatial correlations to identify genes whose expression levels were linked to brain functional alterations in DFP, followed by a range of gene functional characteristic analyses. Meta-analysis revealed a mixture of increased and decreased brain function in widespread areas including the default-mode, visual, motor, striatal, and cerebellar systems in DFP. Moreover, these brain functional alterations were spatially associated with the expression of 1662 genes, which were enriched for molecular functions, cellular components, and biological processes of the cerebral cortex, as well as psychiatric disorders including schizophrenia. Specific expression analyses demonstrated that these genes were specifically expressed in the brain tissue, in cortical neurons and immune cells, and during nearly all developmental periods. Concurrently, the genes could construct a protein-protein interaction network supported by hub genes and were linked to multiple behavioral domains including emotion, attention, perception, and motor. Our findings provide empirical evidence for the notion that brain functional damage in DFP involves a complex interaction of polygenes with various functional characteristics.
Collapse
Affiliation(s)
- Qian Li
- grid.459419.4Department of Radiology, Chaohu Hospital of Anhui Medical University, 238000 Hefei, China ,grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Xiaotao Xu
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Yinfeng Qian
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Huanhuan Cai
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Wenming Zhao
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China. .,Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China. .,Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China. .,Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China. .,Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| |
Collapse
|
16
|
Kruse AO, Bustillo JR. Glutamatergic dysfunction in Schizophrenia. Transl Psychiatry 2022; 12:500. [PMID: 36463316 PMCID: PMC9719533 DOI: 10.1038/s41398-022-02253-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
The NMDA-R hypofunction model of schizophrenia started with the clinical observation of the precipitation of psychotic symptoms in patients with schizophrenia exposed to PCP or ketamine. Healthy volunteers exposed to acute low doses of ketamine experienced mild psychosis but also negative and cognitive type symptoms reminiscent of the full clinical picture of schizophrenia. In rodents, acute systemic ketamine resulted in a paradoxical increase in extracellular frontal glutamate as well as of dopamine. Similar increase in prefrontal glutamate was documented with acute ketamine in healthy volunteers with 1H-MRS. Furthermore, sub-chronic low dose PCP lead to reductions in frontal dendritic tree density in rodents. In post-mortem ultrastructural studies in schizophrenia, a broad reduction in dendritic complexity and somal volume of pyramidal cells has been repeatedly described. This most likely accounts for the broad, subtle progressive cortical thinning described with MRI in- vivo. Additionally, prefrontal reductions in the obligatory GluN1 subunit of the NMDA-R has been repeatedly found in post-mortem tissue. The vast 1H-MRS literature in schizophrenia has documented trait-like small increases in glutamate concentrations in striatum very early in the illness, before antipsychotic treatment (the same structure where increased pre-synaptic release of dopamine has been reported with PET). The more recent genetic literature has reliably detected very small risk effects for common variants involving several glutamate-related genes. The pharmacological literature has followed two main tracks, directly informed by the NMDA-R hypo model: agonism at the glycine site (as mostly add-on studies targeting negative and cognitive symptoms); and pre-synaptic modulation of glutamatergic release (as single agents for acute psychosis). Unfortunately, both approaches have failed so far. There is little doubt that brain glutamatergic abnormalities are present in schizophrenia and that some of these are related to the etiology of the illness. The genetic literature directly supports a non- specific etiological role for glutamatergic dysfunction. Whether NMDA-R hypofunction as a specific mechanism accounts for any important component of the illness is still not evident. However, a glutamatergic model still has heuristic value to guide future research in schizophrenia. New tools to jointly examine brain glutamatergic, GABA-ergic and dopaminergic systems in-vivo, early in the illness, may lay the ground for a next generation of clinical trials that go beyond dopamine D2 blockade.
Collapse
Affiliation(s)
- Andreas O Kruse
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
17
|
Chabert J, Allauze E, Pereira B, Chassain C, De Chazeron I, Rotgé JY, Fossati P, Llorca PM, Samalin L. Glutamatergic and N-Acetylaspartate Metabolites in Bipolar Disorder: A Systematic Review and Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies. Int J Mol Sci 2022; 23:ijms23168974. [PMID: 36012234 PMCID: PMC9409038 DOI: 10.3390/ijms23168974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
The exact neurobiological mechanisms of bipolar disorder (BD) remain unknown. However, some neurometabolites could be implicated, including Glutamate (Glu), Glutamine (Gln), Glx, and N-acetylaspartate (NAA). Proton Magnetic Resonance Spectroscopy (1H-MRS) allows one to quantify these metabolites in the human brain. Thus, we conducted a systematic review and meta-analysis of the literature to compare their levels between BD patients and healthy controls (HC). The main inclusion criteria for inclusion were 1H-MRS studies comparing levels of Glu, Gln, Glx, and NAA in the prefrontal cortex (PFC), anterior cingulate cortex (ACC), and hippocampi between patients with BD in clinical remission or a major depressive episode and HC. Thirty-three studies were included. NAA levels were significantly lower in the left white matter PFC (wmPFC) of depressive and remitted BD patients compared to controls and were also significantly higher in the left dorsolateral PFC (dlPFC) of depressive BD patients compared to HC. Gln levels were significantly higher in the ACC of remitted BD patients compared to in HC. The decreased levels of NAA of BD patients may be related to the alterations in neuroplasticity and synaptic plasticity found in BD patients and may explain the deep white matter hyperintensities frequently observed via magnetic resonance imagery.
Collapse
Affiliation(s)
- Jonathan Chabert
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
- Correspondence: (J.C.); (L.S.); Tel.: +33-4-73-752-124 (J.C. & L.S.)
| | - Etienne Allauze
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Université Clermont Auvergne, 7 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Carine Chassain
- Imaging Department, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, Clermont Auvergne INP, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Ingrid De Chazeron
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Jean-Yves Rotgé
- Service de Psychiatrie Adulte, Pitié-Salpêtrière Hospital, CNRS UMR 7593, 47-83 Bd de l’Hôpital, 75651 Paris, France
| | - Philippe Fossati
- Service de Psychiatrie Adulte, Pitié-Salpêtrière Hospital, CNRS UMR 7593, 47-83 Bd de l’Hôpital, 75651 Paris, France
| | - Pierre-Michel Llorca
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Ludovic Samalin
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
- Correspondence: (J.C.); (L.S.); Tel.: +33-4-73-752-124 (J.C. & L.S.)
| |
Collapse
|
18
|
Li W, Xu J, Xiang Q, Zhuo K, Zhang Y, Liu D, Li Y. Neurometabolic and functional changes of default-mode network relate to clinical recovery in first-episode psychosis patients: A longitudinal 1H-MRS and fMRI study. Neuroimage Clin 2022; 34:102970. [PMID: 35240468 PMCID: PMC8889416 DOI: 10.1016/j.nicl.2022.102970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Antipsychotic treatment has improved the disrupted functional connectivity (FC) and neurometabolites levels of the default mode network (DMN) in schizophrenia patients, but a direct relationship between FC change, neurometabolic level alteration, and symptom improvement has not been built. This study examined the association between the alterations in DMN FC, the changes of neurometabolites levels in the medial prefrontal cortex (MPFC), and the improvementsinpsychopathology in a longitudinal study of drug-naïve first-episode psychosis (FEP) patients. METHODS Thirty-two drug-naïve FEP patients and 30 matched healthy controls underwent repeated assessments with the Positive and Negative Syndrome Scale (PANSS) and 3T proton magnetic resonance spectroscopy as well as resting-state functional magnetic resonance imaging. The levels of γ-aminobutyric acid, glutamate, N-acetyl-aspartate in MPFC, and the FC of DMN were measured. After 8-week antipsychotic treatment, 24 patients were re-examined. RESULTS After treatment, the changes in γ-aminobutyric acid were correlated with the alterations of FC between the MPFC and DMN, while the changes in N-acetyl-aspartate were associated with the alterations of FC between the posterior cingulate cortex/precuneus and DMN. The FC changes of both regions were correlated with patients PANSS positive score reductions. The structural equation modeling analyses revealed that the changes of DMN FC mediated the relationship between the changes of neurometabolites and the symptom improvements of the patients. CONCLUSIONS The derived neurometabolic-functional changes underlying the clinical recovery provide insights into the prognosis of FEP patients. It is noteworthy that this is an exploratory study, and future work with larger sample size is needed to validate our findings.
Collapse
Affiliation(s)
- Wenli Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jiale Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Qiong Xiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Kaiming Zhuo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yaoyu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Dengtang Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Huashan Hospital, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Institute of Mental Health, Fudan University, Shanghai 200030, PR China.
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
19
|
Demchenko I, Tassone VK, Kennedy SH, Dunlop K, Bhat V. Intrinsic Connectivity Networks of Glutamate-Mediated Antidepressant Response: A Neuroimaging Review. Front Psychiatry 2022; 13:864902. [PMID: 35722550 PMCID: PMC9199367 DOI: 10.3389/fpsyt.2022.864902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional monoamine-based pharmacotherapy, considered the first-line treatment for major depressive disorder (MDD), has several challenges, including high rates of non-response. To address these challenges, preclinical and clinical studies have sought to characterize antidepressant response through monoamine-independent mechanisms. One striking example is glutamate, the brain's foremost excitatory neurotransmitter: since the 1990s, studies have consistently reported altered levels of glutamate in MDD, as well as antidepressant effects following molecular targeting of glutamatergic receptors. Therapeutically, this has led to advances in the discovery, testing, and clinical application of a wide array of glutamatergic agents, particularly ketamine. Notably, ketamine has been demonstrated to rapidly improve mood symptoms, unlike monoamine-based interventions, and the neurobiological basis behind this rapid antidepressant response is under active investigation. Advances in brain imaging techniques, including functional magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography, enable the identification of the brain network-based characteristics distinguishing rapid glutamatergic modulation from the effect of slow-acting conventional monoamine-based pharmacology. Here, we review brain imaging studies that examine brain connectivity features associated with rapid antidepressant response in MDD patients treated with glutamatergic pharmacotherapies in contrast with patients treated with slow-acting monoamine-based treatments. Trends in recent brain imaging literature suggest that the activity of brain regions is organized into coherent functionally distinct networks, termed intrinsic connectivity networks (ICNs). We provide an overview of major ICNs implicated in depression and explore how treatment response following glutamatergic modulation alters functional connectivity of limbic, cognitive, and executive nodes within ICNs, with well-characterized anti-anhedonic effects and the enhancement of "top-down" executive control. Alterations within and between the core ICNs could potentially exert downstream effects on the nodes within other brain networks of relevance to MDD that are structurally and functionally interconnected through glutamatergic synapses. Understanding similarities and differences in brain ICNs features underlying treatment response will positively impact the trajectory and outcomes for adults suffering from MDD and will facilitate the development of biomarkers to enable glutamate-based precision therapeutics.
Collapse
Affiliation(s)
- Ilya Demchenko
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Vanessa K Tassone
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katharine Dunlop
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|