1
|
Woo JH, Costa VD, Taswell CA, Rothenhoefer KM, Averbeck BB, Soltani A. Contribution of amygdala to dynamic model arbitration under uncertainty. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612869. [PMID: 39314420 PMCID: PMC11419134 DOI: 10.1101/2024.09.13.612869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Intrinsic uncertainty in the reward environment requires the brain to run multiple models simultaneously to predict outcomes based on preceding cues or actions, commonly referred to as stimulus- and action-based learning. Ultimately, the brain also must adopt appropriate choice behavior using reliability of these models. Here, we combined multiple experimental and computational approaches to quantify concurrent learning in monkeys performing tasks with different levels of uncertainty about the model of the environment. By comparing behavior in control monkeys and monkeys with bilateral lesions to the amygdala or ventral striatum, we found evidence for dynamic, competitive interaction between stimulus-based and action-based learning, and for a distinct role of the amygdala. Specifically, we demonstrate that the amygdala adjusts the initial balance between the two learning systems, thereby altering the interaction between arbitration and learning that shapes the time course of both learning and choice behaviors. This novel role of the amygdala can account for existing contradictory observations and provides testable predictions for future studies into circuit-level mechanisms of flexible learning and choice under uncertainty.
Collapse
|
2
|
Mao Q, Zhang H, Zhang Z, Lu Y, Pan J, Guo D, Huang L, Tian H, Ma K. Co-decoction of Lilii bulbus and Radix Rehmannia Recens and its key bioactive ingredient verbascoside inhibit neuroinflammation and intestinal permeability associated with chronic stress-induced depression via the gut microbiota-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155510. [PMID: 38696921 DOI: 10.1016/j.phymed.2024.155510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Gut microbiota plays a critical role in the pathogenesis of depression and are a therapeutic target via maintaining the homeostasis of the host through the gut microbiota-brain axis (GMBA). A co-decoction of Lilii bulbus and Radix Rehmannia Recens (LBRD), in which verbascoside is the key active ingredient, improves brain and gastrointestinal function in patients with depression. However, in depression treatment using verbascoside or LBRD, mechanisms underlying the bidirectional communication between the intestine and brain via the GMBA are still unclear. PURPOSE This study aimed to examine the role of verbascoside in alleviating depression via gut-brain bidirectional communication and to study the possible pathways involved in the GMBA. METHODS Key molecules and compounds involved in antidepressant action were identified using HPLC and transcriptomic analyses. The antidepressant effects of LBRD and verbascoside were observed in chronic stress induced depression model by behavioural test, neuronal morphology, and synaptic dendrite ultrastructure, and their neuroprotective function was measured in corticosterone (CORT)-stimulated nerve cell injury model. The causal link between the gut microbiota and the LBRD and verbascoside antidepressant efficacy was evaluate via gut microbiota composition analysis and faecal microbiota transplantation (FMT). RESULTS LBRD and Verbascoside administration ameliorated depression-like behaviours and synaptic damage by reversing gut microbiota disturbance and inhibiting inflammatory responses as the result of impaired intestinal permeability or blood-brain barrier leakiness. Furthermore, verbascoside exerted neuroprotective effects against CORT-induced cytotoxicity in an in vitro depression model. FMT therapy indicated that verbascoside treatment attenuated gut inflammation and central nervous system inflammatory responses, as well as eliminated neurotransmitter and brain-gut peptide deficiencies in the prefrontal cortex by modulating the composition of gut microbiota. Lactobacillus, Parabacteroides, Bifidobacterium, and Ruminococcus might play key roles in the antidepressant effects of LBRD via the GMBA. CONCLUSION The current study elucidates the multi-component, multi-target, and multi-pathway therapeutic effects of LBRD on depression by remodeling GMBA homeostasis and further verifies the causality between gut microbiota and the antidepressant effects of verbascoside and LBRD.
Collapse
Affiliation(s)
- Qiancheng Mao
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Hongxiu Zhang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Institute of Virology, Jinan Municipal Center for Disease Control and Prevention, Jinan 250021, PR China
| | - Zhe Zhang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Yanting Lu
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Jin Pan
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Dongjing Guo
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Liuxuan Huang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Haoquan Tian
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Ke Ma
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| |
Collapse
|
3
|
Kim T, Lee SW, Lho SK, Moon SY, Kim M, Kwon JS. Neurocomputational model of compulsivity: deviating from an uncertain goal-directed system. Brain 2024; 147:2230-2244. [PMID: 38584499 PMCID: PMC11146420 DOI: 10.1093/brain/awae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Despite a theory that an imbalance in goal-directed versus habitual systems serve as building blocks of compulsions, research has yet to delineate how this occurs during arbitration between the two systems in obsessive-compulsive disorder. Inspired by a brain model in which the inferior frontal cortex selectively gates the putamen to guide goal-directed or habitual actions, this study aimed to examine whether disruptions in the arbitration process via the fronto-striatal circuit would underlie imbalanced decision-making and compulsions in patients. Thirty patients with obsessive-compulsive disorder [mean (standard deviation) age = 26.93 (6.23) years, 12 females (40%)] and 30 healthy controls [mean (standard deviation) age = 24.97 (4.72) years, 17 females (57%)] underwent functional MRI scans while performing the two-step Markov decision task, which was designed to dissociate goal-directed behaviour from habitual behaviour. We employed a neurocomputational model to account for an uncertainty-based arbitration process, in which a prefrontal arbitrator (i.e. inferior frontal gyrus) allocates behavioural control to a more reliable strategy by selectively gating the putamen. We analysed group differences in the neural estimates of uncertainty of each strategy. We also compared the psychophysiological interaction effects of system preference (goal-directed versus habitual) on fronto-striatal coupling between groups. We examined the correlation between compulsivity score and the neural activity and connectivity involved in the arbitration process. The computational model captured the subjects' preferences between the strategies. Compared with healthy controls, patients had a stronger preference for the habitual system (t = -2.88, P = 0.006), which was attributed to a more uncertain goal-directed system (t = 2.72, P = 0.009). Before the allocation of controls, patients exhibited hypoactivity in the inferior frontal gyrus compared with healthy controls when this region tracked the inverse of uncertainty (i.e. reliability) of goal-directed behaviour (P = 0.001, family-wise error rate corrected). When reorienting behaviours to reach specific goals, patients exhibited weaker right ipsilateral ventrolateral prefronto-putamen coupling than healthy controls (P = 0.001, family-wise error rate corrected). This hypoconnectivity was correlated with more severe compulsivity (r = -0.57, P = 0.002). Our findings suggest that the attenuated top-down control of the putamen by the prefrontal arbitrator underlies compulsivity in obsessive-compulsive disorder. Enhancing fronto-striatal connectivity may be a potential neurotherapeutic approach for compulsivity and adaptive decision-making.
Collapse
Affiliation(s)
- Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul 08826, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Neuroscience-inspired Artificial Intelligence, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sang Wan Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Neuroscience-inspired Artificial Intelligence, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Kim Jaechul Graduate School of AI, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Silvia Kyungjin Lho
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Sun-Young Moon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul 08826, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
4
|
Robbins TW. The brain's arbitration system and obsessive-compulsive disorder. Brain 2024; 147:1929-1930. [PMID: 38703369 DOI: 10.1093/brain/awae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
This scientific commentary relates to ‘Neurocomputational model of compulsivity: deviating from an uncertain goal-directed system’ by Kim et al. (https://doi.org/10.1093/brain/awae102).
Collapse
Affiliation(s)
- Trevor W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Robbins TW, Banca P, Belin D. From compulsivity to compulsion: the neural basis of compulsive disorders. Nat Rev Neurosci 2024; 25:313-333. [PMID: 38594324 DOI: 10.1038/s41583-024-00807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Compulsive behaviour, an apparently irrational perseveration in often maladaptive acts, is a potential transdiagnostic symptom of several neuropsychiatric disorders, including obsessive-compulsive disorder and addiction, and may reflect the severe manifestation of a dimensional trait termed compulsivity. In this Review, we examine the psychological basis of compulsions and compulsivity and their underlying neural circuitry using evidence from human neuroimaging and animal models. Several main elements of this circuitry are identified, focused on fronto-striatal systems implicated in goal-directed behaviour and habits. These systems include the orbitofrontal, prefrontal, anterior cingulate and insular cortices and their connections with the basal ganglia as well as sensoriomotor and parietal cortices and cerebellum. We also consider the implications for future classification of impulsive-compulsive disorders and their treatment.
Collapse
Affiliation(s)
- Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK.
| | - Paula Banca
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| | - David Belin
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Hossain R, Sinyor M, Nestor S, Richter MA, Lipsman N, Hamani C, Giacobbe P. Mapping the future of interventional psychiatry for the obsessive-compulsive related disorders: A scoping review. Psychiatry Res 2023; 319:115007. [PMID: 36525901 DOI: 10.1016/j.psychres.2022.115007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Body dysmorphic disorder (BDD), hoarding disorder (HD), skin-picking disorder (SPD), and hair-pulling disorder (HPD) are characterized by compulsive behaviours leading to distress and impairment. Current treatments attain only partial or non-response. Interventional psychiatric approaches may target specific regions of the brain for treatment. This scoping review maps the current literature and synthesizes key findings. Databases were searched up to June 27, 2022 for studies examining interventional psychiatric treatments for BDD, HD, SPD, and HPD, producing 910 results. Twenty were included; 16 were case reports, two were case series, and two were randomized controlled trials. Studies reported on electroconvulsive therapy (ECT) (n=7), deep brain stimulation (DBS) (n=1), and intermittent theta-burst stimulation repetitive transcranial magnetic stimulation (rTMS) (n=1) for BDD; rTMS (n=1) and transcranial direct current stimulation (n=1) for HD; gamma knife capsulotomy (n=1) and rTMS (n=1) for SPD; and rTMS (n=2) and ECT (n=1) for HPD. Four studies reported on DBS for other indications complicated by SPD or HPD. The current literature consists mainly of case reports. Future studies should be randomized, controlled, adequately powered and blinded, examining rTMS localized to the anatomical targets for each disorder. Presently, the mainstay of treatment remains disorder-specific psychotherapy with limited evidence for medications.
Collapse
Affiliation(s)
- Rahat Hossain
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Mark Sinyor
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Sean Nestor
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Margaret A Richter
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Frederick W. Thompson Anxiety Disorders Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Peter Giacobbe
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|