1
|
Moraes RA, Brito DS, Araujo FA, Jesus RLC, Silva LB, Lima GBDC, Sá DS, Silva da Silva CD, Pernomian L, Wenceslau CF, Silva DF. NONO2P, a nitric oxide donor, induces relaxation in coronary artery, negative inotropism and hypotensive effect in rats. Biochem Pharmacol 2025; 236:116918. [PMID: 40158820 DOI: 10.1016/j.bcp.2025.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Reduced NO synthesis and/or bioavailability is related with many cardiovascular diseases, such as coronary artery disease and hypertension. This study aimed to evaluate the effects of cis-[Ru(NO)(NO2)(phen)2](PF6)2-(NONO2P) on blood pressure in normotensive and hypertensive rats. Specifically, we wanted to investigate its action on the atrial contractility, mesenteric and coronary arteries function. Male Wistar and spontaneously hypertensive rats (SHR) (13-18 weeks old) were used to assess the NONO2P effects on blood pressure and heart rate. Superior mesenteric and coronary arteries, and atria were isolated for recording to analyze force changes. Cultured endothelial cells were used to measure intracellular reactive oxygen species (ROS) generation using fluorescent dye (dihydroethidium, DHE). Acute administration of NONO2P induced hypotension in non-anesthetized normotensive and hypertensive rats. Moreover, NONO2P caused a negative inotropic effect without altering cardiac rhythmicity. Further, NONO2P displays a vasorelaxant effect on different blood vessels (mesenteric and coronary arteries). For comparison purposes, we observed that NONO2P and NTG presented with a similar potency and maximum response values in inducing relaxation in coronary arteries. On the other hand, mesenteric arteries were more sensitive to both donors, NONO2P and NTG, than the coronary artery. In addition, exposure to NONO2P induced tolerance and increased ROS levels. This is the first evidence that NONO2P induces hypotension, negative cardiac inotropism and coronary artery relaxation. In addition, pre-exposure to NONO2P induces vascular tolerance. Overall, these results may shed light on the potential therapeutic use of NONO2P, particularly in treating angina and hypertensive crises.
Collapse
Affiliation(s)
- Raiana A Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Bioregulation Department, Federal University of Bahia, Salvador, Bahia, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
| | - Daniele S Brito
- Laboratory of Cardiovascular Physiology and Pharmacology, Bioregulation Department, Federal University of Bahia, Salvador, Bahia, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
| | - Fênix A Araujo
- Laboratory of Cardiovascular Physiology and Pharmacology, Bioregulation Department, Federal University of Bahia, Salvador, Bahia, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
| | - Rafael L C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Bioregulation Department, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Liliane B Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Bioregulation Department, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Gabriela B de C Lima
- Laboratory of Cardiovascular Physiology and Pharmacology, Bioregulation Department, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Denise S Sá
- Federal Institute of Bahia, Salvador, BA, Brazil
| | | | - Laena Pernomian
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA; Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, USA
| | - Camilla F Wenceslau
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA; Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, USA
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Bioregulation Department, Federal University of Bahia, Salvador, Bahia, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil.
| |
Collapse
|
2
|
Power AS, Asamudo EU, Worthington LP, Alim CC, Parackal RE, Wallace RS, Ebenebe OV, Heller Brown J, Kohr MJ, Bers DM, Erickson JR. Nitric Oxide Modulates Ca 2+ Leak and Arrhythmias via S-Nitrosylation of CaMKII. Circ Res 2023; 133:1040-1055. [PMID: 37961889 PMCID: PMC10699507 DOI: 10.1161/circresaha.123.323571] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Nitric oxide (NO) has been identified as a signaling molecule generated during β-adrenergic receptor stimulation in the heart. Furthermore, a role for NO in triggering spontaneous Ca2+ release via S-nitrosylation of CaMKIIδ (Ca2+/calmodulin kinase II delta) is emerging. NO donors are routinely used clinically for their cardioprotective effects on the heart, but it is unknown how NO donors modulate the proarrhythmic CaMKII to alter cardiac arrhythmia incidence. We test the role of S-nitrosylation of CaMKIIδ at the Cysteine-273 inhibitory site and cysteine-290 activating site in cardiac Ca2+ handling and arrhythmogenesis before and during β-adrenergic receptor stimulation. METHODS We measured Ca2+-handling in isolated cardiomyocytes from C57BL/6J wild-type (WT) mice and mice lacking CaMKIIδ expression (CaMKIIδ-KO) or with deletion of the S-nitrosylation site on CaMKIIδ at cysteine-273 or cysteine-290 (CaMKIIδ-C273S and -C290A knock-in mice). Cardiomyocytes were exposed to NO donors, S-nitrosoglutathione (GSNO; 150 μM), sodium nitroprusside (200 μM), and β-adrenergic agonist isoproterenol (100 nmol/L). RESULTS Both WT and CaMKIIδ-KO cardiomyocytes responded to isoproterenol with a full inotropic and lusitropic Ca2+ transient response as well as increased Ca2+ spark frequency. However, the increase in Ca2+ spark frequency was significantly attenuated in CaMKIIδ-KO cardiomyocytes. The protection from isoproterenol-induced Ca2+ sparks and waves was mimicked by GSNO pretreatment in WT cardiomyocytes but lost in CaMKIIδ-C273S cardiomyocytes. When GSNO was applied after isoproterenol, this protection was not observed in WT or CaMKIIδ-C273S but was apparent in CaMKIIδ-C290A. In Langendorff-perfused isolated hearts, GSNO pretreatment limited isoproterenol-induced arrhythmias in WT but not CaMKIIδ-C273S hearts, while GSNO exposure after isoproterenol sustained or exacerbated arrhythmic events. CONCLUSIONS We conclude that prior S-nitrosylation of CaMKIIδ at cysteine-273 can limit subsequent β-adrenergic receptor-induced arrhythmias, but that S-nitrosylation at cysteine-290 might worsen or sustain β-adrenergic receptor-induced arrhythmias. This has important implications for the administration of NO donors in the clinical setting.
Collapse
Affiliation(s)
- Amelia S. Power
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
- Department of Physiology, University of Auckland, New Zealand (A.S.P.)
| | - Esther U. Asamudo
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
- Department of Pharmacology, University of California, Davis (E.U.A., C.C.A., D.M.B.)
| | - Luke P.I. Worthington
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
| | - Chidera C. Alim
- Department of Pharmacology, University of California, Davis (E.U.A., C.C.A., D.M.B.)
| | - Raquel E. Parackal
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
| | - Rachel S. Wallace
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
| | - Obialunanma V. Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (O.V.E., M.J.K.)
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, La Jolla (J.H.B.)
| | - Mark J. Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (O.V.E., M.J.K.)
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis (E.U.A., C.C.A., D.M.B.)
| | - Jeffrey R. Erickson
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
| |
Collapse
|
3
|
Power AS, Asamudo E, Worthington LPI, Alim CC, Parackal R, Wallace RS, Ebenebe OV, Brown JH, Kohr MJ, Bers DM, Erickson JR. Nitric Oxide modulates spontaneous Ca 2+ release and ventricular arrhythmias during β-adrenergic signalling through S-nitrosylation of Calcium/Calmodulin dependent kinase II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554546. [PMID: 37662205 PMCID: PMC10473710 DOI: 10.1101/2023.08.23.554546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Rationale Nitric oxide (NO) has been identified as a signalling molecule generated during β-adrenergic receptor (AR) stimulation in the heart. Furthermore, a role for NO in triggering spontaneous Ca2+ release via S-nitrosylation of Ca2+/calmodulin kinase II delta (CaMKIIδ) is emerging. NO donors are routinely used clinically for their cardioprotective effects in the heart, but it is unknown how NO donors modulate the pro-arrhythmic CaMKII to alter cardiac arrhythmia incidence. Objective We test the role of S-nitrosylation of CaMKIIδ at the Cys-273 inhibitory site and Cys-290 activating site in cardiac Ca2+ handling and arrhythmogenesis before and during β-AR stimulation. Methods and Results We measured Ca2+-handling in isolated cardiomyocytes from C57BL/6J wild-type (WT) mice and mice lacking CaMKIIδ expression (CaMKIIδ-KO) or with deletion of the S-nitrosylation site on CaMKIIδ at Cys-273 or Cys-290 (CaMKIIδ-C273S and -C290A knock-in mice). Cardiomyocytes were exposed to NO donors, S-nitrosoglutathione (GSNO; 150 μM), sodium nitroprusside (SNP; 200 μM) and/or β-adrenergic agonist isoproterenol (ISO; 100 nM). WT and CaMKIIδ-KO cardiomyocytes treated with GSNO showed no change in Ca2+ transient or spark properties under baseline conditions (0.5 Hz stimulation frequency). Both WT and CaMKIIδ-KO cardiomyocytes responded to ISO with a full inotropic and lusitropic Ca2+ transient response as well as increased Ca2+ spark frequency. However, the increase in Ca2+ spark frequency was significantly attenuated in CaMKIIδ-KO cardiomyocytes. The protection from ISO-induced Ca2+ sparks and waves was mimicked by GSNO pre-treatment in WT cardiomyocytes, but lost in CaMKIIδ-C273S cardiomyocytes that displayed a robust increase in Ca2+ waves. This observation is consistent with CaMKIIδ-C273 S-nitrosylation being critical in limiting ISO-induced arrhythmogenic sarcoplasmic reticulum Ca2+ leak. When GSNO was applied after ISO this protection was not observed in WT or CaMKIIδ-C273S but was apparent in CaMKIIδ-C290A. In Langendorff-perfused isolated hearts, GSNO pre-treatment limited ISO-induced arrhythmias in WT but not CaMKIIδ-C273S hearts, while GSNO exposure after ISO sustained or exacerbated arrhythmic events. Conclusions We conclude that prior S-nitrosylation of CaMKIIδ at Cys-273 can limit subsequent β-AR induced arrhythmias, but that S-nitrosylation at Cys-290 might worsen or sustain β-AR-induced arrhythmias. This has important implications for the administration of NO donors in the clinical setting.
Collapse
Affiliation(s)
- Amelia S. Power
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Esther Asamudo
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
- Department of Pharmacology, University of California, Davis
| | | | | | - Raquel Parackal
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Rachel S. Wallace
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Obialunanma V. Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, La Jolla
| | - Mark J. Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis
| | - Jeffrey R. Erickson
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Tian Z, Li X, Shi X, Chen C. Effects of nitric oxide synthase inhibitor on mitochondria apoptosis and meat quality in postmortem Gannan yak (Bos grunniens) meat. J Food Biochem 2022; 46:e14234. [PMID: 35608959 DOI: 10.1111/jfbc.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
This research aimed to explore the effects of the nitric oxide synthase (NOS) inhibitor (L-NAME) on mitochondria apoptosis in postmortem Gannan yak (Bos grunniens) longissimus dorsi (LD) muscle and to explore its effect on meat quality further. The Gannan yak meat samples were treated with the control group (0.9% NaCl) and L-NAME (20, 60, and 100 mM) for 24 h and then stored for 0, 1, 3, 5, and 7 days at 4°C. NOS activity and NO content were investigated, and the parameters of mitochondrial apoptosis of the postmortem Gannan yak meat were determined. Meanwhile, the meat quality such as the centrifugation loss, meat color, and myofibril fragmentation index (MFI) was evaluated. The results indicated that after treatment with L-NAME, NOS activity and NO content decreased, causing mitochondrial membrane damage, Bax protein, and Cyt-c levels increased, and resulted in increased activities of caspase-9 and -3, promoting the occurrence of mitochondrial apoptosis. Furthermore, it increased the tenderness and water retention of Gannan yak meat. The results indicated that NOS inhibitor played a regulatory role in postmortem Gannan yak meat quality by regulating mitochondria apoptosis during postmortem aging. PRACTICAL APPLICATIONS: The meat's tenderness is often considered the most important factor affecting consumers' willingness to repurchase. The relationship of caspases and MFI suggested that L-NAME played a regulatory role in postmortem Gannan yak meat quality by regulating mitochondria apoptosis during postmortem aging. This study provides valuable information for the development of the Gannan yak economy in Tibetan areas.
Collapse
Affiliation(s)
- Zhu Tian
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.,College of Biological and Geographical Science, Yili Normal University, Xinjiang, China
| | - Xueru Li
- College of Biological and Geographical Science, Yili Normal University, Xinjiang, China
| | - Xixiong Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Liu H, Nguyen HH, Yoon KT, Lee SS. Pathogenic Mechanisms Underlying Cirrhotic Cardiomyopathy. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:849253. [PMID: 36926084 PMCID: PMC10013066 DOI: 10.3389/fnetp.2022.849253] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
Cardiac dysfunction associated with cirrhosis in the absence of preexisting heart disease is a condition known as cirrhotic cardiomyopathy (CCM). Cardiac abnormalities consist of enlargement of cardiac chambers, attenuated systolic and diastolic contractile responses to stress stimuli, and repolarization changes. CCM may contribute to cardiovascular morbidity and mortality after liver transplantation and other major surgeries, and also to the pathogenesis of hepatorenal syndrome. The underlying mechanisms of CCM are poorly understood and as such medical therapy is an area of unmet medical need. The present review focuses on the pathogenic mechanisms responsible for development of CCM. The two major concurrent mechanistic pathways are the inflammatory phenotype due to portal hypertension, and protein/lipid synthetic/metabolic defects due to cirrhosis and liver insufficiency. The inflammatory phenotype arises from intestinal congestion due to portal hypertension, resulting in bacteria/endotoxin translocation into the systemic circulation. The cytokine storm associated with inflammation, particularly TNFα acting via NFκB depresses cardiac function. They also stimulate two evanescent gases, nitric oxide and carbon monoxide which produce cardiodepression by cGMP. Inflammation also stimulates the endocannabinoid CB-1 pathway. These systems inhibit the stimulatory beta-adrenergic contractile pathway. The liver insufficiency of cirrhosis is associated with defective synthesis or metabolism of several substances including proteins and lipids/lipoproteins. The protein defects including titin and collagen contribute to diastolic dysfunction. Other protein abnormalities such as a switch of myosin heavy chain isoforms result in systolic dysfunction. Lipid biochemical changes at the cardiac sarcolemmal plasma membrane result in increased cholesterol:phospholipid ratio and decreased membrane fluidity. Final common pathway changes involve abnormal cardiomyocyte intracellular ion kinetics, particularly calcium. In conclusion, cirrhotic cardiomyopathy is caused by two pathways of cellular and molecular dysfunction/damage due to hepatic insufficiency and portal hypertension.
Collapse
Affiliation(s)
- Hongqun Liu
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Henry H Nguyen
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Ki Tae Yoon
- Liver Center, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Samuel S Lee
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| |
Collapse
|
6
|
Wang P, Wei M, Zhu X, Liu Y, Yoshimura K, Zheng M, Liu G, Kume S, Morishima M, Kurokawa T, Ono K. Nitric oxide down-regulates voltage-gated Na + channel in cardiomyocytes possibly through S-nitrosylation-mediated signaling. Sci Rep 2021; 11:11273. [PMID: 34050231 PMCID: PMC8163867 DOI: 10.1038/s41598-021-90840-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO) is produced from endothelial cells and cardiomyocytes composing the myocardium and benefits cardiac function through both vascular-dependent and—independent effects. This study was purposed to investigate the possible adverse effect of NO focusing on the voltage-gated Na+ channel in cardiomyocytes. We carried out patch-clamp experiments on rat neonatal cardiomyocytes demonstrating that NOC-18, an NO donor, significantly reduced Na+ channel current in a dose-dependent manner by a long-term application for 24 h, accompanied by a reduction of Nav1.5-mRNA and the protein, and an increase of a transcription factor forkhead box protein O1 (FOXO1) in the nucleus. The effect of NOC-18 on the Na+ channel was blocked by an inhibitor of thiol oxidation N-ethylmaleimide, a disulfide reducing agent disulfide 1,4-Dithioerythritol, or a FOXO1 activator paclitaxel, suggesting that NO is a negative regulator of the voltage-gated Na+ channel through thiols in regulatory protein(s) for the channel transcription.
Collapse
Affiliation(s)
- Pu Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China.,Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Mengyan Wei
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China.,Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Xiufang Zhu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China.,Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Yangong Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China.,Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Kenshi Yoshimura
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China
| | - Shinichiro Kume
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Masaki Morishima
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Tatsuki Kurokawa
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
7
|
Redox and Antioxidant Modulation of Circadian Rhythms: Effects of Nitroxyl, N-Acetylcysteine and Glutathione. Molecules 2021; 26:molecules26092514. [PMID: 33925826 PMCID: PMC8123468 DOI: 10.3390/molecules26092514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
The circadian clock at the hypothalamic suprachiasmatic nucleus (SCN) entrains output rhythms to 24-h light cycles. To entrain by phase-advances, light signaling at the end of subjective night (circadian time 18, CT18) requires free radical nitric oxide (NO•) binding to soluble guanylate cyclase (sGC) heme group, activating the cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). Phase-delays at CT14 seem to be independent of NO•, whose redox-related species were yet to be investigated. Here, the one-electron reduction of NO• nitroxyl was pharmacologically delivered by Angeli’s salt (AS) donor to assess its modulation on phase-resetting of locomotor rhythms in hamsters. Intracerebroventricular AS generated nitroxyl at the SCN, promoting phase-delays at CT14, but potentiated light-induced phase-advances at CT18. Glutathione/glutathione disulfide (GSH/GSSG) couple measured in SCN homogenates showed higher values at CT14 (i.e., more reduced) than at CT18 (oxidized). In addition, administration of antioxidants N-acetylcysteine (NAC) and GSH induced delays per se at CT14 but did not affect light-induced advances at CT18. Thus, the relative of NO• nitroxyl generates phase-delays in a reductive SCN environment, while an oxidative favors photic-advances. These data suggest that circadian phase-locking mechanisms should include redox SCN environment, generating relatives of NO•, as well as coupling with the molecular oscillator.
Collapse
|
8
|
Molecular mechanisms by which iNOS uncoupling can induce cardiovascular dysfunction during sepsis: Role of posttranslational modifications (PTMs). Life Sci 2020; 255:117821. [PMID: 32445759 DOI: 10.1016/j.lfs.2020.117821] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Abstract
Human sepsis is the result of a multifaceted pathological process causing marked dysregulation of cardiovascular responses. A more sophisticated understanding of the pathogenesis of sepsis is certainly prerequisite. Evidence from studies provide further insight into the role of inducible nitric oxide synthase (iNOS) isoform. Results on inhibition of iNOS in sepsis models remain inconclusive. Concern has been devoted to improving our knowledge and understanding of the role of iNOS. The aim of this review is to define the role of iNOS in redox homeostasis disturbance, the detailed mechanisms linking iNOS and posttranslational modifications (PTMs) to cardiovascular dysfunctions, and their future implications in sepsis settings. Many questions related to the iNOS and PTMs still remain open, and much more work is needed on this.
Collapse
|
9
|
Qin CX, Anthonisz J, Leo CH, Kahlberg N, Velagic A, Li M, Jap E, Woodman OL, Parry LJ, Horowitz JD, Kemp-Harper BK, Ritchie RH. Nitric Oxide Resistance, Induced in the Myocardium by Diabetes, Is Circumvented by the Nitric Oxide Redox Sibling, Nitroxyl. Antioxid Redox Signal 2020; 32:60-77. [PMID: 31680536 DOI: 10.1089/ars.2018.7706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim: Impairment of tissue responsiveness to exogenous and endogenous nitric oxide (NO•), known as NO• resistance, occurs in many cardiovascular disease states, prominently in diabetes and especially in the presence of marked hyperglycemia. In this study, we sought to determine in moderate and severe diabetes (i) whether NO• resistance also occurs in the myocardium, and (ii) whether the NO• redox sibling nitroxyl (HNO) circumvents this. Results: The spectrum of acute NO• effects (induced by diethylamine-NONOate), including vasodilation, and enhanced myocardial contraction and relaxation were impaired by moderately diabetic rats ([blood glucose] ∼20 mM). In contrast, acute HNO effects (induced by isopropylamine-NONOate) were preserved even in more severe diabetes ([blood glucose] >28 mM). Intriguingly, the positive inotropic effects of HNO were significantly enhanced in diabetic rat hearts. Further, progressive attenuation of soluble guanylyl cyclase (sGC) contribution to myocardial NO• responses occurred with increasing severity of diabetes. Nevertheless, activation of sGC by HNO remained intact in the myocardium. Innovation: Diabetes is associated with marked attenuation of vascular and myocardial effects of NO and NO donors, and this NO• resistance is circumvented by HNO, suggesting potential therapeutic utility for HNO donors in cardiovascular emergencies in diabetics. Conclusion: These results provide the first evidence that NO• resistance occurs in diabetic hearts, and that HNO largely circumvents this problem. Further, the positive inotropic and lusitropic effects of HNO are enhanced in a severely diabetic myocardium, a finding that warrants further mechanistic interrogation. The results support a potential role for therapeutic HNO administration in acute treatment of ischemia and/or heart failure in diabetics.
Collapse
Affiliation(s)
- Cheng Xue Qin
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| | - Jarryd Anthonisz
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| | - Chen Huei Leo
- School of Biosciences, University of Melbourne, Parkville, Australia.,Science and Maths Cluster, Singapore University of Technology & Design, Singapore Singapore
| | - Nicola Kahlberg
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - Anida Velagic
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| | - Mandy Li
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia
| | - Edwina Jap
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia
| | - Owen L Woodman
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia
| | - Laura J Parry
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - John D Horowitz
- Cardiology Unit, The Queen Elizabeth Hospital, Basil Hetzel Institute, The University of Adelaide, Woodville SA, Australia
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Neto-Neves EM, Pinheiro LC, Nogueira RC, Portella RL, Batista RI, Tanus-Santos JE. Sodium nitrite improves hypertension-induced myocardial dysfunction by mechanisms involving cardiac S-nitrosylation. J Mol Cell Cardiol 2019; 134:40-50. [DOI: 10.1016/j.yjmcc.2019.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
|
11
|
Nitric oxide synthase in beef semimembranosus muscle during postmortem aging. Food Chem 2019; 288:187-192. [DOI: 10.1016/j.foodchem.2019.02.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
|
12
|
Román-Anguiano NG, Correa F, Cano-Martínez A, de la Peña-Díaz A, Zazueta C. Cardioprotective effects of Prolame and SNAP are related with nitric oxide production and with diminution of caspases and calpain-1 activities in reperfused rat hearts. PeerJ 2019; 7:e7348. [PMID: 31392096 PMCID: PMC6673759 DOI: 10.7717/peerj.7348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/25/2019] [Indexed: 01/26/2023] Open
Abstract
Cardiac tissue undergoes changes during ischemia-reperfusion (I-R) that compromise its normal function. Cell death is one of the consequences of such damage, as well as diminution in nitric oxide (NO) content. This signaling molecule regulates the function of the cardiovascular system through dependent and independent effects of cyclic guanosine monophosphate (cGMP). The independent cGMP pathway involves post-translational modification of proteins by S-nitrosylation. Studies in vitro have shown that NO inhibits the activity of caspases and calpains through S-nitrosylation of a cysteine located in their catalytic site, so we propose to elucidate if the regulatory mechanisms of NO are related with changes in S-nitrosylation of cell death proteins in the ischemic-reperfused myocardium. We used two compounds that increase the levels of NO by different mechanisms: Prolame, an amino-estrogenic compound with antiplatelet and anticoagulant effects that induces the increase of NO levels in vivo by activating the endothelial nitric oxide synthase (eNOS) and that has not been tested as a potential inhibitor of apoptosis. On the other hand, S-Nitroso-N-acetylpenicillamine (SNAP), a synthetic NO donor that has been shown to decrease cell death after inducing hypoxia-reoxygenation in cell cultures. Main experimental groups were Control, I-R, I-R+Prolame and I-R+SNAP. Additional groups were used to evaluate the NO action pathways. Contractile function represented as heart rate and ventricular pressure was evaluated in a Langendorff system. Infarct size was measured with 2,3,5-triphenyltetrazolium chloride stain. NO content was determined indirectly by measuring nitrite levels with the Griess reaction and cGMP content was measured by Enzyme-Linked ImmunoSorbent Assay. DNA integrity was evaluated by DNA laddering visualized on an agarose gel and by Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling assay. Activities of caspase-3, caspase-8, caspase-9 and calpain-1 were evaluated spectrophotometrically and the content of caspase-3 and calpain-1 by western blot. S-nitrosylation of caspase-3 and calpain-1 was evaluated by labeling S-nitrosylated cysteines. Our results show that both Prolame and SNAP increased NO content and improved functional recovery in post-ischemic hearts. cGMP-dependent and S-nitrosylation pathways were activated in both groups, but the cGMP-independent pathway was preferentially activated by SNAP, which induced higher levels of NO than Prolame. Although SNAP effectively diminished the activity of all the proteases, a correlative link between the activity of these proteases and S-nitrosylation was not fully established.
Collapse
Affiliation(s)
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiologia Ignacio Chávez, México, México
| | - Agustina Cano-Martínez
- Departamento de Fisiología, Instituto Nacional de Cardiologia Ignacio Chávez, México, México
| | - Aurora de la Peña-Díaz
- Departamento de Biología Molecular, Instituto Nacional de Cardiologia Ignacio Chávez, México, México.,Departamento de Farmacología, Universidad Nacional Autónoma de México, México, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiologia Ignacio Chávez, México, México
| |
Collapse
|
13
|
Dowrick JM, Tran K, Loiselle DS, Nielsen PMF, Taberner AJ, Han J, Ward M. The slow force response to stretch: Controversy and contradictions. Acta Physiol (Oxf) 2019; 226:e13250. [PMID: 30614655 DOI: 10.1111/apha.13250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
When exposed to an abrupt stretch, cardiac muscle exhibits biphasic active force enhancement. The initial, instantaneous, force enhancement is well explained by the Frank-Starling mechanism. However, the cellular mechanisms associated with the second, slower phase remain contentious. This review explores hypotheses regarding this "slow force response" with the intention of clarifying some apparent contradictions in the literature. The review is partitioned into three sections. The first section considers pathways that modify the intracellular calcium handling to address the role of the sarcoplasmic reticulum in the mechanism underlying the slow force response. The second section focuses on extracellular calcium fluxes and explores the identity and contribution of the stretch-activated, non-specific, cation channels as well as signalling cascades associated with G-protein coupled receptors. The final section introduces promising candidates for the mechanosensor(s) responsible for detecting the stretch perturbation.
Collapse
Affiliation(s)
- Jarrah M. Dowrick
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Denis S. Loiselle
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Physiology University of Auckland Auckland New Zealand
| | - Poul M. F. Nielsen
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Engineering Science University of Auckland Auckland New Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Engineering Science University of Auckland Auckland New Zealand
| | - June‐Chiew Han
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Marie‐Louise Ward
- Department of Physiology University of Auckland Auckland New Zealand
| |
Collapse
|
14
|
Zhang L, Liu R, Cheng Y, Xing L, Zhou G, Zhang W. Effects of protein S-nitrosylation on the glycogen metabolism in postmortem pork. Food Chem 2019; 272:613-618. [DOI: 10.1016/j.foodchem.2018.08.103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 01/05/2023]
|
15
|
Johnson DM, Antoons G. Arrhythmogenic Mechanisms in Heart Failure: Linking β-Adrenergic Stimulation, Stretch, and Calcium. Front Physiol 2018; 9:1453. [PMID: 30374311 PMCID: PMC6196916 DOI: 10.3389/fphys.2018.01453] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022] Open
Abstract
Heart failure (HF) is associated with elevated sympathetic tone and mechanical load. Both systems activate signaling transduction pathways that increase cardiac output, but eventually become part of the disease process itself leading to further worsening of cardiac function. These alterations can adversely contribute to electrical instability, at least in part due to the modulation of Ca2+ handling at the level of the single cardiac myocyte. The major aim of this review is to provide a definitive overview of the links and cross talk between β-adrenergic stimulation, mechanical load, and arrhythmogenesis in the setting of HF. We will initially review the role of Ca2+ in the induction of both early and delayed afterdepolarizations, the role that β-adrenergic stimulation plays in the initiation of these and how the propensity for these may be altered in HF. We will then go onto reviewing the current data with regards to the link between mechanical load and afterdepolarizations, the associated mechano-sensitivity of the ryanodine receptor and other stretch activated channels that may be associated with HF-associated arrhythmias. Furthermore, we will discuss how alterations in local Ca2+ microdomains during the remodeling process associated the HF may contribute to the increased disposition for β-adrenergic or stretch induced arrhythmogenic triggers. Finally, the potential mechanisms linking β-adrenergic stimulation and mechanical stretch will be clarified, with the aim of finding common modalities of arrhythmogenesis that could be targeted by novel therapeutic agents in the setting of HF.
Collapse
Affiliation(s)
- Daniel M Johnson
- Department of Cardiothoracic Surgery, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Gudrun Antoons
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
16
|
Barutcigil A, Tasatargil A. Effects of nesfatin-1 on atrial contractility and thoracic aorta reactivity in male rats. Clin Exp Hypertens 2017; 40:414-420. [DOI: 10.1080/10641963.2017.1384487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ayşe Barutcigil
- Department of Pharmacology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Arda Tasatargil
- Department of Pharmacology, Medical Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
17
|
Chen C, Jiang X, Gu S, Lai Y, Liu Y, Zhang Z. Protection of Nrf2 against arsenite-induced oxidative damage is regulated by the cyclic guanosine monophosphate-protein kinase G signaling pathway. ENVIRONMENTAL TOXICOLOGY 2017; 32:2004-2020. [PMID: 27774770 PMCID: PMC5403658 DOI: 10.1002/tox.22374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 05/05/2023]
Abstract
Arsenite has been shown to induce a variety of oxidative damage in mammalian cells. However, the mechanisms underlying cellular responses to its adverse effects remain unknown. We previously showed that the level of Nrf2, a nuclear transcription factor significantly increased in arsenite-treated human bronchial epithelial (HBE) cells suggesting that Nrf2 is involved in responding to arsenite-induced oxidative damage. To explore how Nrf2 can impact arsenite-induced oxidative damage, in this study, we examined Nrf2 activation and its regulation upon cellular arsenite exposure as well as its effects on arsenite-induced oxidative damage in HBE cells. We found that Nrf2 mRNA and protein levels were significantly increased by arsenite in a dose- and time-dependent manner. Furthermore, we showed that over-expression of Nrf2 significantly reduced the level of arsenite-induced oxidative damage in HBE cells including DNA damage, chromosomal breakage, lipid peroxidation and depletion of antioxidants. This indicates a protective role of Nrf2 against arsenite toxicity. This was further supported by the fact that activation of Nrf2 by its agonists, tertiary butylhydroquinone (t-BHQ) and sulforaphane (SFN) resulted in the same protective effects against arsenite toxicity. Moreover, we demonstrated that arsenite-induced activation of Nrf2 was mediated by the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling pathway. This is the first evidence showing that Nrf2 protects against arsenite-induced oxidative damage through the cGMP-PKG pathway. Our study suggests that activation of Nrf2 through the cGMP-PKG signaling pathway in HBE cells may be developed as a new strategy for prevention of arsenite toxicity. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 2004-2020, 2017.
Collapse
Affiliation(s)
- Chengzhi Chen
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing, People’s Republic of China
| | - Xuejun Jiang
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing, People’s Republic of China
| | - Shiyan Gu
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biochemistry Ph.D. Program, Florida International University, Miami, Florida, USA
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
- Corresponding authors: Zunzhen Zhang, Ph.D., Department of Environmental Health, West China School of Public Health, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu 610041, People’s Republic of China. ; Tel: +86 028 85501298; Fax: +86 028 85501295, Yuan Liu, Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 Street, Miami, FL, 33199, USA ; Tel: 305-348-3628; Fax: 305-348-3772
| | - Zunzhen Zhang
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Corresponding authors: Zunzhen Zhang, Ph.D., Department of Environmental Health, West China School of Public Health, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu 610041, People’s Republic of China. ; Tel: +86 028 85501298; Fax: +86 028 85501295, Yuan Liu, Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 Street, Miami, FL, 33199, USA ; Tel: 305-348-3628; Fax: 305-348-3772
| |
Collapse
|
18
|
Dulce RA, Kulandavelu S, Schulman IH, Fritsch J, Hare JM. Nitric Oxide Regulation of Cardiovascular Physiology and Pathophysiology. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00024-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Vielma AZ, León L, Fernández IC, González DR, Boric MP. Nitric Oxide Synthase 1 Modulates Basal and β-Adrenergic-Stimulated Contractility by Rapid and Reversible Redox-Dependent S-Nitrosylation of the Heart. PLoS One 2016; 11:e0160813. [PMID: 27529477 PMCID: PMC4986959 DOI: 10.1371/journal.pone.0160813] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/21/2016] [Indexed: 12/30/2022] Open
Abstract
S-nitrosylation of several Ca2+ regulating proteins in response to β-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether β-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC. Selective NOS-1 blockade with S-methyl-L-thiocitrulline (SMTC) and Nω-propyl-l-arginine decreased basal contractility and relaxation (−25–30%) and basal S-nitrosylation of total proteins (−25–60%), RyR2, SERCA2 and LTCC (−60–75%). NOS-1 inhibition reduced (−25–40%) the inotropic response and protein S-nitrosylation induced by isoproterenol, particularly that of RyR2 (−85±7%). Tempol, a superoxide scavenger, mimicked the effects of NOS-1 inhibition on inotropism and protein S-nitrosylation; whereas selective NOS-3 inhibitor L-N5-(1-Iminoethyl)ornithine had no effect. Inhibition of NOS-1 did not affect phospholamban phosphorylation, but reduced its oligomerization. Attenuation of contractility was abolished by PKA blockade and unaffected by guanylate cyclase inhibition. Additionally, in isolated mouse cardiomyocytes, NOS-1 inhibition or removal reduced the Ca2+-transient amplitude and sarcomere shortening induced by isoproterenol or by direct PKA activation. We conclude that 1) normal cardiac performance requires basal NOS-1 activity and S-nitrosylation of the calcium-cycling machinery; 2) β-adrenergic stimulation induces rapid and reversible NOS-1 dependent, PKA and ROS-dependent, S-nitrosylation of RyR2 and other proteins, accounting for about one third of its inotropic effect.
Collapse
Affiliation(s)
- Alejandra Z. Vielma
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
| | - Luisa León
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
| | - Ignacio C. Fernández
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Av. Lircay S.N., Talca, Chile
| | - Mauricio P. Boric
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
- * E-mail:
| |
Collapse
|
20
|
Reinke Y, Gross S, Eckerle LG, Hertrich I, Busch M, Busch R, Riad A, Rauch BH, Stasch JP, Dörr M, Felix SB. The soluble guanylate cyclase stimulator riociguat and the soluble guanylate cyclase activator cinaciguat exert no direct effects on contractility and relaxation of cardiac myocytes from normal rats. Eur J Pharmacol 2015; 767:1-9. [PMID: 26407652 DOI: 10.1016/j.ejphar.2015.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/25/2022]
Abstract
In cardiovascular diseases, reduced responsiveness of soluble guanylate cyclase (sGC) to nitric oxide (NO) upon long-term application has led to the development of NO-independent sGC stimulators (heme-dependent) and sGC activators (heme-independent). Any direct inotropic or lusitropic effects of these compounds on isolated cardiac myocytes, however, remain to be elucidated. Here, we analyzed the dose-dependent effects of clinical relevant concentrations (10(-10)-10(-5) M) of the sGC activator cinaciguat and the sGC stimulator riociguat on the contraction, relaxation, and calcium transients of isolated field-stimulated cardiac myocytes from healthy rats. For comparison, we used isoproterenol, which induced a dose-dependent significant increase in cell contractility, relaxation, and calcium transients, verapamil that significantly decreased these parameters (both at 10(-9)-10(-5) M) and 8-(4-Chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (8-pCPT-cGMP) that induced a negative inotropic effect at 10(-5) M accompanied by a slight increase in relaxation. In contrast, neither cinaciguat nor riociguat significantly influenced any measured parameters. Furthermore, isoproterenol significantly increased intracellular cAMP levels that were not influenced by cinaciguat or riociguat (all at 10(-6) M). Otherwise, riociguat and cinaciguat (both at 10(-6) M) significantly enhanced intracellular cGMP generation. This accumulation was significantly augmented by cinaciguat in the presence of the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 25 µM), whereas ODQ blocked cGMP generation by riociguat. However, blocking of sGC did not influence cell contractility. Our results demonstrate that, in isolated cardiac myocytes from healthy rats, the increase in cGMP levels induced by cinaciguat and riociguat at clinical relevant concentrations is not associated with acute direct effects on cell contraction and relaxation.
Collapse
Affiliation(s)
- Yvonne Reinke
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany
| | - Stefan Gross
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany
| | - Lars G Eckerle
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany
| | - Isabel Hertrich
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany
| | - Mathias Busch
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany
| | - Raila Busch
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany
| | - Alexander Riad
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany
| | - Bernhard H Rauch
- Department of Pharmacology, University Medicine Greifswald, Germany
| | - Johannes-Peter Stasch
- Cardiology Research, Bayer Pharma AG, Wuppertal, Germany Institute of Pharmacy, Martin Luther-University Halle-Wittenberg, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany.
| |
Collapse
|
21
|
Abstract
The ubiquitous nature of plastics has raised concerns pertaining to continuous exposure to plastic polymers and human health risks. Of particular concern is the use of endocrine-disrupting chemicals in plastic production, including di(2-ethylhexyl)phthalate (DEHP) and bisphenol A (BPA). Widespread and continuous exposure to DEHP and BPA occurs through dietary intake, inhalation, dermal and intravenous exposure via consumer products and medical devices. This article reviews the literature examining the relationship between DEHP and BPA exposure and cardiac toxicity. In vitro and in vivo experimental reports are outlined, as well as epidemiological studies which examine the association between these chemicals and cardiovascular outcomes. Gaps in our current knowledge are also discussed, along with future investigative endeavors that may help resolve whether DEHP and/or BPA exposure has a negative impact on cardiovascular physiology.
Collapse
Affiliation(s)
- Nikki Gillum Posnack
- Pharmacology and Physiology Department, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street NW, Washington, DC, 20052, USA,
| |
Collapse
|
22
|
Penna C, Angotti C, Pagliaro P. Protein S-nitrosylation in preconditioning and postconditioning. Exp Biol Med (Maywood) 2015; 239:647-62. [PMID: 24668550 DOI: 10.1177/1535370214522935] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The coronary artery disease is a leading cause of death and morbidity worldwide. This disease has a complex pathophysiology that includes multiple mechanisms. Among these is the oxidative/nitrosative stress. Paradoxically, oxidative/nitrosative signaling plays a major role in cardioprotection against ischemia/reperfusion injury. In this context, the gas transmitter nitric oxide may act through several mechanisms, such as guanylyl cyclase activation and via S-nitrosylation of proteins. The latter is a covalent modification of a protein cysteine thiol by a nitric oxide-group that generates an S-nitrosothiol. Here, we report data showing that nitric oxide and S-nitrosylation of proteins play a pivotal role not only in preconditioning but also in postconditioning cardioprotection.
Collapse
|
23
|
Breitkreuz M, Hamdani N. A change of heart: oxidative stress in governing muscle function? Biophys Rev 2015; 7:321-341. [PMID: 28510229 DOI: 10.1007/s12551-015-0175-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023] Open
Abstract
Redox/cysteine modification of proteins that regulate calcium cycling can affect contraction in striated muscles. Understanding the nature of these modifications would present the possibility of enhancing cardiac function through reversible cysteine modification of proteins, with potential therapeutic value in heart failure with diastolic dysfunction. Both heart failure and muscular dystrophy are characterized by abnormal redox balance and nitrosative stress. Recent evidence supports the synergistic role of oxidative stress and inflammation in the progression of heart failure with preserved ejection fraction, in concert with endothelial dysfunction and impaired nitric oxide-cyclic guanosine monophosphate-protein kinase G signalling via modification of the giant protein titin. Although antioxidant therapeutics in heart failure with diastolic dysfunction have no marked beneficial effects on the outcome of patients, it, however, remains critical to the understanding of the complex interactions of oxidative/nitrosative stress with pro-inflammatory mechanisms, metabolic dysfunction, and the redox modification of proteins characteristic of heart failure. These may highlight novel approaches to therapeutic strategies for heart failure with diastolic dysfunction. In this review, we provide an overview of oxidative stress and its effects on pathophysiological pathways. We describe the molecular mechanisms driving oxidative modification of proteins and subsequent effects on contractile function, and, finally, we discuss potential therapeutic opportunities for heart failure with diastolic dysfunction.
Collapse
Affiliation(s)
- Martin Breitkreuz
- Department of Cardiovascular Physiology, Ruhr University Bochum, MA 3/56, 44780, Bochum, Germany
| | - Nazha Hamdani
- Department of Cardiovascular Physiology, Ruhr University Bochum, MA 3/56, 44780, Bochum, Germany.
| |
Collapse
|
24
|
Sarkar K, Tarafder P, Paul G. Bisphenol A inhibits duodenal movement ex vivo of rat through nitric oxide-mediated soluble guanylyl cyclase and α-adrenergic signaling pathways. J Appl Toxicol 2015; 36:131-9. [PMID: 25884437 DOI: 10.1002/jat.3154] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/08/2015] [Accepted: 02/23/2015] [Indexed: 11/08/2022]
Abstract
The gastrointestinal tract is directly exposed to bisphenol A (BPA)-tainted foods and beverages stored in polycarbonate plastic containers. The effect of BPA on the movement of small intestine has not been reported until now. We report here the effect of BPA on the movement of the duodenum ex vivo in a rat model. We found significant inhibition of duodenal movement by BPA (10-320 µM). We suggest that BPA-induced inhibition of duodenal movement might be due to the suppression of stimulatory and/or activation of inhibitory motor neurons in enteric plexuses innervating the longitudinal and circular visceral smooth muscle cells in the duodenal wall. We observed a significant reversal of BPA-induced depression of duodenal movement by methylene blue, a soluble guanylyl cyclase blocker and N-ω-nitro-L-arginine methyl ester, a nitric oxide (NO) synthase inhibitor; but significant potentiation of the movement by sodium nitroprusside, a NO donor. From the results, we may suggest that BPA-induced inhibition of the movement might be partially due to activation of inhibitory motor neurons that secrete NO, a relaxant, on to smooth muscle cells. Furthermore, we found significant reversal of BPA-induced depression of the movement in phentolamine, an α-adrenergic receptor blocker, pretreated preparation. This result proves that norepinephrine secreting motor neurons may also be involved in BPA-induced inhibition of the movement. From the results, we conclude that BPA inhibits the movement of the duodenum through NO-mediated soluble guanylyl cyclase and α-adrenergic signaling pathways in visceral smooth muscle cells.
Collapse
Affiliation(s)
- Kaushik Sarkar
- Toxicology Unit, Environmental Physiology Division, Department of Physiology, University of Kalyani, Kalyani, West Bengal, India
| | - Panchali Tarafder
- Toxicology Unit, Environmental Physiology Division, Department of Physiology, University of Kalyani, Kalyani, West Bengal, India
| | - Goutam Paul
- Toxicology Unit, Environmental Physiology Division, Department of Physiology, University of Kalyani, Kalyani, West Bengal, India
| |
Collapse
|
25
|
Roof SR, Ho HT, Little SC, Ostler JE, Brundage EA, Periasamy M, Villamena FA, Györke S, Biesiadecki BJ, Heymes C, Houser SR, Davis JP, Ziolo MT. Obligatory role of neuronal nitric oxide synthase in the heart's antioxidant adaptation with exercise. J Mol Cell Cardiol 2015; 81:54-61. [PMID: 25595735 DOI: 10.1016/j.yjmcc.2015.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 12/18/2014] [Accepted: 01/06/2015] [Indexed: 02/07/2023]
Abstract
Excessive oxidative stress in the heart results in contractile dysfunction. While antioxidant therapies have been a disappointment clinically, exercise has shown beneficial results, in part by reducing oxidative stress. We have previously shown that neuronal nitric oxide synthase (nNOS) is essential for cardioprotective adaptations caused by exercise. We hypothesize that part of the cardioprotective role of nNOS is via the augmentation of the antioxidant defense with exercise by positively shifting the nitroso-redox balance. Our results show that nNOS is indispensable for the augmented anti-oxidant defense with exercise. Furthermore, exercise training of nNOS knockout mice resulted in a negative shift in the nitroso-redox balance resulting in contractile dysfunction. Remarkably, overexpressing nNOS (conditional cardiac-specific nNOS overexpression) was able to mimic exercise by increasing VO2max. This study demonstrates that exercise results in a positive shift in the nitroso-redox balance that is nNOS-dependent. Thus, targeting nNOS signaling may mimic the beneficial effects of exercise by combating oxidative stress and may be a viable treatment strategy for heart disease.
Collapse
Affiliation(s)
- Steve R Roof
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Hsiang-Ting Ho
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Sean C Little
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Joseph E Ostler
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Elizabeth A Brundage
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Muthu Periasamy
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Frederick A Villamena
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Sandor Györke
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Brandon J Biesiadecki
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, Toulouse, France
| | - Steven R Houser
- Department of Physiology, Cardiovascular Research Center, Temple University, Philadelphia, PA, USA
| | - Jonathan P Davis
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mark T Ziolo
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
26
|
Chin KY, Qin C, Cao N, Kemp-Harper BK, Woodman OL, Ritchie RH. The concomitant coronary vasodilator and positive inotropic actions of the nitroxyl donor Angeli's salt in the intact rat heart: contribution of soluble guanylyl cyclase-dependent and -independent mechanisms. Br J Pharmacol 2014; 171:1722-34. [PMID: 24372173 DOI: 10.1111/bph.12568] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 12/11/2013] [Accepted: 12/20/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE The NO redox sibling nitroxyl (HNO) elicits soluble guanylyl cyclase (sGC)-dependent vasodilatation. HNO has high reactivity with thiols, which is attributed with HNO-enhanced left ventricular (LV) function. Here, we tested the hypothesis that the concomitant vasodilatation and inotropic actions induced by a HNO donor, Angeli's salt (sodium trioxodinitrate), were sGC-dependent and sGC-independent respectively. EXPERIMENTAL APPROACH Haemodynamic responses to Angeli's salt (10 pmol-10 μmol), alone and in the presence of scavengers of HNO (L-cysteine, 4 mM) or of NO [hydroxocobalamin (HXC), 100 μM] or a selective inhibitor of sGC [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), 10 μM], a CGRP receptor antagonist (CGRP8-37 , 0.1 μM) or a blocker of voltage-dependent potassium channels [4-aminopyridine (4-AP), 1 mM] were determined in isolated hearts from male rats. KEY RESULTS Angeli's salt elicited concomitant, dose-dependent increases in coronary flow and LV systolic and diastolic function. Both L-cysteine and ODQ shifted (but did not abolish) the dose-response curve of each of these effects to the right, implying contributions from HNO and sGC in both the vasodilator and inotropic actions. In contrast, neither HXC, CGRP8-37 nor 4-AP affected these actions. CONCLUSIONS AND IMPLICATIONS Both vasodilator and inotropic actions of the HNO donor Angeli's salt were mediated in part by sGC-dependent mechanisms, representing the first evidence that sGC contributes to the inotropic and lusitropic action of HNO in the intact heart. Thus, HNO acutely enhances LV contraction and relaxation, while concomitantly unloading the heart, potentially beneficial actions in failing hearts.
Collapse
Affiliation(s)
- Kai Yee Chin
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne, Vic., Australia; School of Medical Sciences, RMIT University, Bundoora, Vic., Australia
| | | | | | | | | | | |
Collapse
|
27
|
Balance of nitric oxide and reactive oxygen species in myocardial reperfusion injury and protection. J Cardiovasc Pharmacol 2014; 62:567-75. [PMID: 23921313 DOI: 10.1097/fjc.0b013e3182a50c45] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Depending on their concentrations, both nitric oxide (NO) and reactive oxygen species (ROS) take part either in myocardial ischemia reperfusion injury or in protection by ischemic and pharmacological preconditioning (Ipre) and postconditioning (Ipost). At the beginning of reperfusion, a transient release of NO is promptly scavenged by ROS to form the highly toxic peroxynitrite, which is responsible for a further increase of ROS through endothelial nitric oxide synthase uncoupling. The protective role of NO has suggested the use of NO donors to mimic Ipre and Ipost. However, NO donors have not always given the expected protection, possibly because they are responsible for the production of different amounts of ROS that depend on the amount of released NO. This review is focused on the role of the balance of NO and ROS in myocardial injury and its prevention by Ipre and Ipost and after the use of NO donors given with or without antioxidant compounds to mimic Ipre and Ipost.
Collapse
|
28
|
Simon JN, Duglan D, Casadei B, Carnicer R. Nitric oxide synthase regulation of cardiac excitation-contraction coupling in health and disease. J Mol Cell Cardiol 2014; 73:80-91. [PMID: 24631761 DOI: 10.1016/j.yjmcc.2014.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 02/07/2023]
Abstract
Significant advances in our understanding of the ability of nitric oxide synthases (NOS) to modulate cardiac function have provided key insights into the role NOS play in the regulation of excitation-contraction (EC) coupling in health and disease. Through both cGMP-dependent and cGMP-independent (e.g. S-nitrosylation) mechanisms, NOS have the ability to alter intracellular Ca(2+) handling and the myofilament response to Ca(2+), thereby impacting the systolic and diastolic performance of the myocardium. Findings from experiments using nitric oxide (NO) donors and NOS inhibition or gene deletion clearly implicate dysfunctional NOS as a critical contributor to many cardiovascular disease states. However, studies to date have only partially addressed NOS isoform-specific effects and, more importantly, how subcellular localization of NOS influences ion channels involved in myocardial EC coupling and excitability. In this review, we focus on the contribution of each NOS isoform to cardiac dysfunction and on the role of uncoupled NOS activity in common cardiac disease states, including heart failure, diabetic cardiomyopathy, ischemia/reperfusion injury and atrial fibrillation. We also review evidence that clearly indicates the importance of NO in cardioprotection. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Collapse
Affiliation(s)
- Jillian N Simon
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Drew Duglan
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Barbara Casadei
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Ricardo Carnicer
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
29
|
Baidanoff FM, Plano SA, Doctorovich F, Suárez SA, Golombek DA, Chiesa JJ. N-nitrosomelatonin enhances photic synchronization of mammalian circadian rhythms. J Neurochem 2013; 129:60-71. [PMID: 24261470 DOI: 10.1111/jnc.12613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022]
Abstract
Most physiological processes in mammals are synchronized to the daily light:dark cycle by a circadian clock located in the hypothalamic suprachiasmatic nucleus. Signal transduction of light-induced phase advances of the clock is mediated through a neuronal nitric oxide synthase-guanilyl cyclase pathway. We have employed a novel nitric oxide-donor, N-nitrosomelatonin, to enhance the photic synchronization of circadian rhythms in hamsters. The intraperitoneal administration of this drug before a sub-saturating light pulse at circadian time 18 generated a twofold increase of locomotor rhythm phase-advances, having no effect over saturating light pulses. This potentiation was also obtained even when inhibiting suprachiasmatic nitric oxide synthase activity. However, N-nitrosomelatonin had no effect on light-induced phase delays at circadian time 14. The photic-enhancing effects were correlated with an increased suprachiasmatic immunoreactivity of FBJ murine osteosarcoma viral oncogene and period1. Moreover, in vivo nitric oxide release by N-nitrosomelatonin was verified by measuring nitrate and nitrite levels in suprachiasmatic nuclei homogenates. The compound also accelerated resynchronization to an abrupt 6-h advance in the light:dark cycle (but not resynchronization to a 6-h delay). Here, we demonstrate the chronobiotic properties of N-nitrosomelatonin, emphasizing the importance of nitric oxide-mediated transduction for circadian phase advances.
Collapse
Affiliation(s)
- Fernando M Baidanoff
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Bernal, Argentina
| | | | | | | | | | | |
Collapse
|
30
|
Roman-Campos D, Sales-Júnior P, Duarte HL, Gomes ER, Guatimosim S, Ropert C, Gazzinelli RT, Cruz JS. Cardiomyocyte dysfunction during the chronic phase of Chagas disease. Mem Inst Oswaldo Cruz 2013; 108:243-5. [PMID: 23579807 PMCID: PMC3970661 DOI: 10.1590/0074-0276108022013019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/22/2012] [Indexed: 01/17/2023] Open
Abstract
Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of heart failure. We investigated modifications in the cellular electrophysiological and calcium-handling characteristics of an infected mouse heart during the chronic phase of the disease. The patch-clamp technique was used to record action potentials (APs) and L-type Ca2+ and transient outward K+ currents. [Ca2+]i changes were determined using confocal microscopy. Infected ventricular cells showed prolonged APs, reduced transient outward K+ and L-type Ca2+ currents and reduced Ca2+ release from the sarcoplasmic reticulum. Thus, the chronic phase of Chagas disease is characterised by cardiomyocyte dysfunction, which could lead to heart failure.
Collapse
Affiliation(s)
- Danilo Roman-Campos
- Laboratório de Membranas Excitáveis e Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Roberts DD, Miller TW, Rogers NM, Yao M, Isenberg JS. The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47. Matrix Biol 2012; 31:162-9. [PMID: 22266027 PMCID: PMC3295899 DOI: 10.1016/j.matbio.2012.01.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 01/31/2023]
Abstract
Matricellular proteins play diverse roles in modulating cell behavior by engaging specific cell surface receptors and interacting with extracellular matrix proteins, secreted enzymes, and growth factors. Studies of such interactions involving thrombospondin-1 have revealed several physiological functions and roles in the pathogenesis of injury responses and cancer, but the relatively mild phenotypes of mice lacking thrombospondin-1 suggested that thrombospondin-1 would not be a central player that could be exploited therapeutically. Recent research focusing on signaling through its receptor CD47, however, has uncovered more critical roles for thrombospondin-1 in acute regulation of cardiovascular dynamics, hemostasis, immunity, and mitochondrial homeostasis. Several of these functions are mediated by potent and redundant inhibition of the canonical nitric oxide pathway. Conversely, elevated tissue thrombospondin-1 levels in major chronic diseases of aging may account for the deficient nitric oxide signaling that characterizes these diseases, and experimental therapeutics targeting CD47 show promise for treating such chronic diseases as well as acute stress conditions that are associated with elevated thrombospondin-1 expression.
Collapse
Affiliation(s)
- David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Thomas W. Miller
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Natasha M. Rogers
- Division of Pulmonary, Allergy and Critical Care Medicine and the Vascular Medicine Institute of the University of Pittsburgh, Pittsburgh, PA 15213
| | - Mingyi Yao
- Division of Pulmonary, Allergy and Critical Care Medicine and the Vascular Medicine Institute of the University of Pittsburgh, Pittsburgh, PA 15213
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical Care Medicine and the Vascular Medicine Institute of the University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
32
|
Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proc Natl Acad Sci U S A 2012; 109:4314-9. [PMID: 22366318 DOI: 10.1073/pnas.1113319109] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although protein S-nitrosylation is increasingly recognized as mediating nitric oxide (NO) signaling, roles for protein denitrosylation in physiology remain unknown. Here, we show that S-nitrosoglutathione reductase (GSNOR), an enzyme that governs levels of S-nitrosylation by promoting protein denitrosylation, regulates both peripheral vascular tone and β-adrenergic agonist-stimulated cardiac contractility, previously ascribed exclusively to NO/cGMP. GSNOR-deficient mice exhibited reduced peripheral vascular tone and depressed β-adrenergic inotropic responses that were associated with impaired β-agonist-induced denitrosylation of cardiac ryanodine receptor 2 (RyR2), resulting in calcium leak. These results indicate that systemic hemodynamic responses (vascular tone and cardiac contractility), both under basal conditions and after adrenergic activation, are regulated through concerted actions of NO synthase/GSNOR and that aberrant denitrosylation impairs cardiovascular function. Our findings support the notion that dynamic S-nitrosylation/denitrosylation reactions are essential in cardiovascular regulation.
Collapse
|
33
|
Hirai DM, Copp SW, Hageman KS, Poole DC, Musch TI. Aging alters the contribution of nitric oxide to regional muscle hemodynamic control at rest and during exercise in rats. J Appl Physiol (1985) 2011; 111:989-98. [PMID: 21757576 DOI: 10.1152/japplphysiol.00490.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Advanced age is associated with altered skeletal muscle hemodynamic control during the transition from rest to exercise. This study investigated the effects of aging on the functional role of nitric oxide (NO) in regulating total, inter-, and intramuscular hindlimb hemodynamic control at rest and during submaximal whole body exercise. We tested the hypothesis that NO synthase inhibition (N(G)-nitro-l-arginine methyl ester, l-NAME; 10 mg/kg) would result in attenuated reductions in vascular conductance (VC) primarily in oxidative muscles in old compared with young rats. Total and regional hindlimb muscle VCs were determined via radiolabeled microspheres at rest and during treadmill running (20 m/min, 5% grade) in nine young (6-8 mo) and seven old (27-29 mo) male Fisher 344 × Brown Norway rats. At rest, l-NAME increased mean arterial pressure (MAP) significantly by ∼17% and 21% in young and old rats, respectively. During exercise, l-NAME increased MAP significantly by ∼13% and 19% in young and old rats, respectively. Compared with young rats, l-NAME administration in old rats evoked attenuated reductions in 1) total hindlimb VC during exercise (i.e., down by ∼23% in old vs. 43% in young rats; P < 0.05), and 2) VC in predominantly oxidative muscles both at rest and during exercise (P < 0.05). Our results indicate that the dependency of highly oxidative muscles on NO-mediated vasodilation is markedly diminished, and therefore mechanisms other than NO-mediated vasodilation control the bulk of the increase in skeletal muscle VC during the transition from rest to exercise in old rats. Reduced NO contribution to vasomotor control with advanced age is associated with blood flow redistribution from highly oxidative to glycolytic muscles during exercise.
Collapse
Affiliation(s)
- Daniel M Hirai
- Clarenburg Research Laboratory, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State Univ., Manhattan, KS 66506-5802, USA
| | | | | | | | | |
Collapse
|
34
|
Penna C, Perrelli MG, Tullio F, Moro F, Parisella ML, Merlino A, Pagliaro P. Post-ischemic early acidosis in cardiac postconditioning modifies the activity of antioxidant enzymes, reduces nitration, and favors protein S-nitrosylation. Pflugers Arch 2011; 462:219-33. [PMID: 21544520 DOI: 10.1007/s00424-011-0970-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 12/18/2022]
Abstract
Postconditioning (PostC) modifies the early post-ischemic pH, redox environment, and activity of enzymes. We hypothesized that early acidosis in PostC may affect superoxide dismutase (SOD) and catalase (CAT) activities, may reduce 3-nitrotyrosine (3-NT) protein levels, and may increase S-nitrosylated (SNO) protein levels, thus deploying its protective effects. To verify this hypothesis, we studied the early (7(th) min) and late (120(th) min) phases of reperfusion (a) endogenous SOD and CAT activities and (b) 3-NT protein levels and SNO protein levels. Isolated rat hearts underwent 30-min ischemia/120-min reperfusion (I/R) or PostC (5 cycles of 10-s I/R at the beginning of 120-min reperfusion) either with or without exogenous CAT or SOD infused during the initial 3 min of reperfusion. The effects of early reperfusion with acid buffer (AB, pH 6.8) on endogenous antioxidant enzymes were also tested. Pressure, infarct size, and lactate dehydrogenase release were also measured. At the 7(th) min, PostC induced a significant decrease in SOD activity with no major change both in Mn and Cu/Zn SOD levels and in CAT activity and level. PostC also reduced 3-NT and increased SNO levels. Exogenous SOD, but not CAT, abolished PostC cardioprotection. In late reperfusion (120-min), I/R increased SOD activity but decreased CAT activity and Cu/Zn SOD levels; these effects were reversed by PostC; 3-NT was not affected, but SNO was increased by PostC. AB reproduced PostC effects on antioxidant enzymes. The conclusions are as follows: PostC downregulates endogenous SOD and preserves CAT activity, thus increasing SNO and reducing 3-NT levels. These effects are triggered by early post-ischemic acidosis. Yet acidosis-induced SOD downregulation may limit denitrosylation, thus contributing to PostC triggering. Hence, exogenous SOD, but not CAT, interferes with PostC triggering. Prolonged SOD downregulation and SNO increase may contribute to PostC and AB beneficial effects.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Biological and Clinical Sciences, University of Torino, Orbassano, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Post-ischemic early acidosis in cardiac postconditioning modifies the activity of antioxidant enzymes, reduces nitration, and favors protein S-nitrosylation. PFLUGERS ARCHIV : EUROPEAN JOURNAL OF PHYSIOLOGY 2011. [PMID: 21544520 DOI: 10.1007/pnas.s00424-011-0970-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Postconditioning (PostC) modifies the early post-ischemic pH, redox environment, and activity of enzymes. We hypothesized that early acidosis in PostC may affect superoxide dismutase (SOD) and catalase (CAT) activities, may reduce 3-nitrotyrosine (3-NT) protein levels, and may increase S-nitrosylated (SNO) protein levels, thus deploying its protective effects. To verify this hypothesis, we studied the early (7(th) min) and late (120(th) min) phases of reperfusion (a) endogenous SOD and CAT activities and (b) 3-NT protein levels and SNO protein levels. Isolated rat hearts underwent 30-min ischemia/120-min reperfusion (I/R) or PostC (5 cycles of 10-s I/R at the beginning of 120-min reperfusion) either with or without exogenous CAT or SOD infused during the initial 3 min of reperfusion. The effects of early reperfusion with acid buffer (AB, pH 6.8) on endogenous antioxidant enzymes were also tested. Pressure, infarct size, and lactate dehydrogenase release were also measured. At the 7(th) min, PostC induced a significant decrease in SOD activity with no major change both in Mn and Cu/Zn SOD levels and in CAT activity and level. PostC also reduced 3-NT and increased SNO levels. Exogenous SOD, but not CAT, abolished PostC cardioprotection. In late reperfusion (120-min), I/R increased SOD activity but decreased CAT activity and Cu/Zn SOD levels; these effects were reversed by PostC; 3-NT was not affected, but SNO was increased by PostC. AB reproduced PostC effects on antioxidant enzymes. The conclusions are as follows: PostC downregulates endogenous SOD and preserves CAT activity, thus increasing SNO and reducing 3-NT levels. These effects are triggered by early post-ischemic acidosis. Yet acidosis-induced SOD downregulation may limit denitrosylation, thus contributing to PostC triggering. Hence, exogenous SOD, but not CAT, interferes with PostC triggering. Prolonged SOD downregulation and SNO increase may contribute to PostC and AB beneficial effects.
Collapse
|
36
|
Capes EM, Loaiza R, Valdivia HH. Ryanodine receptors. Skelet Muscle 2011; 1:18. [PMID: 21798098 PMCID: PMC3156641 DOI: 10.1186/2044-5040-1-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/04/2011] [Indexed: 12/31/2022] Open
Abstract
Excitation-contraction coupling involves the faithful conversion of electrical stimuli to mechanical shortening in striated muscle cells, enabled by the ubiquitous second messenger, calcium. Crucial to this process are ryanodine receptors (RyRs), the sentinels of massive intracellular calcium stores contained within the sarcoplasmic reticulum. In response to sarcolemmal depolarization, RyRs release calcium into the cytosol, facilitating mobilization of the myofilaments and enabling cell contraction. In order for the cells to relax, calcium must be rapidly resequestered or extruded from the cytosol. The sustainability of this cycle is crucially dependent upon precise regulation of RyRs by numerous cytosolic metabolites and by proteins within the lumen of the sarcoplasmic reticulum and those directly associated with the receptors in a macromolecular complex. In addition to providing the majority of the calcium necessary for contraction of cardiac and skeletal muscle, RyRs act as molecular switchboards that integrate a multitude of cytosolic signals such as dynamic and steady calcium fluctuations, β-adrenergic stimulation (phosphorylation), nitrosylation and metabolic states, and transduce these signals to the channel pore to release appropriate amounts of calcium. Indeed, dysregulation of calcium release via RyRs is associated with life-threatening diseases in both skeletal and cardiac muscle. In this paper, we briefly review some of the most outstanding structural and functional attributes of RyRs and their mechanism of regulation. Further, we address pathogenic RyR dysfunction implicated in cardiovascular disease and skeletal myopathies.
Collapse
Affiliation(s)
- E Michelle Capes
- Department of Cellular and Regenerative Biology, University of Wisconsin Medical School, Madison, WI 53711, USA.
| | | | | |
Collapse
|
37
|
Schulman IH, Hare JM. Regulation of cardiovascular cellular processes by S-nitrosylation. Biochim Biophys Acta Gen Subj 2011; 1820:752-62. [PMID: 21536106 DOI: 10.1016/j.bbagen.2011.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 04/07/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Nitric oxide (NO), a highly versatile signaling molecule, exerts a broad range of regulatory influences in the cardiovascular system that extends from vasodilation to myocardial contractility, angiogenesis, inflammation, and energy metabolism. Considerable attention has been paid to deciphering the mechanisms for such diversity in signaling. S-nitrosylation of cysteine thiols is a major signaling pathway through which NO exerts its actions. An emerging concept of NO pathophysiology is that the interplay between NO and reactive oxygen species (ROS), the nitroso/redox balance, is an important regulator of cardiovascular homeostasis. SCOPE OF REVIEW ROS react with NO, limit its bioavailability, and compete with NO for binding to the same thiol in effector molecules. The interplay between NO and ROS appears to be tightly regulated and spatially confined based on the co-localization of specific NO synthase (NOS) isoforms and oxidative enzymes in unique subcellular compartments. NOS isoforms are also in close contact with denitrosylases, leading to crucial regulation of S-nitrosylation. MAJOR CONCLUSIONS Nitroso/redox balance is an emerging regulatory pathway for multiple cells and tissues, including the cardiovascular system. Studies using relevant knockout models, isoform specific NOS inhibitors, and both in vitro and in vivo methods have provided novel insights into NO- and ROS-based signaling interactions responsible for numerous cardiovascular disorders. GENERAL SIGNIFICANCE An integrated view of the role of nitroso/redox balance in cardiovascular pathophysiology has significant therapeutic implications. This is highlighted by human studies where pharmacologic manipulation of oxidative and nitrosative pathways exerted salutary effects in patients with advanced heart failure. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.
Collapse
Affiliation(s)
- Ivonne Hernandez Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
38
|
Hirai DM, Copp SW, Schwagerl PJ, Haub MD, Poole DC, Musch TI. Acute antioxidant supplementation and skeletal muscle vascular conductance in aged rats: role of exercise and fiber type. Am J Physiol Heart Circ Physiol 2011; 300:H1536-44. [DOI: 10.1152/ajpheart.01082.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Age-related increases in oxidative stress contribute to impaired skeletal muscle vascular control. However, recent evidence indicates that antioxidant treatment with tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) attenuates flow-mediated vasodilation in isolated arterioles from the highly oxidative soleus muscle of aged rats. Whether antioxidant treatment with tempol evokes similar responses in vivo at rest and during exercise in senescent individuals and whether this effect varies based on muscle fiber type composition are unknown. We tested the hypothesis that redox modulation via acute systemic tempol administration decreases vascular conductance (VC) primarily in oxidative hindlimb locomotor muscles at rest and during submaximal whole body exercise (treadmill running at 20 m/min, 5% grade) in aged rats. Eighteen old (25–26 mo) male Fischer 344 x Brown Norway rats were assigned to either rest ( n = 8) or exercise ( n = 10) groups. Regional VC was determined via radiolabeled microspheres before and after intra-arterial administration of tempol (302 μmol/kg). Tempol decreased mean arterial pressure significantly by 9% at rest and 16% during exercise. At rest, similar VC in 26 out of 28 individual hindlimb muscles or muscle parts following tempol administration compared with control resulted in unchanged total hindlimb muscle VC (control: 0.18 ± 0.02; tempol: 0.17 ± 0.05 ml·min−1·100 g−1·mmHg−1; P > 0.05). During exercise, all individual hindlimb muscles or muscle parts irrespective of fiber type composition exhibited either an increase or no change in VC with tempol (i.e., ↑11 and ↔17 muscles or muscle parts), such that total hindlimb VC increased by 25% (control: 0.93 ± 0.04; tempol: 1.15 ± 0.09 ml·min−1·100 g−1·mmHg−1; P ≤ 0.05). These results demonstrate that acute systemic administration of the antioxidant tempol significantly impacts the control of regional vascular tone in vivo presumably via redox modulation and improves skeletal muscle vasodilation independently of fiber type composition during submaximal whole body exercise in aged rats.
Collapse
Affiliation(s)
| | | | | | - Mark D. Haub
- Human Nutrition, Kansas State University, Manhattan, Kansas
| | | | | |
Collapse
|
39
|
Pant J, Ranjan P, Deshpande SB. Bisphenol A decreases atrial contractility involving NO-dependent G-cyclase signaling pathway. J Appl Toxicol 2011; 31:698-702. [DOI: 10.1002/jat.1647] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 11/14/2010] [Accepted: 11/24/2010] [Indexed: 11/10/2022]
Affiliation(s)
- Jayanti Pant
- Department of Physiology; Institute of Medical Sciences; Banaras Hindu University; Varanasi; 221005; India
| | - Pratibha Ranjan
- Department of Physiology; Institute of Medical Sciences; Banaras Hindu University; Varanasi; 221005; India
| | - Shripad B. Deshpande
- Department of Physiology; Institute of Medical Sciences; Banaras Hindu University; Varanasi; 221005; India
| |
Collapse
|
40
|
Nitric oxide effects depend on different mechanisms in different regions of the rat heart. Heart Vessels 2011; 27:89-97. [DOI: 10.1007/s00380-011-0116-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 12/24/2010] [Indexed: 01/20/2023]
|
41
|
Kellogg DL, Zhao JL, Wu Y, Johnson JM. Antagonism of soluble guanylyl cyclase attenuates cutaneous vasodilation during whole body heat stress and local warming in humans. J Appl Physiol (1985) 2011; 110:1406-13. [PMID: 21292837 DOI: 10.1152/japplphysiol.00702.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that nitric oxide activation of soluble guanylyl cyclase (sGC) participates in cutaneous vasodilation during whole body heat stress and local skin warming. We examined the effects of the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on reflex skin blood flow responses to whole body heat stress and on nonreflex responses to increased local skin temperature. Blood flow was monitored by laser-Doppler flowmetry, and blood pressure by Finapres to calculate cutaneous vascular conductance (CVC). Intradermal microdialysis was used to treat one site with 1 mM ODQ in 2% DMSO and Ringer, a second site with 2% DMSO in Ringer, and a third site received Ringer. In protocol 1, after a period of normothermia, whole body heat stress was induced. In protocol 2, local heating units warmed local skin temperature from 34 to 41°C to cause local vasodilation. In protocol 1, in normothermia, CVC did not differ among sites [ODQ, 15 ± 3% maximum CVC (CVC(max)); DMSO, 14 ± 3% CVC(max); Ringer, 17 ± 6% CVC(max); P > 0.05]. During heat stress, ODQ attenuated CVC increases (ODQ, 54 ± 4% CVC(max); DMSO, 64 ± 4% CVC(max); Ringer, 63 ± 4% CVC(max); P < 0.05, ODQ vs. DMSO or Ringer). In protocol 2, at 34°C local temperature, CVC did not differ among sites (ODQ, 17 ± 2% CVC(max); DMSO, 18 ± 4% CVC(max); Ringer, 18 ± 3% CVC(max); P > 0.05). ODQ attenuated CVC increases at 41°C local temperature (ODQ, 54 ± 5% CVC(max); DMSO, 86 ± 4% CVC(max); Ringer, 90 ± 2% CVC(max); P < 0.05 ODQ vs. DMSO or Ringer). sGC participates in neurogenic active vasodilation during heat stress and in the local response to direct skin warming.
Collapse
Affiliation(s)
- Dean L Kellogg
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, Audie L. Murphy Memorial Veterans Hospital Division, San Antonio, Texas, USA.
| | | | | | | |
Collapse
|
42
|
Roman-Campos D, Duarte HL, Gomes ER, Castro CH, Guatimosim S, Natali AJ, Almeida AP, Pesquero JB, Pesquero JL, Cruz JS. Investigation of the cardiomyocyte dysfunction in bradykinin type 2 receptor knockout mice. Life Sci 2010; 87:715-23. [DOI: 10.1016/j.lfs.2010.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/28/2010] [Accepted: 10/08/2010] [Indexed: 12/28/2022]
|
43
|
Gonzalez DR, Treuer AV, Castellanos J, Dulce RA, Hare JM. Impaired S-nitrosylation of the ryanodine receptor caused by xanthine oxidase activity contributes to calcium leak in heart failure. J Biol Chem 2010; 285:28938-45. [PMID: 20643651 DOI: 10.1074/jbc.m110.154948] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
S-Nitrosylation is a ubiquitous post-translational modification that regulates diverse biologic processes. In skeletal muscle, hypernitrosylation of the ryanodine receptor (RyR) causes sarcoplasmic reticulum (SR) calcium leak, but whether abnormalities of cardiac RyR nitrosylation contribute to dysfunction of cardiac excitation-contraction coupling remains controversial. In this study, we tested the hypothesis that cardiac RyR2 is hyponitrosylated in heart failure, because of nitroso-redox imbalance. We evaluated excitation-contraction coupling and nitroso-redox balance in spontaneously hypertensive heart failure rats with dilated cardiomyopathy and age-matched Wistar-Kyoto rats. Spontaneously hypertensive heart failure myocytes were characterized by depressed contractility, increased diastolic Ca(2+) leak, hyponitrosylation of RyR2, and enhanced xanthine oxidase derived superoxide. Global S-nitrosylation was decreased in failing hearts compared with nonfailing. Xanthine oxidase inhibition restored global and RyR2 nitrosylation and reversed the diastolic SR Ca(2+) leak, improving Ca(2+) handling and contractility. Together these findings demonstrate that nitroso-redox imbalance causes RyR2 oxidation, hyponitrosylation, and SR Ca(2+) leak, a hallmark of cardiac dysfunction. The reversal of this phenotype by inhibition of xanthine oxidase has important pathophysiologic and therapeutic implications.
Collapse
Affiliation(s)
- Daniel R Gonzalez
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
44
|
Hsieh HY, Robertson CL, Vermehren-Schmaedick A, Balkowiec A. Nitric oxide regulates BDNF release from nodose ganglion neurons in a pattern-dependent and cGMP-independent manner. J Neurosci Res 2010; 88:1285-97. [PMID: 19937808 DOI: 10.1002/jnr.22291] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activity of arterial baroreceptors is modulated by neurohumoral factors, including nitric oxide (NO), released from endothelial cells. Baroreceptor reflex responses can also be modulated by NO signaling in the brainstem nucleus tractus solitarius (NTS), the primary central target of cardiovascular afferents. Our recent studies indicate that brain-derived neurotrophic factor (BDNF) is abundantly expressed by developing and adult baroreceptor afferents in vivo, and released from cultured nodose ganglion (NG) neurons by patterns of baroreceptor activity. Using electrical field stimulation and ELISA in situ, we show that exogenous NO nearly abolishes BDNF release from newborn rat NG neurons in vitro stimulated with single pulses delivered at 6 Hz, but not 2-pulse bursts delivered at the same 6-Hz frequency, that corresponds to a rat heart rate. Application of L-NAME, a specific inhibitor of endogenous NO synthases, does not have any significant effect on activity-dependent BDNF release, but leads to upregulation of BDNF expression in an activity-dependent manner. The latter effect suggests a novel mechanism of homeostatic regulation of activity-dependent BDNF expression with endogenous NO as a key player. The exogenous NO-mediated effect does not involve the cGMP-protein kinase G (PKG) pathway, but is largely inhibited by N-ethylmaleimide and TEMPOL that are known to prevent S-nitrosylation. Together, our current data identify previously unknown mechanisms regulating BDNF availability, and point to NO as a likely regulator of BDNF at baroafferent synapses in the NTS.
Collapse
Affiliation(s)
- Hui-ya Hsieh
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
45
|
Wang H, Viatchenko-Karpinski S, Sun J, Györke I, Benkusky NA, Kohr MJ, Valdivia HH, Murphy E, Györke S, Ziolo MT. Regulation of myocyte contraction via neuronal nitric oxide synthase: role of ryanodine receptor S-nitrosylation. J Physiol 2010; 588:2905-17. [PMID: 20530114 DOI: 10.1113/jphysiol.2010.192617] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The sarcoplasmic reticulum (SR) Ca(2+) release channel (ryanodine receptor, RyR2) has been proposed to be an end target of neuronal nitric oxide synthase (NOS1) signalling. The purpose of this study is to investigate the mechanism of NOS1 modulation of RyR2 activity and the corresponding effect on myocyte function. Myocytes were isolated from NOS1 knockout (NOS1(/)) and wild-type mice. NOS1(/) myocytes displayed a decreased fractional SR Ca(2+) release, NOS1 knockout also led to reduced RyR2 S-nitrosylation levels. RyR2 channels from NOS1(/) hearts had decreased RyR2 open probability. Additionally, knockout of NOS1 led to a decrease in [(3)H]ryanodine binding, Ca(2+) spark frequency (CaSpF) and a rightward shift in the SR Ca(2+) leak/load relationship. Similar effects were observed with acute inhibition of NOS1. These data are indicative of decreased RyR2 activity in myocytes with NOS1 knockout or acute inhibition. Interestingly, the NO donor and nitrosylating agent SNAP reversed the depressed RyR2 open probability, the reduced CaSpF, and caused a leftward shift in the leak/load relationship in NOS1(/) myocytes. SNAP also normalized Ca(2+) transient and cell shortening amplitudes and SR fractional release in myocytes with NOS1 knockout or acute inhibition. Furthermore, SNAP was able to normalize the RyR2 S-nitrosylation levels. These data suggest that NOS1 signalling increases RyR2 activity via S-nitrosylation, which contributes to the NOS1-induced positive inotropic effect. Thus, RyR2 is an important end target of NOS1.
Collapse
Affiliation(s)
- Honglan Wang
- Department of Physiology and Cell Biology, Ohio State University, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kanoo S, Deshpande SB. Sildenafil increases the force of right atrial contractions in vitro via the NO-guanylyl cyclase pathway involving β-adrenoceptor linked mechanisms. Pharmacol Rep 2010; 61:1146-52. [PMID: 20081250 DOI: 10.1016/s1734-1140(09)70177-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 10/17/2009] [Indexed: 11/29/2022]
Abstract
Sildenafil, a drug used in the treatment of erectile dysfunction, is a phosphodiesterase 5A inhibitor that increases cyclic guanosine monophosphate (cGMP) levels. In addition to its vascular actions, sildenafil is also known to alter cardiac functions. This study was undertaken to elucidate the effect of sildenafil on cardiac contractility and the underlying mechanisms. The experiments were conducted on spontaneously-beating right atria isolated from adult rats. The effect of sildenafil on the isometric contractions in vitro was examined in the absence or presence of antagonists. Sildenafil (0.001-10 microM) produced a concentration-dependent increase in the atrial force of contraction without altering the atrial rate, even up to 10 microM. A concentration as low as 0.001 microM produced a significant increase (16%) in force and the increase was about 50% at 10 microM. Pretreatment with methylene blue (a guanylyl cyclase inhibitor) or N-omega-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase inhibitor) blocked the force changes induced by sildenafil. Sildenafil-induced increase in force of contraction was also blocked by propranolol (a beta-adrenoceptor antagonist) and diltiazem (an L-type Ca(2+) channel antagonist). The present results demonstrate that sildenafil increases the atrial force of contraction involving cGMP-beta-adrenoceptor-Ca(2+) channel-dependent mechanisms.
Collapse
Affiliation(s)
- Sadhana Kanoo
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, India
| | | |
Collapse
|
47
|
Oxidant sensing by protein kinases a and g enables integration of cell redox state with phosphoregulation. SENSORS 2010; 10:2731-51. [PMID: 22319269 PMCID: PMC3274199 DOI: 10.3390/s100402731] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 12/19/2022]
Abstract
The control of vascular smooth muscle contractility enables regulation of blood pressure, which is paramount in physiological adaptation to environmental challenges. Maintenance of stable blood pressure is crucial for health as deregulation (caused by high or low blood pressure) leads to disease progression. Vasotone is principally controlled by the cyclic nucleotide dependent protein kinases A and G, which regulate intracellular calcium and contractile protein calcium sensitivity. The classical pathways for activation of these two kinases are well established and involve the formation and activation by specific cyclic nucleotide second messengers. Recently we reported that both PKA and PKG can be regulated independently of their respective cyclic nucleotides via a mechanism whereby the kinases sense cellular oxidant production using redox active thiols. This novel redox regulation of these kinases is potentially of physiological importance, and may synergise with the classical regulatory mechanisms.
Collapse
|
48
|
Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2010; 107:1559-64. [PMID: 20080623 DOI: 10.1073/pnas.0908540107] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Patients with Duchenne muscular dystrophy (DMD) have a progressive dilated cardiomyopathy associated with fatal cardiac arrhythmias. Electrical and functional abnormalities have been attributed to cardiac fibrosis; however, electrical abnormalities may occur in the absence of overt cardiac histopathology. Here we show that structural and functional remodeling of the cardiac sarcoplasmic reticulum (SR) Ca(2+) release channel/ryanodine receptor (RyR2) occurs in the mdx mouse model of DMD. RyR2 from mdx hearts were S-nitrosylated and depleted of calstabin2 (FKBP12.6), resulting in "leaky" RyR2 channels and a diastolic SR Ca(2+) leak. Inhibiting the depletion of calstabin2 from the RyR2 complex with the Ca(2+) channel stabilizer S107 ("rycal") inhibited the SR Ca(2+) leak, inhibited aberrant depolarization in isolated cardiomyocytes, and prevented arrhythmias in vivo. This suggests that diastolic SR Ca(2+) leak via RyR2 due to S-nitrosylation of the channel and calstabin2 depletion from the channel complex likely triggers cardiac arrhythmias. Normalization of the RyR2-mediated diastolic SR Ca(2+) leak prevents fatal sudden cardiac arrhythmias in DMD.
Collapse
|
49
|
Cervetto C, Maura G, Marcoli M. Inhibition of presynaptic release-facilitatory kainate autoreceptors by extracellular cyclic GMP. J Pharmacol Exp Ther 2010; 332:210-9. [PMID: 19794031 DOI: 10.1124/jpet.109.154955] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We found that both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate autoreceptors were present on the glutamate-releasing terminals of cerebellar parallel/climbing fibers and that they functioned as facilitatory autoreceptors. Extracellular cGMP inhibited the neurotransmitter release evoked by presynaptic kainate receptor activation; the inhibitory effect of extracellular cGMP was selective for the kainate autoreceptor-mediated response and did not affect the AMPA autoreceptor-mediated response. Endogenously synthesized cGMP might be the physiological source for the extracellular cGMP modulating the response to kainate autoreceptor activation.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | | | | |
Collapse
|
50
|
Nonspecific inhibition of nitric oxide synthesis evokes endothelin-dependent increases in myocardial contractility. Nitric Oxide 2009; 21:201-9. [DOI: 10.1016/j.niox.2009.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 08/07/2009] [Accepted: 08/31/2009] [Indexed: 11/20/2022]
|