1
|
Study of 99mTc absorption on micro-sized ion exchange resins to achieve high activity for SPECT. Appl Radiat Isot 2022; 186:110256. [DOI: 10.1016/j.apradiso.2022.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
|
2
|
Zannoni EM, Yang C, Meng LJ. Design Study of an Ultrahigh Resolution Brain SPECT System Using a Synthetic Compound-Eye Camera Design With Micro-Slit and Micro-Ring Apertures. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3711-3727. [PMID: 34255626 PMCID: PMC8711775 DOI: 10.1109/tmi.2021.3096920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, we discuss the design study for a brain SPECT imaging system, referred to as the HelmetSPECT system, based on a spherical synthetic compound-eye (SCE) gamma camera design. The design utilizes a large number ( ∼ 500 ) of semiconductor detector modules, each coupled to an aperture with a very narrow opening for high-resolution SPECT imaging applications. In this study, we demonstrate that this novel system design could provide an excellent spatial resolution, a very high sensitivity, and a rich angular sampling without scanning motion over a clinically relevant field-of-view (FOV). These properties make the proposed HelmetSPECT system attractive for dynamic imaging of epileptic patients during seizures. In ictal SPECT, there is typically no prior information on where the seizures would happen, and both the imaging resolution and quantitative accuracy of the dynamic SPECT images would provide critical information for staging the seizures outbreak and refining the plans for subsequent surgical intervention.We report the performance evaluation and comparison among similar system geometries using non-conventional apertures, such as micro-ring and micro-slit, and traditional lofthole apertures. We demonstrate that the combination of ultrahigh-resolution imaging detectors, the SCE gamma camera design, and the micro-ring and micro-slit apertures would offer an interesting approach for the future ultrahigh-resolution clinical SPECT imaging systems without sacrificing system sensitivity and FOV.
Collapse
|
3
|
Carminati M, D'Adda I, Morahan AJ, Erlandsson K, Nagy K, Czeller M, Tolgyesi B, Nyitrai Z, Savi A, van Mullekom P, Hutton BF, Fiorini C. Clinical SiPM-Based MRI-Compatible SPECT: Preliminary Characterization. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2951355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Lai X, Zannoni EM, George J, Meng LJ. System Modeling and Evaluation of a Prototype Inverted-Compound Eye Gamma Camera for the Second Generation MR Compatible SPECT. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 2020; 954:162046. [PMID: 32773914 DOI: 10.1016/j.nima.2018.09.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have reported the design of the MRC-SPECT-II system based on the inverted-compound-eye (ICE) gamma camera to offer a > 1% detection efficiency while maintaining a sub-500 μm imaging resolution [1]. One of the key challenges of using the ICE camera for SPECT imaging is whether one could develop an accurate point response function (PRF), given its complex aperture design and low fractionation accuracy of 3D printing. In this work, we will discuss (I) a combined experimental and analytical approach for deriving the precise PRF, and (II) an experimental imaging study to demonstrate the feasibility of using the ICE-camera for acquiring high-quality SPECT images with a sub-500 μm resolution. These studies would help to overcome one of the major hurdles for implement ICE-cameras for practical SPECT imaging.
Collapse
Affiliation(s)
- Xiaochun Lai
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign
| | - Elena M Zannoni
- Department of Bioengineering, University of Illinois at Urbana-Champaign
| | - Jonathan George
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign
| | - Ling-Jian Meng
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign
| |
Collapse
|
5
|
Lai X, Zannoni EM, George J, Meng LJ. System Modeling and Evaluation of a Prototype Inverted-Compound Eye Gamma Camera for the Second Generation MR Compatible SPECT. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 2020; 954:162046. [PMID: 32773914 PMCID: PMC7405694 DOI: 10.1016/j.nima.2019.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We have reported the design of the MRC-SPECT-II system based on the inverted-compound-eye (ICE) gamma camera to offer a > 1% detection efficiency while maintaining a sub-500 μm imaging resolution [1]. One of the key challenges of using the ICE camera for SPECT imaging is whether one could develop an accurate point response function (PRF), given its complex aperture design and low fractionation accuracy of 3D printing. In this work, we will discuss (I) a combined experimental and analytical approach for deriving the precise PRF, and (II) an experimental imaging study to demonstrate the feasibility of using the ICE-camera for acquiring high-quality SPECT images with a sub-500 μm resolution. These studies would help to overcome one of the major hurdles for implement ICE-cameras for practical SPECT imaging.
Collapse
Affiliation(s)
- Xiaochun Lai
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign
| | - Elena M Zannoni
- Department of Bioengineering, University of Illinois at Urbana-Champaign
| | - Jonathan George
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign
| | - Ling-Jian Meng
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign
| |
Collapse
|
6
|
Wang B, Kreuger R, Huizenga J, Beekman FJ, Goorden MC. Experimental Validation of a Gamma Detector With a Novel Light-Guide-PMT Geometry to Reduce Dead Edge Effects. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2916386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Abstract
SPECT and PET are nuclear tomographic imaging modalities that visualize functional information based on the accumulation of radioactive tracer molecules. However, SPECT and PET lack anatomical information, which has motivated their combination with an anatomical imaging modality such as CT or MRI. This chapter begins with an overview over the fundamental physics of SPECT and PET followed by a presentation of the respective detector technologies, including detection requirements, principles and different detector concepts. The reader is subsequently provided with an introduction into hybrid imaging concepts, before a dedicated section presents the challenges that arise when hybridizing SPECT or PET with MRI, namely, mutual distortions of the different electromagnetic fields in MRI on the nuclear imaging system and vice versa. The chapter closes with an overview about current hybrid imaging systems of both clinical and preclinical kind. Finally, future developments in hybrid SPECT and PET technology are discussed.
Collapse
Affiliation(s)
- Teresa Nolte
- Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Nicolas Gross-Weege
- Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Volkmar Schulz
- Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.
- Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany.
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.
| |
Collapse
|
8
|
Carminati M, Valtorta S, Belloli S, Moresco RM, Savi A, Iadanza A, Falini A, Politi LS, Cadioli M, Hutton BF, Fiorini C, Baratelli FM, Occhipinti M, Erlandsson K, Nagy K, Nyitrai Z, Czeller M, Kuhne A, Niendorf T. Validation and Performance Assessment of a Preclinical SiPM-Based SPECT/MRI Insert. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2019.2893377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Occhipinti M, Carminati M, Busca P, Butt AD, Montagnani GL, Trigilio P, Piemonte C, Ferri A, Gola A, Bukki T, Czeller M, Nyitrai Z, Papp Z, Nagy K, Fiorini C. Characterization of the Detection Module of the INSERT SPECT/MRI Clinical System. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2018.2864792] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Abstract
Myocardial perfusion imaging (MPI) using rest/stress single photon emission computed tomography (SPECT) allows non-invasive assessment of reversible cardiac perfusion defects. Conventionally, reversible defects are identified using a difference image, called reversible map, obtained by subtracting the stress image from the rest image after registration and normalization of the two images. The identification of reversible defects using the conventional subtraction method is however limited by noise. We propose to jointly reconstruct rest and stress projection data to directly obtain the reversible map in a single reconstruction framework to improve the detectability of reversible defects. To evaluate the performance of the proposed method, we performed phantom studies to mimic reversible defects with different levels of severity and doses. As compared to the conventional subtraction method, the joint method yielded reversible maps with much lower noise and improved defect detectability. At a normal clinical dose level, the joint method improved the signal to noise ratio (SNR) of defect contrast in reversible maps from 13.2 to 66.4, 9.7 to 35.0, 6.1 to 13.2, and 3.1 to 6.5, for defect to normal myocardium concentration ratios of 0%, 25%, 50%, and 75%, respectively. The SNRs obtained using the joint method were improved from 6.1 to 13.2, 3.9 to 9.4, 3.0 to 8.0, and 2.1 to 7.1, for 100%, 75%, 50%, and 25% of the normal clinical dose as compared to the conventional subtraction method. To access clinical feasibility, we applied the joint method to a rest/stress SPECT MPI patient study. The joint method yielded a reversible map with much lower noise, translating into a much higher defect detectability as compared to the conventional subtraction method. Our results indicate that the joint method has the potential to improve radiologists' performance for assessing defects in rest/stress SPECT MPI. In addition, the joint method can be used to reduce dose or imaging time.
Collapse
Affiliation(s)
- X Lai
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States of America. Department of Radiology, Harvard Medical School, Boston, MA 02115, United States of America
| | | | | | | |
Collapse
|
11
|
Carminati M, Montagnani GL, Occhipinti M, Kuehne A, Niendorf T, Nagy K, Nagy A, Czeller M, Fiorini C. SPECT/MRI INSERT Compatibility: Assessment, Solutions, and Design Guidelines. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2018.2823587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Lai X, Meng LJ. Simulation study of the second-generation MR-compatible SPECT system based on the inverted compound-eye gamma camera design. Phys Med Biol 2018; 63:045008. [PMID: 29298960 DOI: 10.1088/1361-6560/aaa4fb] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this paper, we present simulation studies for the second-generation MRI compatible SPECT system, MRC-SPECT-II, based on an inverted compound eye (ICE) gamma camera concept. The MRC-SPECT-II system consists of a total of 1536 independent micro-pinhole-camera-elements (MCEs) distributed in a ring with an inner diameter of 6 cm. This system provides a FOV of 1 cm diameter and a peak geometrical efficiency of approximately 1.3% (the typical levels of 0.1%-0.01% found in modern pre-clinical SPECT instrumentations), while maintaining a sub-500 μm spatial resolution. Compared to the first-generation MRC-SPECT system (MRC-SPECT-I) (Cai 2014 Nucl. Instrum. Methods Phys. Res. A 734 147-51) developed in our lab, the MRC-SPECT-II system offers a similar resolution with dramatically improved sensitivity and greatly reduced physical dimension. The latter should allow the system to be placed inside most clinical and pre-clinical MRI scanners for high-performance simultaneous MRI and SPECT imaging.
Collapse
Affiliation(s)
- Xiaochun Lai
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 104 S Wright St, Urbana, IL 61801, United States of America
| | | |
Collapse
|
13
|
Hutton BF, Occhipinti M, Kuehne A, Máthé D, Kovács N, Waiczies H, Erlandsson K, Salvado D, Carminati M, Montagnani GL, Short SC, Ottobrini L, van Mullekom P, Piemonte C, Bukki T, Nyitrai Z, Papp Z, Nagy K, Niendorf T, de Francesco I, Fiorini C. Development of clinical simultaneous SPECT/MRI. Br J Radiol 2017; 91:20160690. [PMID: 28008775 PMCID: PMC5966197 DOI: 10.1259/bjr.20160690] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is increasing clinical use of combined positron emission tomography and MRI, but to date there has been no clinical system developed capable of simultaneous single-photon emission computed tomography (SPECT) and MRI. There has been development of preclinical systems, but there are several challenges faced by researchers who are developing a clinical prototype including the need for the system to be compact and stationary with MRI-compatible components. The limited work in this area is described with specific reference to the Integrated SPECT/MRI for Enhanced stratification in Radio-chemo Therapy (INSERT) project, which is at an advanced stage of developing a clinical prototype. Issues of SPECT/MRI compatibility are outlined and the clinical appeal of such a system is discussed, especially in the management of brain tumour treatment.
Collapse
Affiliation(s)
- Brian F Hutton
- 1 Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Michele Occhipinti
- 2 Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano and Instituto Nacionale di Fisica Nucleare (INFN), Milan, Italy
| | | | - Domokos Máthé
- 4 CROmed Ltd, Budapest, Hungary.,5 Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | | | - Kjell Erlandsson
- 1 Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Debora Salvado
- 1 Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Marco Carminati
- 2 Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano and Instituto Nacionale di Fisica Nucleare (INFN), Milan, Italy
| | - Giovanni L Montagnani
- 2 Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano and Instituto Nacionale di Fisica Nucleare (INFN), Milan, Italy
| | - Susan C Short
- 6 Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Luisa Ottobrini
- 7 Department of Medical-Surgical Pathophysiology and Transplants, University of Milan, Italy.,8 Institute for Molecular Bioimaging and Physiology (IBFM), National Council of Research (CNR), Milan, Italy
| | | | | | | | | | | | | | | | - Irene de Francesco
- 12 Department of Oncology, University College London Hospitals NHS Foundation Trust, London
| | - Carlo Fiorini
- 2 Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano and Instituto Nacionale di Fisica Nucleare (INFN), Milan, Italy
| | | |
Collapse
|
14
|
Sabet H, Bläckberg L, Uzun-Ozsahin D, El-Fakhri G. Novel laser-processed CsI:Tl detector for SPECT. Med Phys 2017; 43:2630. [PMID: 27147372 DOI: 10.1118/1.4947294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The aim of this work is to demonstrate the feasibility of a novel technique for fabrication of high spatial resolution CsI:Tl scintillation detectors for single photon emission computed tomography systems. METHODS The scintillators are fabricated using laser-induced optical barriers technique to create optical microstructures (or optical barriers) inside the CsI:Tl crystal bulk. The laser-processed CsI:Tl crystals are 3, 5, and 10 mm in thickness. In this work, the authors focus on the simplest pattern of optical barriers in that the barriers are created in the crystal bulk to form pixel-like patterns resembling mechanically pixelated scintillators. The monolithic CsI:Tl scintillator samples are fabricated with optical barrier patterns with 1.0 × 1.0 mm(2) and 0.625 × 0.625 mm(2) pixels. Experiments were conducted to characterize the fabricated arrays in terms of pixel separation and energy resolution. A 4 × 4 array of multipixel photon counter was used to collect the scintillation light in all the experiments. RESULTS The process yield for fabricating the CsI:Tl arrays is 100% with processing time under 50 min. From the flood maps of the fabricated detectors exposed to 122 keV gammas, peak-to-valley (P/V) ratios of greater than 2.3 are calculated. The P/V values suggest that regardless of the crystal thickness, the pixels can be resolved. CONCLUSIONS The results suggest that optical barriers can be considered as a robust alternative to mechanically pixelated arrays and can provide high spatial resolution while maintaining the sensitivity in a high-throughput and cost-effective manner.
Collapse
Affiliation(s)
- H Sabet
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
| | - L Bläckberg
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 and Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden
| | - D Uzun-Ozsahin
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
| | - G El-Fakhri
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
| |
Collapse
|
15
|
Groll A, Kim K, Bhatia H, Zhang JC, Wang JH, Shen ZM, Cai L, Dutta J, Li Q, Meng LJ. Hybrid Pixel-Waveform (HPWF) Enabled CdTe Detectors for Small Animal Gamma-Ray Imaging Applications. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2017; 1:3-14. [PMID: 28516169 PMCID: PMC5431752 DOI: 10.1109/tns.2016.2623807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper presents the design and preliminary evaluation of small-pixel CdTe gamma ray detectors equipped with a hybrid pixel-waveform (HPWF) readout system for gamma ray imaging applications with additional discussion on CZT due to its similarity. The HPWF readout system utilizes a pixelated anode readout circuitry which is designed to only provide the pixel address. This readout circuitry works in coincidence with a high-speed digitizer to sample the cathode waveform which provides the energy, timing, and depth-of-interaction (DOI) information. This work focuses on the developed and experimentally evaluated prototype HPWF-CdTe detectors with a custom CMOS pixel-ASIC to readout small anode pixels of 350 μm in size, and a discrete waveform sampling circuitry to digitize the signal waveform induced on the large cathode. The intrinsic timing, energy, and spatial resolution were experimentally evaluated in this paper in conjunction with methods for depth of interaction (DOI) partitioning of the CdTe crystal. While the experimental studies discussed in this paper are primarily for evaluating HPWF detectors for small animal PET imaging, these detectors could find their applications for ultrahigh-resolution SPECT and other imaging modalities.
Collapse
Affiliation(s)
- A Groll
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA (primary: )
| | - K Kim
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - H Bhatia
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA
| | - J C Zhang
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA
| | - J H Wang
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA
| | - Z M Shen
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA
| | - L Cai
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA
| | - J Dutta
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Q Li
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - L J Meng
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA
| |
Collapse
|
16
|
Cheng SH, Yu D, Tsai HM, Morshed RA, Kanojia D, Lo LW, Leoni L, Govind Y, Zhang L, Aboody KS, Lesniak MS, Chen CT, Balyasnikova IV. Dynamic In Vivo SPECT Imaging of Neural Stem Cells Functionalized with Radiolabeled Nanoparticles for Tracking of Glioblastoma. J Nucl Med 2015; 57:279-84. [PMID: 26564318 DOI: 10.2967/jnumed.115.163006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/09/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED There is strong clinical interest in using neural stem cells (NSCs) as carriers for targeted delivery of therapeutics to glioblastoma. Multimodal dynamic in vivo imaging of NSC behaviors in the brain is necessary for developing such tailored therapies; however, such technology is lacking. Here we report a novel strategy for mesoporous silica nanoparticle (MSN)-facilitated NSC tracking in the brain via SPECT. METHODS (111)In was conjugated to MSNs, taking advantage of the large surface area of their unique porous feature. A series of nanomaterial characterization assays was performed to assess the modified MSN. Loading efficiency and viability of NSCs with (111)In-MSN complex were optimized. Radiolabeled NSCs were administered to glioma-bearing mice via either intracranial or systemic injection. SPECT imaging and bioluminescence imaging were performed daily up to 48 h after NSC injection. Histology and immunocytochemistry were used to confirm the findings. RESULTS (111)In-MSN complexes show minimal toxicity to NSCs and robust in vitro and in vivo stability. Phantom studies demonstrate feasibility of this platform for NSC imaging. Of significance, we discovered that decayed (111)In-MSN complexes exhibit strong fluorescent profiles in preloaded NSCs, allowing for ex vivo validation of the in vivo data. In vivo, SPECT visualizes actively migrating NSCs toward glioma xenografts in real time after both intracranial and systemic administrations. This is in agreement with bioluminescence live imaging, confocal microscopy, and histology. CONCLUSION These advancements warrant further development and integration of this technology with MRI for multimodal noninvasive tracking of therapeutic NSCs toward various brain malignancies.
Collapse
Affiliation(s)
- Shih-Hsun Cheng
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Dou Yu
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| | - Hsiu-Ming Tsai
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Ramin A Morshed
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| | - Deepak Kanojia
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| | - Leu-Wei Lo
- Department of Radiology, The University of Chicago, Chicago, Illinois Institute of Biomedical Engineering and Nanomedicine, National Health Research Institute(s), Taiwan; and
| | - Lara Leoni
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Yureve Govind
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| | - Lingjiao Zhang
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| | - Karen S Aboody
- Department of Neuroscience, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
17
|
Van Audenhaege K, Van Holen R, Vanhove C, Vandenberghe S. Collimator design for a multipinhole brain SPECT insert for MRI. Med Phys 2015; 42:667989. [PMID: 26520758 DOI: 10.1118/1.4934371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that can operate inside a clinical MRI. METHODS The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. RESULTS The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations show sufficient axial sampling (in a Defrise phantom) and a reconstructed resolution of 5.0 mm (in a cold-rod phantom). The authors compared the 24-pinhole setup with a 34-pinhole system (with the same detector radius but a collimator radius of 156.63 mm) and found that 34 pinholes result in better uniformity but a worse reconstruction of the cold-rod phantom. The authors also compared the 24-pinhole system with a clinical triple-head UHR fan beam system based on contrast-to-noise ratio and found that the 24-pinhole setup performs better for the 6 mm hot and the 16 mm cold lesions and worse for the 8 and 10 mm hot lesions. Finally, the authors reconstructed noisy projection data of a Hoffman phantom with a 9 mm cold lesion and found that the lesion was slightly better visible on the multipinhole image compared to the fan beam image. CONCLUSIONS The authors have optimized a stationary multipinhole SPECT insert for MRI and showed the feasibility of doing brain SPECT imaging inside a MRI with an image quality similar to the best clinical SPECT systems available.
Collapse
Affiliation(s)
- Karen Van Audenhaege
- Department of Electronics and Information Systems, Ghent University-iMinds Medical IT, MEDISIP-IBiTech, De Pintelaan 185 block B/5, Ghent B-9000, Belgium
| | - Roel Van Holen
- Department of Electronics and Information Systems, Ghent University-iMinds Medical IT, MEDISIP-IBiTech, De Pintelaan 185 block B/5, Ghent B-9000, Belgium
| | - Christian Vanhove
- Department of Electronics and Information Systems, Ghent University-iMinds Medical IT, MEDISIP-IBiTech, De Pintelaan 185 block B/5, Ghent B-9000, Belgium
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, Ghent University-iMinds Medical IT, MEDISIP-IBiTech, De Pintelaan 185 block B/5, Ghent B-9000, Belgium
| |
Collapse
|
18
|
Van Audenhaege K, Van Holen R, Vandenberghe S, Vanhove C, Metzler SD, Moore SC. Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging. Med Phys 2015; 42:4796-813. [PMID: 26233207 PMCID: PMC5148182 DOI: 10.1118/1.4927061] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 01/23/2023] Open
Abstract
In single photon emission computed tomography, the choice of the collimator has a major impact on the sensitivity and resolution of the system. Traditional parallel-hole and fan-beam collimators used in clinical practice, for example, have a relatively poor sensitivity and subcentimeter spatial resolution, while in small-animal imaging, pinhole collimators are used to obtain submillimeter resolution and multiple pinholes are often combined to increase sensitivity. This paper reviews methods for production, sensitivity maximization, and task-based optimization of collimation for both clinical and preclinical imaging applications. New opportunities for improved collimation are now arising primarily because of (i) new collimator-production techniques and (ii) detectors with improved intrinsic spatial resolution that have recently become available. These new technologies are expected to impact the design of collimators in the future. The authors also discuss concepts like septal penetration, high-resolution applications, multiplexing, sampling completeness, and adaptive systems, and the authors conclude with an example of an optimization study for a parallel-hole, fan-beam, cone-beam, and multiple-pinhole collimator for different applications.
Collapse
Affiliation(s)
- Karen Van Audenhaege
- Department of Electronics and Information Systems, MEDISIP-IBiTech, Ghent University-iMinds Medical IT, De Pintelaan 185 block B/5, Ghent B-9000, Belgium
| | - Roel Van Holen
- Department of Electronics and Information Systems, MEDISIP-IBiTech, Ghent University-iMinds Medical IT, De Pintelaan 185 block B/5, Ghent B-9000, Belgium
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, MEDISIP-IBiTech, Ghent University-iMinds Medical IT, De Pintelaan 185 block B/5, Ghent B-9000, Belgium
| | - Christian Vanhove
- Department of Electronics and Information Systems, MEDISIP-IBiTech, Ghent University-iMinds Medical IT, De Pintelaan 185 block B/5, Ghent B-9000, Belgium
| | - Scott D Metzler
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Stephen C Moore
- Division of Nuclear Medicine, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115
| |
Collapse
|
19
|
Samoudi AM, Van Audenhaege K, Vermeeren G, Poole M, Tanghe E, Martens L, Van Holen R, Joseph W. Analysis of eddy currents induced by transverse and longitudinal gradient coils in different tungsten collimators geometries for SPECT/MRI integration. Magn Reson Med 2014; 74:1780-9. [PMID: 25426597 DOI: 10.1002/mrm.25534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 09/23/2014] [Accepted: 10/27/2014] [Indexed: 01/26/2023]
Abstract
PURPOSE We investigated the temporal variation of the induced magnetic field due to the transverse and the longitudinal gradient coils in tungsten collimators arranged in hexagonal and pentagonal geometries with and without gaps between the collimators. METHODS We modeled x-, y-, and z-gradient coils and different arrangements of single-photon emission computed tomography (SPECT) collimators using FEKO, a three-dimensional electromagnetic simulation tool. A time analysis approach was used to generate the pulsed magnetic field gradient. The approach was validated with measurements using a 7T MRI scanner. RESULTS Simulations showed an induced magnetic field representing 4.66% and 0.87% of the applied gradient field (gradient strength = 500 mT/m) for longitudinal and transverse gradient coils, respectively. These values can be reduced by 75% by adding gaps between the collimators for the pentagonal arrangement, bringing the maximum induced magnetic field to less than 2% of the applied gradient for all of the gradient coils. CONCLUSION Characterization of the maximum induced magnetic field shows that by adding gaps between the collimators for an integrated SPECT/MRI system, eddy currents can be corrected by the MRI system to avoid artifact. The numerical model was validated and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.
Collapse
Affiliation(s)
- Amine M Samoudi
- Department of Information Technology (INTEC), Ghent University/iMinds, Ghent, Belgium
| | - Karen Van Audenhaege
- Electronics and Information Systems (ELIS), Ghent University/iMinds, Ghent, Belgium
| | - Günter Vermeeren
- Department of Information Technology (INTEC), Ghent University/iMinds, Ghent, Belgium
| | - Michael Poole
- Institute of Neuroscience and Medicine, Jülich, Germany
| | - Emmeric Tanghe
- Department of Information Technology (INTEC), Ghent University/iMinds, Ghent, Belgium
| | - Luc Martens
- Department of Information Technology (INTEC), Ghent University/iMinds, Ghent, Belgium
| | - Roel Van Holen
- Electronics and Information Systems (ELIS), Ghent University/iMinds, Ghent, Belgium
| | - Wout Joseph
- Department of Information Technology (INTEC), Ghent University/iMinds, Ghent, Belgium
| |
Collapse
|