1
|
Behl T, Upadhyay T, Singh S, Chigurupati S, Alsubayiel AM, Mani V, Vargas-De-La-Cruz C, Uivarosan D, Bustea C, Sava C, Stoicescu M, Radu AF, Bungau SG. Polyphenols Targeting MAPK Mediated Oxidative Stress and Inflammation in Rheumatoid Arthritis. Molecules 2021; 26:6570. [PMID: 34770980 PMCID: PMC8588006 DOI: 10.3390/molecules26216570] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disorder, predominantly symmetric, which causes joint inflammation, cartilage degeneration and bone erosion, resulting in deformity and the loss of physical function. Although the management of RA has steadily improved, the pathophysiological mechanism is incompletely elucidated, and therapeutic options are still limited. Due to shortcomings in the efficacy or safety profiles of conventional RA therapies, therapeutic alternatives have been considered. Therefore, natural extracts containing polyphenolic compounds can become promising adjuvant agents for RA global management, due to their antioxidant, anti-inflammatory and apoptotic properties. Polyphenols can regulate intracellular signaling pathways in RA and can generate different immune responses through some key factors (i.e., MAPK, interleukins (ILs 1 and 6), tumor necrosis factor (TNF), nuclear factor light k chain promoter of activated receptor (NF-κB), and c-Jun N-terminal kinases (JNK)). The critical function of the Toll like-receptor (TLR)-dependent mitogen-activating protein kinase (MAPK) signaling pathway in mediating the pathogenic characteristics of RA has been briefly discussed. Oxidative stress can trigger a change in transcription factors, which leads to the different expression of some genes involved in the inflammatory process. This review aims to provide a comprehensive perspective on the efficacy of polyphenols in mitigating RA by inhibiting signaling pathways, suggesting future research perspectives in order to validate their use.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Tanuj Upadhyay
- Amity Institute of Pharmacy, Amity University Gwalior, Gwalior 474005, Madhya Pradesh, India;
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Amal M. Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Enseñanza e Investigación en Bacteriología Alimentaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru;
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (D.U.); (C.B.)
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (D.U.); (C.B.)
| | - Cristian Sava
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.S.); (M.S.)
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.S.); (M.S.)
| | - Andrei-Flavius Radu
- Faculty of Medicine and Pharmacy, Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania;
| | - Simona Gabriela Bungau
- Faculty of Medicine and Pharmacy, Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania;
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
2
|
Validation of monoclonal anti-PKC isozyme antibodies for flow cytometry analyses in human T cell subsets and expression in cord blood T cells. Sci Rep 2019; 9:9263. [PMID: 31239481 PMCID: PMC6592917 DOI: 10.1038/s41598-019-45507-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
T cells from neonates (cord blood) with a tendency to develop allergic diseases express low PKCζ levels. More extensive investigations into PKC isozyme levels in T cell subsets and changes during neonatal T cell maturation are hampered by limitations of Western blot analyses. We have undertaken to validating the specificity of commercially available antibodies marketed for flow cytometry to measure PKCα, βI, βII, δ, ε, η, θ, ζ, ι/λ and μ. Western blot analyses of human peripheral blood mononuclear cell (PBMC) lysates demonstrated that some antibodies were unsuitable for flow cytometry assays. A panel of antibodies with the desirable specificity and reliability in the flow cytometry assay were identified using both PBMC and whole blood assays. The results showed that all PKC isozymes were expressed in CD4+ and CD8+ T cells, monocytes and neutrophils. Murine lymphocytes showed similar patterns of expression. A major finding was that 35.2% and 38.5% of cord blood samples have low PKCζ (≤the 5th percentile of adult levels) in the CD4+ and CD8+ subsets, respectively, consistent with the incidence of allergy development in the population. Furthermore, these low PKCζ levels ‘normalised’ within 24 h after initiation of maturation of these cells in culture, providing a ‘window of opportunity’ for altering PKCζ levels.
Collapse
|
3
|
Zhang ZL, Zhu MM, Li HL, Shi LH, Chen XP, Luo J, Zhao JF. Influence of PRKCH gene polymorphism on antihypertensive response to amlodipine and telmisartan. Clin Exp Hypertens 2017. [PMID: 28640647 DOI: 10.1080/10641963.2017.1324475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to evaluate the effect of PRKCH rs2230500 genetic polymorphism on efficacy of amlodipine and telmisartan for patients with hypertension. A total of 136 essential hypertension (EH) patients were treated with amlodipine (70 patients) or telmisartan (66 patients), respectively. Genetic polymorphism was genotyped by Sanger sequencing. Both baseline and post-treatment blood pressure (BP) and heart rate were measured to evaluate the influence of genetic polymorphism on the antihypertensive response. No significant difference in the absolute decrease in diastolic blood pressure (DBP),systolic blood pressure (SBP), and mean arterial pressure (MAP) was observed among PRKCH rs2230500 genotypes after 4-week amlodipine or telmisartan therapy (p > 0.05). However, when compared with carriers or GG genotype, the antihypertensive effect of PRKCH rs2230500 GA/AA carriers was superior in telmisartan treatment group. PRKCH rs2230500 gene polymorphism is significantly related to the efficiency in telmisartan therapy (p = 0.02). The PRKCH rs2230500 may influence the antihypertensive efficacy of telmisartan in Chinese EH patients, and further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Zan-Ling Zhang
- a Department of Pharmacy , Xiangya Hospital, Central South University , Changsha , PR China.,b Institute of Hospital Pharmacy, Central South University , Changsha , PR China
| | - Miao-Miao Zhu
- a Department of Pharmacy , Xiangya Hospital, Central South University , Changsha , PR China.,b Institute of Hospital Pharmacy, Central South University , Changsha , PR China
| | - Hui-Lan Li
- a Department of Pharmacy , Xiangya Hospital, Central South University , Changsha , PR China.,b Institute of Hospital Pharmacy, Central South University , Changsha , PR China.,c School of Pharmaceutical Science, Central South University , Changsha , PR China
| | - Li-Hong Shi
- a Department of Pharmacy , Xiangya Hospital, Central South University , Changsha , PR China.,b Institute of Hospital Pharmacy, Central South University , Changsha , PR China
| | - Xiao-Ping Chen
- d Department of Clinical Pharmacology , Xiangya Hospital, Central South University , Changsha , PR China.,e Institute of Clinical Pharmacology, Central South University , Changsha , PR China
| | - Jia Luo
- a Department of Pharmacy , Xiangya Hospital, Central South University , Changsha , PR China.,b Institute of Hospital Pharmacy, Central South University , Changsha , PR China
| | - Jin-Feng Zhao
- f Xiangya Hospital, Central South University , Changsha , PR China
| |
Collapse
|
4
|
Galeotti N. Hypericum perforatum (St John's wort) beyond depression: A therapeutic perspective for pain conditions. JOURNAL OF ETHNOPHARMACOLOGY 2017; 200:136-146. [PMID: 28216196 DOI: 10.1016/j.jep.2017.02.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/30/2017] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum perforatum L. (Hypericaceae), popularly called St. John's wort (SJW), has a rich historical background being one of the oldest used and most extensively investigated medicinal herbs. Many bioactivities and applications of SJW are listed in popular and in scientific literature, including antibacterial, antiviral, anti-inflammatory. In the last three decades many studies focused on the antidepressant activity of SJW extracts. However, several studies in recent years also described the antinociceptive and analgesic properties of SJW that validate the traditional uses of the plant in pain conditions. AIM OF THE REVIEW This review provides up-to-date information on the traditional uses, pre-clinical and clinical evidence on the pain relieving activity of SJW and its active ingredients, and focuses on the possible exploitation of this plant for the management of pain. MATERIALS AND METHODS Historical ethnobotanical publications from 1597 were reviewed for finding local and traditional uses. The relevant data on the preclinical and clinical effects of SJW were searched using various databases such as PubMed, Science Direct, Scopus, and Google Scholar. Plant taxonomy was validated by the database Plantlist.org. RESULTS Preclinical animal studies demonstrated the ability of low doses of SJW dry extracts (0.3% hypericins; 3-5% hyperforins) to induce antinociception, to relieve from acute and chronic hyperalgesic states and to augment opioid analgesia. Clinical studies (homeopathic remedies, dry extracts) highlighted dental pain conditions as a promising SJW application. In vivo and in vitro studies showed that the main components responsible for the pain relieving activity are hyperforin and hypericin. SJW analgesia appears at low doses (5-100mg/kg), minimizing the risk of herbal-drug interactions produced by hyperforin, a potent inducer of CYP enzymes. CONCLUSION Preclinical studies indicate a potential use of SJW in medical pain management. However, clinical research in this field is still scarce and the few studies available on chronic pain produced negative results. Prospective randomized controlled clinical trials performed at low doses are needed to validate its potential efficacy in humans.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
5
|
van den Bogaart E, Mens PF, Adams ER, Grobusch MP, Schallig HDFH. Phagocytosis of hemozoin by RAW 264.7 cells, but not THP-1 cells, promotes infection by Leishmania donovani with a nitric oxide-independent mechanism. Parasitol Int 2016; 66:196-206. [PMID: 27623326 DOI: 10.1016/j.parint.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 08/19/2016] [Accepted: 09/08/2016] [Indexed: 01/28/2023]
Abstract
During its intra-erythrocytic development, the malaria parasite Plasmodium falciparum synthesizes insoluble hemozoin (HZ) crystals that are released into the circulation upon rupture of parasitized red blood cells, and rapidly phagocytized by host mononuclear cells. Here, HZ persists undigested, causing functional impairment and possibly leading to increased host susceptibility to secondary infections. In patients with malaria and visceral leishmaniasis (VL) co-infections, HZ-loaded macrophages are likely to co-harbor Leishmania donovani parasites, but whether this might influence the course of the Leishmania infection is unknown. In this study, L. donovani amastigote growth was monitored in mouse RAW 264.7 macrophages and PMA-differentiated THP-1 cells previously exposed to increasing amounts of HZ or its synthetic analogue β-hematin (BH). Latex beads were used as a phagocytic control. Data demonstrate that phagocytosis of HZ and BH by RAW 264.7 cells promoted infection therein by L. donovani parasites in a dose-dependent fashion. Similar results were not observed when using THP-1 cells, despite a clear persistence of undigested heme up to 48h after phagocytosis. Conditioning with lipopolysaccharide (LPS)/interferon (IFN)-γ prior to Leishmania infection triggered the release in RAW 264.7 cells of nitric oxide (NO), a highly leishmanicidal metabolite. However, neither HZ nor BH pre-ingestion were able to inhibit NO production following stimulation with LPS/IFN-γ, suggesting that the HZ- and BH-promoting effect on L. donovani infection occurred with an NO-independent mechanism. In conclusion, these preliminary findings highlight a possible detrimental effect of HZ on the course of VL, warranting further investigation into the clinical relevance of the current models.
Collapse
Affiliation(s)
- Erika van den Bogaart
- Parasitology Unit, Department of Biomedical Research, Royal Tropical Institute (KIT), Meibergdreef 39, 1105 AZ Amsterdam, The Netherlands.
| | - Pètra F Mens
- Parasitology Unit, Department of Medical Microbiology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Emily R Adams
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Pl, Liverpool, Merseyside L3 5QA, United Kingdom
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Henk D F H Schallig
- Parasitology Unit, Department of Medical Microbiology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Riemann A, Wußling H, Loppnow H, Fu H, Reime S, Thews O. Acidosis differently modulates the inflammatory program in monocytes and macrophages. Biochim Biophys Acta Mol Basis Dis 2015; 1862:72-81. [PMID: 26499398 DOI: 10.1016/j.bbadis.2015.10.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022]
Abstract
Inflammation, ischemia or the microenvironment of solid tumors is often accompanied by a reduction of extracellular pH (acidosis) that stresses the cells and acts on cellular signaling and transcription. The effect of acidosis on the expression of various inflammatory markers, on functional parameters (migration, phagocytic activity) and on signaling pathways involved was studied in monocytic cells and macrophages. In monocytic cell lines acidosis led to a reduction in expression of most of the inflammatory mediators, namely IL-1ß, IL-6, TNF-α, MCP-1, COX-2 and osteopontin. In primary human monocytes MCP-1 and TNF-α were reduced but COX-2 and IL-6 were increased. In RAW264.7 macrophage cell line IL-1ß, COX-2 and iNOS expression was increased, whereas MCP-1 was reduced similar to the effect in monocytic cells. For primary human monocyte-derived macrophages the regulation of inflammatory markers by acidosis depended on activation state, except for the acidosis-induced downregulation of MCP-1 and TNF-α. Acidosis affected functional immune cell behavior when looking at phagocytic activity which was increased in a time-dependent manner, but cellular motility was not changed. Neither ERK1/2 nor CREB signaling was stimulated by the reduction of extracellular pH. However, p38 was activated by acidosis in RAW264.7 cells and this activation was critical for the induction of IL-1ß, COX-2 and iNOS expression. In conclusion, acidosis may impede the recruitment of immune cells, but fosters inflammation when macrophages are present by increasing the level of COX-2 and iNOS and by functionally forcing up the phagocytic activity.
Collapse
Affiliation(s)
- Anne Riemann
- Julius-Bernstein-Institute of Physiology, University Halle-Wittenberg, Germany.
| | - Hanna Wußling
- Julius-Bernstein-Institute of Physiology, University Halle-Wittenberg, Germany
| | - Harald Loppnow
- Dept. of Internal Medicine III, University Halle-Wittenberg, Germany
| | - Hang Fu
- Dept. of Internal Medicine III, University Halle-Wittenberg, Germany
| | - Sarah Reime
- Julius-Bernstein-Institute of Physiology, University Halle-Wittenberg, Germany
| | - Oliver Thews
- Julius-Bernstein-Institute of Physiology, University Halle-Wittenberg, Germany
| |
Collapse
|
7
|
Zhu Y, Liu K, Tang X, Wang J, Yu Z, Wu Y, Chen D, Wang X, Fang K, Li N, Huang S, Hu Y. Association between NINJ2 gene polymorphisms and ischemic stroke: a family-based case-control study. J Thromb Thrombolysis 2015; 38:470-6. [PMID: 24664524 PMCID: PMC4182589 DOI: 10.1007/s11239-014-1065-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Novel susceptibility genes related to ischemic stroke (IS) are proposed in recent literatures. Population-based replicate studies would cause false positive results due to population stratification. 229 recruit IS patients and their 229 non-IS siblings were used in this study to avoid population stratification. The family-based study was conducted in Beijing from June 2005 to June 2012. Association between SNPs and IS was found in the sibship discordant tests, and the conditional logistic regression was performed to identify effect size and explore gene-environment interactions. Significant allelic association was identified between NINJ2 gene rs11833579 (P = 0.008), protein kinase C η gene rs2230501 (P = 0.039) and IS. The AA genotype of rs11833579 increased 1.51-fold risk (95% CI 1.04-3.46; P = 0.043) of IS, and it conferred susceptibility to IS only in a dominant model (OR 2.69; 95% CI 1.06-6.78; P = 0.036]. Risk of IS was higher (HR 3.58; 95% CI 1.54-8.31; P = 0.003) especially when the carriers of rs11833579 AA genotype were smokers. The present study suggests A allele of rs11833579 may play a role in mediating susceptibility to IS and it may increase the risk of IS together with smoking.
Collapse
Affiliation(s)
- Yanping Zhu
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Leppänen T, Tuominen RK, Moilanen E. Protein kinase C and its inhibitors in the regulation of inflammation: inducible nitric oxide synthase as an example. Basic Clin Pharmacol Toxicol 2013; 114:37-43. [PMID: 24107256 DOI: 10.1111/bcpt.12139] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/13/2013] [Indexed: 01/19/2023]
Abstract
Protein kinase C (PKC) is a family of ten isoenzymes that play a crucial role in cellular signal transduction. Studies with PKC knockout animals have revealed that many of the isoenzymes are involved in cell growth, proliferation and differentiation. Several PKC isoenzymes have also been shown to be important mediators in inflammation and immunity, particularly in lymphocyte responses. However, less is known about the role of PKC in the regulation of the expression of inflammatory genes. In inflammatory processes, nitric oxide is primarily produced by inducible nitric oxide synthase (iNOS) in inflammatory cells, such as macrophages. In innate immunity, nitric oxide functions as an effector molecule towards the infectious organisms. Increased levels of nitric oxide are also produced by inflammatory and tissue cells in inflammatory diseases, such as asthma and arthritis. In this MiniReview, the role of PKC isoenzymes in the pathogenesis and as a potential drug target in inflammation will be discussed presenting iNOS as an example of an inflammatory gene regulated by the pleiotropic PKC signalling pathway.
Collapse
Affiliation(s)
- Tiina Leppänen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | | | | |
Collapse
|
9
|
Galeotti N, Ghelardini C. Inhibition of the PKCγ-ε pathway relieves from meningeal nociception in an animal model: an innovative perspective for migraine therapy? Neurotherapeutics 2013; 10:329-39. [PMID: 23055050 PMCID: PMC3625380 DOI: 10.1007/s13311-012-0151-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There is convincing evidence that nitric oxide (NO) may be a causative factor in the pathogenesis of migraine. We investigated the consequences of NO donors' administration on meningeal processes related to the development of migraine pain in an animal model of meningeal nociception. The administration in mice of the NO donors nitroglycerin (GTN) and sodium nitroprusside (SNP) produced a delayed meningeal upregulation of interleukin-1ß and inducible NO synthase. A thermal allodynia and hyperalgesia devoid of side effects was produced 1 to 4 h after administration. To clarify the cellular pathways modulated by GTN and SNP, we examined the expression of cellular factors involved in pain modulation, such as protein kinase C (PKC) and its downstream effectors. Western blotting experiments showed an upregulation and increased phosphorylation of PKCγ and PKCε within dura mater after NO donors' administration. A dramatic PKC-dependent increase of the phosphorylation of cyclic AMP response element binding protein (CREB) and signal transducer and activator of transcription (STAT)-1 was observed, along with an activation of the nuclear factor-κB (NF-κB) pathway, as reflected by a reduction of the inhibitory protein-κ-Bα (IκBα). Furthermore, the PKC blocker, Calphostin C, prevented the GTN and SNP-induced pain hypersensitivity. These results suggest the relevance of the PKC-mediated pathway in the induction of meningeal nociception and might help clarify the etiopathology of migraines. We can suggest PKC as a new target for migraine pain.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Preclinical and Clinical Pharmacology, Viale G. Pieraccini 6, Florence, 50139, Italy.
| | | |
Collapse
|
10
|
Protein kinase Cη polymorphism and the susceptibilities to intracerebral hemorrhage in the Taiwan population. Neurosci Lett 2012; 528:170-3. [DOI: 10.1016/j.neulet.2012.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/01/2012] [Accepted: 09/12/2012] [Indexed: 11/19/2022]
|
11
|
Shafran Y, Zurgil N, Afrimzon E, Tauber Y, Sobolev M, Shainberg A, Deutsch M. Correlative Analyses of Nitric Oxide Generation Rates and Nitric Oxide Synthase Levels in Individual Cells Using a Modular Cell-Retaining Device. Anal Chem 2012; 84:7315-22. [DOI: 10.1021/ac202741z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yana Shafran
- The
Biophysical Interdisciplinary Schottenstein Center for the Research
and Technology of the Cellome, and ‡The Mina and Everard Goodman Faculty of Life
Sciences, Bar Ilan University, Ramat Gan, 52900 Israel
| | - Naomi Zurgil
- The
Biophysical Interdisciplinary Schottenstein Center for the Research
and Technology of the Cellome, and ‡The Mina and Everard Goodman Faculty of Life
Sciences, Bar Ilan University, Ramat Gan, 52900 Israel
| | - Elena Afrimzon
- The
Biophysical Interdisciplinary Schottenstein Center for the Research
and Technology of the Cellome, and ‡The Mina and Everard Goodman Faculty of Life
Sciences, Bar Ilan University, Ramat Gan, 52900 Israel
| | - Yishay Tauber
- The
Biophysical Interdisciplinary Schottenstein Center for the Research
and Technology of the Cellome, and ‡The Mina and Everard Goodman Faculty of Life
Sciences, Bar Ilan University, Ramat Gan, 52900 Israel
| | - Maria Sobolev
- The
Biophysical Interdisciplinary Schottenstein Center for the Research
and Technology of the Cellome, and ‡The Mina and Everard Goodman Faculty of Life
Sciences, Bar Ilan University, Ramat Gan, 52900 Israel
| | - Asher Shainberg
- The
Biophysical Interdisciplinary Schottenstein Center for the Research
and Technology of the Cellome, and ‡The Mina and Everard Goodman Faculty of Life
Sciences, Bar Ilan University, Ramat Gan, 52900 Israel
| | - Mordechai Deutsch
- The
Biophysical Interdisciplinary Schottenstein Center for the Research
and Technology of the Cellome, and ‡The Mina and Everard Goodman Faculty of Life
Sciences, Bar Ilan University, Ramat Gan, 52900 Israel
| |
Collapse
|
12
|
Wu L, Xi B, Hou D, Zhao X, Liu J, Cheng H, Zhou X, Shen Y, Wang X, Mi J. The SNP (rs2230500) in PRKCH decreases the risk of carotid intima-media thickness in a Chinese young adult population. PLoS One 2012; 7:e40606. [PMID: 22808203 PMCID: PMC3394745 DOI: 10.1371/journal.pone.0040606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/10/2012] [Indexed: 11/23/2022] Open
Abstract
Background The SNP (rs2230500) in PRKCH (the gene encoding protein kinase C η) is associated with ischemic stroke and cerebral hemorrhage in the Chinese population, but the molecular mechanisms are not clear. The aim of the present study is to investigate the association between the SNP and atherosclerosis that is common pathological basis of ischemic stroke and cerebral hemorrhage. Methodology/Principal Findings We examined the associations of the SNP with carotid intima-media thickness (CIMT), atherosclerosis diagnosed by CIMT, and factors related with inflammation in the Beijing Child Blood Pressure Study. A total of 1190 subjects participated in the follow-up study. The SNP was genotyped by allele-specific real-time PCR assay. The SNP (rs2230500) in PRKCH was significantly associated with CIMT (in far wall of left common carotid arteries, P = 0.016; in far wall of right common carotid arteries, P = 0.012) under a recessive model after adjustment for age, gender, smoking, and hypertension. The SNP was also significantly associated with complement C3 (P = 0.012) under a dominant model after adjustment for age, gender, and high sensitivity C-reactive protein. Conclusions/Significance Our data provide evidence that the SNP (rs2230500) in PRKCH decreases the risk of CIMT that is a worthwhile predictor of stroke and complement system possibly mediates this process.
Collapse
Affiliation(s)
- Lijun Wu
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Bo Xi
- Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan, China
| | - Dongqing Hou
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoyuan Zhao
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Junting Liu
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Hong Cheng
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Xin Zhou
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Yue Shen
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Xingyu Wang
- Laboratory of Human Genetics, Beijing Hypertension League Institute, Beijing, China
| | - Jie Mi
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
- * E-mail:
| |
Collapse
|
13
|
Wen J, Ribeiro R, Zhang Y. Specific PKC isoforms regulate LPS-stimulated iNOS induction in murine microglial cells. J Neuroinflammation 2011; 8:38. [PMID: 21510893 PMCID: PMC3110130 DOI: 10.1186/1742-2094-8-38] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 04/21/2011] [Indexed: 12/22/2022] Open
Abstract
Background Excessive production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) in reactive microglia is a major contributor to initiation/exacerbation of inflammatory and degenerative neurological diseases. Previous studies have indicated that activation of protein kinase C (PKC) can lead to iNOS induction. Because of the existence of various PKC isoforms and the ambiguous specificity of PKC inhibitors, it is unclear whether all PKC isoforms or a specific subset are involved in the expression of iNOS by reactive microglia. In this study, we employed molecular approaches to characterize the role of each specific PKC isoform in the regulation of iNOS expression in murine microglia. Methods Induction of iNOS in response to bacterial endotoxin lipopolysaccharide (LPS) was measured in BV-2 murine microglia treated with class-specific PKC inhibitors, or transfected with siRNA to silence specific PKC isoforms. iNOS expression and MAPK phosphorylation were evaluated by western blot. The role of NF-κB in activated microglia was examined by determining NF-κB transcriptional response element- (TRE-) driven, promoter-mediated luciferase activity. Results Murine microglia expressed high levels of nPKCs, and expressed relatively low levels of cPKCs and aPKCs. All PKC inhibitors attenuated induction of iNOS in LPS-activated microglia. Knockdown of PKC δ and PKC β attenuated ERK1/2 and p38 phosphorylation, respectively, and blocked NF-κB activation that leads to the expression of iNOS in reactive microglia. Conclusions Our results identify PKC δ and β as the major PKC isoforms regulating iNOS expression in reactive microglia. The signaling pathways mediated by PKC involve phosphorylation of distinct MAPKs and activation of NF-κB. These results may help in the design of novel and selective PKC inhibitors for the treatment of many inflammatory and neurological diseases in which production of NO plays a pathogenic role.
Collapse
Affiliation(s)
- Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
14
|
Alappat L, Valerio M, Awad AB. Effect of vitamin D and β-sitosterol on immune function of macrophages. Int Immunopharmacol 2010; 10:1390-6. [DOI: 10.1016/j.intimp.2010.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 06/28/2010] [Accepted: 08/05/2010] [Indexed: 11/30/2022]
|
15
|
Hishida A, Matsuo K, Goto Y, Hamajima N. Genetic predisposition to Helicobacter pylori-induced gastric precancerous conditions. World J Gastrointest Oncol 2010; 2:369-79. [PMID: 21160888 PMCID: PMC2999673 DOI: 10.4251/wjgo.v2.i10.369] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 09/20/2010] [Accepted: 09/27/2010] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is the most common malignancy of the gastrointestinal tract in East Asian populations and the second most frequent cause of cancer-related mortality in the world. While previous studies have investigated the genetic factors involved in gastric carcinogenesis, there still exist relatively few studies that have investigated the genetic traits associated with the risk of gastric precancerous conditions. In this paper we will review the biology and genetic polymorphisms involved in the genesis of gastric precancerous conditions reported to date and discuss the future prospects of this field of study. The associations of gastric precancerous conditions with polymorphisms in the cytotoxin-associated gene A-related genes (e.g. PTPN11 G/A at intron 3, rs2301756), those in the genes involved in host immunity against Helicobacter pylori (H. pylori) infection (e.g. TLR4 +3725G/C, rs11536889) or polymorphisms of the genes essential for the development/ differentiation of the gastric epithelial cells (e.g. RUNX3 T/A polymorphism at intron 3, rs760805) have been reported to date. Genetic epidemiological studies of the associations between H. pylori-induced gastric precancerous conditions and other gene polymorphisms in these pathways as well as polymorphisms of the genes involved in other pathways like oxidative DNA damage repair pathways would provide useful evidence for the individualized prevention of these H. pylori-induced gastric precancerous conditions.
Collapse
Affiliation(s)
- Asahi Hishida
- Asahi Hishida, Yasuyuki Goto, Nobuyuki Hamajima, Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | |
Collapse
|
16
|
Lee HK, Yeo S, Kim JS, Lee JG, Bae YS, Lee C, Baek SH. Protein kinase C-eta and phospholipase D2 pathway regulates foam cell formation via regulator of G protein signaling 2. Mol Pharmacol 2010; 78:478-85. [PMID: 20558593 DOI: 10.1124/mol.110.064394] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Regulator of G protein signaling 2 (RGS2) is a GTPase-activating protein for Galpha(q), which is involved in regulating various vascular functions. To understand how RGS2 regulates foam cell formation, the present study identified signaling pathways controlled by lipopolysaccharide (LPS) and discovered new mechanisms whereby protein kinase C (PKC)-eta and phospholipase D (PLD) 2 regulate RGS2 expression. The toll-like receptor (TLR) 4 agonist LPS caused foam cell formation of Raw264.7 macrophages and dramatically decreased RGS2 mRNA expression. RGS2 down-regulation by LPS was partially recovered by TLR4 small interfering RNA (siRNA). Peritoneal macrophages were separated from wild-type and TLR4 mutant mice, and treatment with LPS showed RGS2 expression decrease in wild-type macrophages but no change in TLR4 mutant macrophages. RGS2 overexpression was suppressed, whereas RGS2 down-regulation accelerated foam cell formation by LPS. Treatment of PKC-eta pseudosubstrate weakened foam cell formation and recovered RGS2 down-regulation by LPS. In addition, LPS or phorbol 12-myristate 13-acetate stimulated PLD activity, and the pretreatment of PLD inhibitor weakened foam cell formation and recovered RGS2 down-regulation. Inhibition of PLD2 expression by siRNA also weakened foam cell formation and partially recovered LPS-mediated RGS2 down-regulation. On the other hand, PLD2 overexpression intensified RGS2 down-regulation and foam cell formation by LPS. These results suggest that LPS causes foam cell formation by increasing PKC-eta and PLD2 activity by down-regulating RGS2 expression via TLR4 dependently.
Collapse
Affiliation(s)
- Hyung-Kyoung Lee
- Aging-Associated Vascular Disease Research Center, Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, Daegu, South Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Pham TNQ, Rahman P, Richardson VJ. Divergent effects of infliximab and anakinra therapies on macrophage phenotype from patients with refractory rheumatoid arthritis. Int J Immunopathol Pharmacol 2010; 23:491-501. [PMID: 20646344 DOI: 10.1177/039463201002300211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previously, we documented the co-expression of the inducible nitric oxide synthase (NOS2) and protein kinase C-eta (PKC-eta) in peripheral blood-derived macrophages (PBDM) from moderate to severe rheumatoid arthritis (RA) patients with elevated plasma nitric oxide levels but not from those with non-inflammatory osteoarthritis (OA) or normal plasma NO levels. The presence of PKC-eta was found to be required before macrophages could acquire the NOS2-positive phenotype and make copious levels of NO. In the current study, we report the divergent effects of two biological-based RA therapies which target TNFalpha function (infliximab) or IL1 response (anakinra) on the development of the NOS2-positive phenotype by PBDM in patients with refractory RA. Both infliximab and anakinra were effective in improving disease symptoms. However, treatment with anakinra, but not infliximab led to a complete suppression of NOS2 expression in PBDM and consequently, a more pronounced reduction in plasma NO levels. Data also revealed a requirement of both TNF-alpha and IL-1 in the development of the NOS2-positive macrophage phenotype. Finally, the data have shed light on the molecular mechanisms by which NO production may be regulated during disease progression to severe RA, and thus, offer a novel insight into the identification of future therapeutic targets for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- T N Q Pham
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St John's, Newfoundland, Canada
| | | | | |
Collapse
|
18
|
Daigneault M, Preston JA, Marriott HM, Whyte MKB, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 2010; 5:e8668. [PMID: 20084270 PMCID: PMC2800192 DOI: 10.1371/journal.pone.0008668] [Citation(s) in RCA: 873] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/21/2009] [Indexed: 12/12/2022] Open
Abstract
Differentiated macrophages are the resident tissue phagocytes and sentinel cells of the innate immune response. The phenotype of mature tissue macrophages represents the composite of environmental and differentiation-dependent imprinting. Phorbol-12-myristate-13-acetate (PMA) and 1,25-dihydroxyvitamin D3 (VD3) are stimuli commonly used to induce macrophage differentiation in monocytic cell lines but the extent of differentiation in comparison to primary tissue macrophages is unclear. We have compared the phenotype of the promonocytic THP-1 cell line after various protocols of differentiation utilising VD3 and PMA in comparison to primary human monocytes or monocyte-derived macrophages (MDM). Both stimuli induced changes in cell morphology indicative of differentiation but neither showed differentiation comparable to MDM. In contrast, PMA treatment followed by 5 days resting in culture without PMA (PMAr) increased cytoplasmic to nuclear ratio, increased mitochondrial and lysosomal numbers and altered differentiation-dependent cell surface markers in a pattern similar to MDM. Moreover, PMAr cells showed relative resistance to apoptotic stimuli and maintained levels of the differentiation-dependent anti-apoptotic protein Mcl-1 similar to MDM. PMAr cells retained a high phagocytic capacity for latex beads, and expressed a cytokine profile that resembled MDM in response to TLR ligands, in particular with marked TLR2 responses. Moreover, both MDM and PMAr retained marked plasticity to stimulus-directed polarization. These findings suggest a modified PMA differentiation protocol can enhance macrophage differentiation of THP-1 cells and identify increased numbers of mitochondria and lysosomes, resistance to apoptosis and the potency of TLR2 responses as important discriminators of the level of macrophage differentiation for transformed cells.
Collapse
Affiliation(s)
- Marc Daigneault
- Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Julie A. Preston
- Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Helen M. Marriott
- Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Moira K. B. Whyte
- Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - David H. Dockrell
- Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
|
20
|
Wu L, Shen Y, Liu X, Ma X, Xi B, Mi J, Lindpaintner K, Tan X, Wang X. The 1425G/A SNP in PRKCH is associated with ischemic stroke and cerebral hemorrhage in a Chinese population. Stroke 2009; 40:2973-2976. [PMID: 19520989 DOI: 10.1161/strokeaha.109.551747] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 05/08/2009] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE PRKCH (the gene encoding protein kinase C eta) has a role in the pathogenesis of ischemic stroke. The 1425G/A SNP in PRKCH (rs2230500) is significantly associated with ischemic stroke in Japanese. The aim of the present study is to investigate the associations in ischemic stroke and other types of stroke in the Chinese population. METHODS A total of 1209 patients with stroke and 1174 controls were examined using a case-control methodology. The 1425G/A SNP in PRKCH was genotyped by allele-specific real-time PCR assay. RESULTS The 1425G/A SNP in PRKCH was significantly associated with both ischemic stroke (odds ratio [OR]=1.31; 95% confidence interval [CI], 1.08 to 1.60; P=0.0058) and cerebral hemorrhage (OR=1.94; 95% CI, 1.21 to 3.10; P=0.0054) under a dominant model. Even after age- and sex-adjustment, the significant associations remained (in ischemic stroke, for AA+AG versus GG, OR=1.37, 95% CI, 1.12 to 1.67, P=0.0019; in cerebral hemorrhage, for AA+AG versus GG, OR=1.96, 95% CI, 1.21 to 3.19, P=0.0064). CONCLUSIONS The 1425G/A SNP in PRKCH increases the risk of both ischemic stroke and cerebral hemorrhage in the Chinese population.
Collapse
Affiliation(s)
- Lijun Wu
- First Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cheng H, Wang F, Ding X, Ding H, Song X. Association of PRKCH gene with lacunar infarction in a local Chinese Han population. Neurosci Lett 2009; 464:146-9. [PMID: 19703523 DOI: 10.1016/j.neulet.2009.08.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022]
Abstract
Recent evidence indicated that the PRKCH gene was a susceptibility gene for lacunar infarction in a Japanese population. The aim of the present study was to explore the association of the gene with lacunar infarction in a population of Chinese Han ancestry. A total of 280 consecutive lacunar infarction patients and 306 unrelated population-based controls that had been matched for age and sex were examined using a case-control design. Two single nucleotide polymorphisms (SNPs) of PRKCH gene (rs3783799 and rs2230500) were genotyped with ligase detection reaction (LDR) and multiplex polymerase chain reaction (PCR). Linkage disequilibrium (LD) and haplotype analysis were also investigated between these two groups. Overall alleles and genotype frequencies were similar between cases and controls. No significant association was detected with the gene polymorphisms mentioned above and lacunar infarction; no significant difference was found with haplotype analysis between these two groups. None of the two SNPs showed significant association with lacunar infarction in the whole subjects before and after adjustment for conventional stroke risk factors (hypertension, diabetes mellitus, and hypercholesterolemia). The frequencies of PRKCH differed largely from those in the Japanese population. The present study suggests that variants in the PRKCH gene are not the risk factors for lacunar infarction in individuals from a small population of Chinese Han ancestry. Population differences in alleles and haplotype frequencies as well as LD structure may contribute to the observed differences between populations.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu Province 210029, PR China
| | | | | | | | | |
Collapse
|
22
|
Ehrlich M, Sanchez C, Shao C, Nishiyama R, Kehrl J, Kuick R, Kubota T, Hanash SM. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity 2008; 41:253-71. [PMID: 18432406 PMCID: PMC2430169 DOI: 10.1080/08916930802024202] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 01/02/2008] [Indexed: 02/07/2023]
Abstract
The immunodeficiency, centromeric region instability, and facial anomalies syndrome (ICF) is the only disease known to result from a mutated DNA methyltransferase gene, namely, DNMT3B. Characteristic of this recessive disease are decreases in serum immunoglobulins despite the presence of B cells and, in the juxtacentromeric heterochromatin of chromosomes 1 and 16, chromatin decondensation, distinctive rearrangements, and satellite DNA hypomethylation. Although DNMT3B is involved in specific associations with histone deacetylases, HP1, other DNMTs, chromatin remodelling proteins, condensin, and other nuclear proteins, it is probably the partial loss of catalytic activity that is responsible for the disease. In microarray experiments and real-time RT-PCR assays, we observed significant differences in RNA levels from ICF vs. control lymphoblasts for pro- and anti-apoptotic genes (BCL2L10, CASP1, and PTPN13); nitrous oxide, carbon monoxide, NF-kappaB, and TNFalpha signalling pathway genes (PRKCH, GUCY1A3, GUCY1B3, MAPK13; HMOX1, and MAP4K4); and transcription control genes (NR2F2 and SMARCA2). This gene dysregulation could contribute to the immunodeficiency and other symptoms of ICF and might result from the limited losses of DNA methylation although ICF-related promoter hypomethylation was not observed for six of the above examined genes. We propose that hypomethylation of satellite 2 at 1qh and 16qh might provoke this dysregulation gene expression by trans effects from altered sequestration of transcription factors, changes in nuclear architecture, or expression of noncoding RNAs.
Collapse
Affiliation(s)
- Melanie Ehrlich
- Hayward Human Genetics Program, Tulane Medical School, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Farrer DG, Hueber S, Laiosa MD, Eckles KG, McCabe MJ. Reduction of myeloid suppressor cell derived nitric oxide provides a mechanistic basis of lead enhancement of alloreactive CD4(+) T cell proliferation. Toxicol Appl Pharmacol 2008; 229:135-45. [PMID: 18433816 DOI: 10.1016/j.taap.2007.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/05/2007] [Accepted: 12/07/2007] [Indexed: 11/16/2022]
Abstract
The persistent environmental toxicant and immunomodulator, lead (Pb), has been proposed to directly target CD4(+) T cells. However, our studies suggest that CD4(+) T cells are an important functional, yet indirect target. In order to identify the direct target of Pb in the immune system and the potential mechanism of Pb-induced immunotoxicity, myeloid suppressor cells (MSCs) were evaluated for their ability to modulate CD4(+) T cell proliferation after Pb exposure. Myeloid suppressor cells regulate the adaptive immune response, in part, by inhibiting the proliferation of CD4(+) T cells. It is thought that the mechanism of MSC-dependent regulation involves the release of the bioactive gas, nitric oxide (NO), blocking cell signaling cascades downstream of the IL-2 receptor and thus preventing T cells from entering cell-cycle. In mixed lymphocyte culture (MLC), increasing numbers of MSCs suppressed T cell proliferation in a dose-dependent manner, and this suppression is strikingly abrogated with 5 microM lead (Pb) treatment. The Pb-sensitive MSC population is CD11b(+), GR1(+)and CD11c(-) and thus phenotypically consistent with MSCs described in other literature. Inhibition of NO-synthase (NOS), the enzyme responsible for the production of NO, enhanced alloreactive T cell proliferation in MLC. Moreover, Pb attenuated NO production in MLC, and exogenous replacement of NO restored suppression in the presence of Pb. Significantly, MSC from iNOS-/- mice were unable to suppress T cell proliferation. An MSC-derived cell line (MSC-1) also suppressed T cell proliferation in MLC, and Pb disrupted this suppression by attenuating NO production. Additionally, Pb disrupted NO production in MSC-1 cells in response to treatment with interferon-gamma (IFN-gamma) and LPS or in response to concanavalin A-stimulated splenocytes. However, neither the abundance of protein nor levels of mRNA for the inducible isoform of NOS (iNOS) were altered with Pb treatment. Taken together these data suggest that Pb abrogates an MSC-dependent suppression of alloreactive T cell proliferation by inhibiting the function, but not the expression of iNOS.
Collapse
Affiliation(s)
- David G Farrer
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Rochester, NY, USA
| | | | | | | | | |
Collapse
|
24
|
Rotmann A, Simon A, Martiné U, Habermeier A, Closs EI. Activation of classical protein kinase C decreases transport via systems y+ and y+L. Am J Physiol Cell Physiol 2007; 292:C2259-68. [PMID: 17329401 DOI: 10.1152/ajpcell.00323.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of protein kinase C (PKC) downregulates the human cationic amino acid transporters hCAT-1 (SLC7A1) and hCAT-3 (SLC7A3) (Rotmann A, Strand D, Martiné U, Closs EI. J Biol Chem 279: 54185-54192, 2004; Rotmann A, Vekony N, Gassner D, Niegisch G, Strand D, Martine U, Closs EI. Biochem J 395: 117-123, 2006). However, others found that PKC increased arginine transport in various mammalian cell types, suggesting that the expression of different arginine transporters might be responsible for the opposite PKC effects. We thus investigated the consequence of PKC activation by phorbol-12-myristate-13-acetate (PMA) in various human cell lines expressing leucine-insensitive system y(+) [hCAT-1, hCAT-2B (SLC7A2), or hCAT-3] as well as leucine-sensitive system y(+)L [y(+)LAT1 (SLC7A7) or y(+)LAT2 (SLC7A6)] arginine transporters. PMA reduced system y(+) activity in all cell lines tested, independent of the hCAT isoform expressed, while mRNAs encoding the individual hCAT isoforms were either unchanged or increased. System y(+)L activity was also inhibited by PMA. The extent and onset of inhibition varied between cell lines; however, a PMA-induced increase in arginine transport was never observed. In addition, when expressed in Xenopus laevis oocytes, y(+)LAT1 and y(+)LAT2 activity was reduced by PMA, and this inhibition could be prevented by the PKC inhibitor bisindolylmaleimide I. In ECV304 cells, PMA-induced inhibition of systems y(+) and y(+)L could be prevented by Gö6976, a specific inhibitor of conventional PKCs. Thymelea toxin, which activates preferentially classical PKC, had a similar inhibitory effect as PMA. In contrast, phosphatidylinositol-3,4,5-triphosphate-dipalmitoyl, an activator of atypical PKC, had no effect. These data demonstrate that systems y(+) and y(+)L are both downregulated by classical PKC.
Collapse
Affiliation(s)
- Alexander Rotmann
- Dept. of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | | | | | | | | |
Collapse
|
25
|
Heale CE, Fåhraeus-Van Ree GE, Rahman P, Richardson VJ. Progressive and Concordant Expression of PKC-η and iNOS Phenotypes in Monocytes From Patients With Rheumatoid Arthritis: Association With Disease Severity. J Histochem Cytochem 2007; 55:495-503. [PMID: 17242466 DOI: 10.1369/jhc.6a7070.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is a relatively common autoimmune disease with strong genetic and environmental determinants. The disease manifests itself as inflammation of the synovia and usually progresses to joint erosion and destruction. The disease can also be considered as a systemic disease because extra-articular manifestations are often observed throughout many organs and tissues of the body. Patients with severe RA have altered peripheral blood monocytes (PBM) that express activation markers. Two such markers, PKC-η and iNOS, were studied using confocal laser scanning microscopy to determine how these markers are expressed during disease progression. Healthy individuals expressed neither of the two markers, but there was an elevated level of PKC-η observed as the disease progressed (40% in mild RA and 100% in severe RA patients). Concordant expression of the two markers was observed in only 3% of PBM from mild RA patients, reaching 38% in severe RA patients. No cells expressing iNOS alone were observed in any of the patients studied. These data support the hypothesis linking PKC-η expression with the regulation and predisposition to the development of the iNOS phenotype in severe RA patients. PKC-η may therefore be a key regulator in the production of elevated plasma nitric oxide (NO) and corresponding circulating reactive nitrogen intermediates in severe RA and may be a possible target to regulate iNOS induction and NO production by monocytic cells in RA patients and possibly other inflammatory diseases.
Collapse
|
26
|
Kubo M, Hata J, Ninomiya T, Matsuda K, Yonemoto K, Nakano T, Matsushita T, Yamazaki K, Ohnishi Y, Saito S, Kitazono T, Ibayashi S, Sueishi K, Iida M, Nakamura Y, Kiyohara Y. A nonsynonymous SNP in PRKCH (protein kinase C eta) increases the risk of cerebral infarction. Nat Genet 2007; 39:212-7. [PMID: 17206144 DOI: 10.1038/ng1945] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 11/27/2006] [Indexed: 01/02/2023]
Abstract
Cerebral infarction is the most common type of stroke and often causes long-term disability. To investigate the genetic contribution to cerebral infarction, we conducted a case-control study using 52,608 gene-based tag SNPs selected from the JSNP database. Here we report that a nonsynonymous SNP in a member of protein kinase C (PKC) family, PRKCH, was significantly associated with lacunar infarction in two independent Japanese samples (P = 5.1 x 10(-7), crude odds ratio of 1.40). This SNP is likely to affect PKC activity. Furthermore, a 14-year follow-up cohort study in Hisayama (Fukuoka, Japan) supported involvement of this SNP in the development of cerebral infarction (P = 0.03, age- and sex-adjusted hazard ratio of 2.83). We also found that PKCeta was expressed mainly in vascular endothelial cells and foamy macrophages in human atherosclerotic lesions, and its expression increased as the lesion type progressed. Our results support a role for PRKCH in the pathogenesis of cerebral infarction.
Collapse
Affiliation(s)
- Michiaki Kubo
- Department of Environmental Medicine, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Salonen T, Sareila O, Jalonen U, Kankaanranta H, Tuominen R, Moilanen E. Inhibition of classical PKC isoenzymes downregulates STAT1 activation and iNOS expression in LPS-treated murine J774 macrophages. Br J Pharmacol 2006; 147:790-9. [PMID: 16432499 PMCID: PMC1751509 DOI: 10.1038/sj.bjp.0706672] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Proinflammatory cytokines and bacterial products trigger inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in inflammatory and tissue cells. In inflammation, NO acts as an important mediator having both proinflammatory and destructive effects. Protein kinase C (PKC) is a family of serine-threonine protein kinase isoenzymes involved in signal transduction pathways related to inflammatory responses. The aim of the present study was to investigate the role of classical PKC (cPKC) isoenzymes in the regulation of iNOS expression and NO production in murine J774 macrophages and the mechanisms involved. RO318220 (inhibits PKCbeta, PKCgamma and PKCvarepsilon), GO6976 (inhibits cPKC isoenzymes PKCalpha and PKCbeta) and LY333531 (inhibits PKCbeta) reduced lipopolysaccharide (LPS)-induced NO production and iNOS expression in a dose-dependent manner as did 6 h pretreatment with 1 microM phorbol 12-myristate 13-acetate (PMA) (which was shown to downregulate PKC expression). PKC inhibitors also reduced LPS-induced iNOS mRNA levels, but they did not affect the half-life of iNOS mRNA. PKC inhibitors did not alter LPS-induced activation of NF-kappaB as measured by electrophoretic mobility shift assay. All PKC inhibitors used and pretreatment with 1 microM PMA inhibited signal transducer and activator of transcription 1 (STAT1) activation as measured by the translocation of STAT1alpha from the cytosol to the nucleus by Western blot. In addition, inhibition of STAT1 activation by AG-490, an inhibitor of JAK-2, also reduced NO production. These results suggest that cPKC isoenzymes, especially PKCbeta, mediate the upregulation of iNOS expression and NO production in activated macrophages in an NF-kappaB-independent manner, possibly through the activation of transcription factor STAT1.
Collapse
Affiliation(s)
- Tiina Salonen
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
| | - Outi Sareila
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
| | - Ulla Jalonen
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
| | - Hannu Kankaanranta
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
| | - Raimo Tuominen
- The Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
- Author for correspondence:
| |
Collapse
|