1
|
Shooshtarian AK, O'Gallagher K, Shah AM, Zhang M. SERCA2a dysfunction in the pathophysiology of heart failure with preserved ejection fraction: a direct role is yet to be established. Heart Fail Rev 2025; 30:545-564. [PMID: 39843817 PMCID: PMC11991975 DOI: 10.1007/s10741-025-10487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
With rising incidence, mortality and limited therapeutic options, heart failure with preserved ejection fraction (HFpEF) remains one of the most important topics in cardiovascular medicine today. Characterised by left ventricular diastolic dysfunction partially due to impaired Ca2+ homeostasis, one ion channel in particular, SarcoEndoplasmic Reticulum Ca2+-ATPase (SERCA2a), may play a significant role in its pathophysiology. A better understanding of the complex mechanisms interplaying to contribute to SERCA2a dysfunction will help develop treatments targeting it and thus address the growing clinical challenge HFpEF poses. This review examines the conflicting evidence present for changes in SERCA2a expression and activity in HFpEF, explores potential underlying mechanisms, and finally evaluates the drug and gene therapy trials targeting SERCA2a in heart failure. Recent positive results from trials involving widely used anti-diabetic agents such as sodium-glucose co-transporter protein 2 inhibitors (SGLT2i) and glucagon-like peptide-1 (GLP-1) agonists offer advancement in HFpEF management. The potential interplay between these agents and SERCA2a regulation presents a novel angle that could open new avenues for modulating diastolic function; however, the mechanistic research in this emerging field is limited. Overall, the direct role of SERCA2a dysfunction in HFpEF remains undetermined, highlighting the need for well-designed pre-clinical studies and robust clinical trials.
Collapse
Affiliation(s)
- Adam Kia Shooshtarian
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Kevin O'Gallagher
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Ajay M Shah
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Min Zhang
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK.
| |
Collapse
|
2
|
Kourampi I, Katsioupa M, Oikonomou E, Tsigkou V, Marinos G, Goliopoulou A, Katsarou O, Kalogeras K, Theofilis P, Tsatsaragkou A, Siasos G, Tousoulis D, Vavuranakis M. The Role of Ranolazine in Heart Failure-Current Concepts. Am J Cardiol 2023; 209:92-103. [PMID: 37844876 DOI: 10.1016/j.amjcard.2023.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Heart failure is a complex clinical syndrome with a detrimental impact on mortality and morbidity. Energy substrate utilization and myocardial ion channel regulation have gained research interest especially after the introduction of sodium-glucose co-transporter 2 inhibitors in the treatment of heart failure. Ranolazine or N-(2,6-dimethylphenyl)-2-(4-[2-hydroxy-3-(2-methoxyphenoxy) propyl] piperazin-1-yl) acetamide hydrochloride is an active piperazine derivative which inhibits late sodium current thus minimizing calcium overload in the ischemic cardiomyocytes. Ranolazine also prevents fatty acid oxidation and favors glycose utilization ameliorating the "energy starvation" of the failing heart. Heart failure with preserved ejection fraction is characterized by diastolic impairment; according to the literature ranolazine could be beneficial in the management of increased left ventricular end-diastolic pressure, right ventricular systolic dysfunction and wall shear stress which is reflected by the high natriuretic peptides. Fewer data is evident regarding the effects of ranolazine in heart failure with reduced ejection fraction and mainly support the control of the sodium-calcium exchanger and function of sarcoendoplasmic reticulum calcium adenosine triphosphatase. Ranolazine's therapeutic mechanisms in myocardial ion channels and energy utilization are documented in patients with chronic coronary syndromes. Nevertheless, ranolazine might have a broader effect in the therapy of heart failure and further mechanistic research is required.
Collapse
Affiliation(s)
- Islam Kourampi
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria Katsioupa
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Vasiliki Tsigkou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Georgios Marinos
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Athina Goliopoulou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Ourania Katsarou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Aikaterini Tsatsaragkou
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston Massachusetts
| | - Dimitris Tousoulis
- 1st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
3
|
Jackson EK, Menshikova EV, Ritov VB, Gillespie DG, Mi Z. Biochemical Pathways of 8-Aminoguanine Production In Sprague-Dawley and Dahl Salt-Sensitive Rats. Biochem Pharmacol 2022; 201:115076. [PMID: 35551915 DOI: 10.1016/j.bcp.2022.115076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND 8-Aminoguanine exerts natriuretic and antihypertensive activity. Whether and how "free" 8-aminoguanine exists in vivo is unclear. Because 8-nitroguanosine is naturally occurring, we tested the hypothesis that 8-aminoguanine can arise from: pathway 1, 8-nitroguanosine→8-aminoguanosine→8-aminoguanine; and pathway 2, 8-nitroguanosine→8-nitroguanine→8-aminoguanine. METHODS 8-Aminoguanine biosynthesis was explored in rats using renal microdialysis, mass spectrometry and enzyme kinetics. RESULTS In Sprague-Dawley rats, 8-nitroguanosine infusions increased kidney levels of 8-nitroguanine, 8-aminoguanosine and 8-aminoguanine; 8-nitroguanine infusions increased 8-aminoguanine. Purine nucleoside phosphorylase (PNPase) converted 8-nitroguanosine to 8-nitroguanine and 8-aminoguanosine to 8-aminoguanine. Forodesine (PNPase inhibitor) reduced metabolism of 8-nitroguanosine by pathway 2 and shunted metabolism of 8-nitroguanosine to 8-aminoguanosine. In Dahl salt-sensitive rats, 8-nitroguanosine infusions increased kidney levels of 8-nitroguanine, 8-aminoguanosine and 8-aminoguanine. These results indicate that both pathways 1 and 2 participate in the biosynthesis of 8-aminoguanine in Sprague-Dawley and Dahl rats. Endogenous 8-aminoguanine in kidneys and urine were elevated many-fold in Dahl, compared to Sprague-Dawley, rats. The increased levels of 8-aminoguanine in Dahl rats were not due to alterations in pathways 1 and 2 but were associated with increased urine levels of endogenous 8-nitroguanosine suggesting that the "upstream" production of 8-nitroguanosine was increased in Dahl rats. Dahl rats are known to have high levels of peroxynitrite, and peroxynitrite is known to nitrate guanosine in biomolecules. Here we confirm that a peroxynitrite donor increases kidney levels of 8-aminoguanine. CONCLUSION 8-Aminoguanine occurs naturally via two distinct pathways and kidney levels of 8-aminoguanine are increased in Dahl rats, likely due to increased production of 8-nitroguanosine, a by-product of peroxynitrite chemistry.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219.
| | - Elizabeth V Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Vladimir B Ritov
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
4
|
What Role do Mitochondria have in Diastolic Dysfunction? Implications for Diabetic Cardiomyopathy and Heart Failure with Preserved Ejection Function (HFpEF). J Cardiovasc Pharmacol 2022; 79:399-406. [DOI: 10.1097/fjc.0000000000001228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/08/2022] [Indexed: 11/26/2022]
|
5
|
Lipotoxicity: a driver of heart failure with preserved ejection fraction? Clin Sci (Lond) 2021; 135:2265-2283. [PMID: 34643676 PMCID: PMC8543140 DOI: 10.1042/cs20210127] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a growing public health concern, with rising incidence alongside high morbidity and mortality. However, the pathophysiology of HFpEF is not yet fully understood. The association between HFpEF and the metabolic syndrome (MetS) suggests that dysregulated lipid metabolism could drive diastolic dysfunction and subsequent HFpEF. Herein we summarise recent advances regarding the pathogenesis of HFpEF in the context of MetS, with a focus on impaired lipid handling, myocardial lipid accumulation and subsequent lipotoxicity.
Collapse
|
6
|
Miranda-Silva D, Lima T, Rodrigues P, Leite-Moreira A, Falcão-Pires I. Mechanisms underlying the pathophysiology of heart failure with preserved ejection fraction: the tip of the iceberg. Heart Fail Rev 2021; 26:453-478. [PMID: 33411091 DOI: 10.1007/s10741-020-10042-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifaceted syndrome with a complex aetiology often associated with several comorbidities, such as left ventricle pressure overload, diabetes mellitus, obesity, and kidney disease. Its pathophysiology remains obscure mainly due to the complex phenotype induced by all these associated comorbidities and to the scarcity of animal models that adequately mimic HFpEF. Increased oxidative stress, inflammation, and endothelial dysfunction are currently accepted as key players in HFpEF pathophysiology. However, we have just started to unveil HFpEF complexity and the role of calcium handling, energetic metabolism, and mitochondrial function remain to clarify. Indeed, the enlightenment of such cellular and molecular mechanisms represents an opportunity to develop novel therapeutic approaches and thus to improve HFpEF treatment options. In the last decades, the number of research groups dedicated to studying HFpEF has increased, denoting the importance and the magnitude achieved by this syndrome. In the current technological and web world, the amount of information is overwhelming, driving us not only to compile the most relevant information about the theme but also to explore beyond the tip of the iceberg. Thus, this review aims to encompass the most recent knowledge related to HFpEF or HFpEF-associated comorbidities, focusing mainly on myocardial metabolism, oxidative stress, and energetic pathways.
Collapse
Affiliation(s)
- Daniela Miranda-Silva
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Tânia Lima
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Severino P, D’Amato A, Pucci M, Infusino F, Birtolo LI, Mariani MV, Lavalle C, Maestrini V, Mancone M, Fedele F. Ischemic Heart Disease and Heart Failure: Role of Coronary Ion Channels. Int J Mol Sci 2020; 21:E3167. [PMID: 32365863 PMCID: PMC7246492 DOI: 10.3390/ijms21093167] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023] Open
Abstract
Heart failure is a complex syndrome responsible for high rates of death and hospitalization. Ischemic heart disease is one of the most frequent causes of heart failure and it is normally attributed to coronary artery disease, defined by the presence of one or more obstructive plaques, which determine a reduced coronary blood flow, causing myocardial ischemia and consequent heart failure. However, coronary obstruction is only an element of a complex pathophysiological process that leads to myocardial ischemia. In the literature, attention paid to the role of microcirculation, in the pathophysiology of ischemic heart disease and heart failure, is growing. Coronary microvascular dysfunction determines an inability of coronary circulation to satisfy myocardial metabolic demands, due to the imbalance of coronary blood flow regulatory mechanisms, including ion channels, leading to the development of hypoxia, fibrosis and tissue death, which may determine a loss of myocardial function, even beyond the presence of atherosclerotic epicardial plaques. For this reason, ion channels may represent the link among coronary microvascular dysfunction, ischemic heart disease and consequent heart failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Francesco Fedele
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (L.I.B.); (M.V.M.); (C.L.); (V.M.); (M.M.)
| |
Collapse
|
8
|
Elgenaidi IS, Spiers JP. Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target? Pharmacol Ther 2019; 198:68-89. [PMID: 30797822 DOI: 10.1016/j.pharmthera.2019.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Phosphoprotein phosphatases are of growing interest in the pathophysiology of many diseases and are often the neglected partner of protein kinases. One family member, PP2A, accounts for dephosphorylation of ~55-70% of all serine/threonine phosphosites. Interestingly, dysregulation of kinase signalling is a hallmark of many diseases in which an increase in oxidative stress is also noted. With this in mind, we assess the evidence to support oxidative stress-mediated regulation of the PP2A system In this article, we first present an overview of the PP2A system before providing an analysis of the regulation of PP2A by endogenous inhibitors, post translational modification, and miRNA. Next, a detailed critique of data implicating reactive oxygen species, ischaemia, ischaemia-reperfusion, and hypoxia in regulating the PP2A holoenzyme and associated regulators is presented. Finally, the pharmacological targeting of PP2A, its endogenous inhibitors, and enzymes responsible for its post-translational modification are covered. There is extensive evidence that oxidative stress modulates multiple components of the PP2A system, however, most of the data pertains to the catalytic subunit of PP2A. Irrespective of the underlying aetiology, free radical-mediated attenuation of PP2A activity is an emerging theme. However, in many instances, a dichotomy exists, which requires clarification and mechanistic insight. Nevertheless, this raises the possibility that pharmacological activation of PP2A, either through small molecule activators of PP2A or CIP2A/SET antagonists may be beneficial in modulating the cellular response to oxidative stress. A better understanding of which, will have wide ranging implications for cancer, heart disease and inflammatory conditions.
Collapse
Affiliation(s)
- I S Elgenaidi
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland
| | - J P Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland.
| |
Collapse
|
9
|
|
10
|
Targeting Endothelial Function to Treat Heart Failure with Preserved Ejection Fraction: The Promise of Exercise Training. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4865756. [PMID: 28706575 PMCID: PMC5494585 DOI: 10.1155/2017/4865756] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022]
Abstract
Although the burden of heart failure with preserved ejection fraction (HFpEF) is increasing, there is no therapy available that improves prognosis. Clinical trials using beta blockers and angiotensin converting enzyme inhibitors, cardiac-targeting drugs that reduce mortality in heart failure with reduced ejection fraction (HFrEF), have had disappointing results in HFpEF patients. A new “whole-systems” approach has been proposed for designing future HFpEF therapies, moving focus from the cardiomyocyte to the endothelium. Indeed, dysfunction of endothelial cells throughout the entire cardiovascular system is suggested as a central mechanism in HFpEF pathophysiology. The objective of this review is to provide an overview of current knowledge regarding endothelial dysfunction in HFpEF. We discuss the molecular and cellular mechanisms leading to endothelial dysfunction and the extent, presence, and prognostic importance of clinical endothelial dysfunction in different vascular beds. We also consider implications towards exercise training, a promising therapy targeting system-wide endothelial dysfunction in HFpEF.
Collapse
|
11
|
Abstract
Nitric oxide (NO) is an imperative regulator of the cardiovascular system and is a critical mechanism in preventing the pathogenesis and progression of the diseased heart. The scenario of bioavailable NO in the myocardium is complex: 1) NO is derived from both endogenous NO synthases (endothelial, neuronal, and/or inducible NOSs [eNOS, nNOS, and/or iNOS]) and exogenous sources (entero-salivary NO pathway) and the amount of NO from exogenous sources varies significantly; 2) NOSs are located at discrete compartments of cardiac myocytes and are regulated by distinctive mechanisms under stress; 3) NO regulates diverse target proteins through different modes of post-transcriptional modification (soluble guanylate cyclase [sGC]/cyclic guanosine monophosphate [cGMP]/protein kinase G [PKG]-dependent phosphorylation,
S-nitrosylation, and transnitrosylation); 4) the downstream effectors of NO are multidimensional and vary from ion channels in the plasma membrane to signalling proteins and enzymes in the mitochondria, cytosol, nucleus, and myofilament; 5) NOS produces several radicals in addition to NO (e.g. superoxide, hydrogen peroxide, peroxynitrite, and different NO-related derivatives) and triggers redox-dependent responses. However, nNOS inhibits cardiac oxidases to reduce the sources of oxidative stress in diseased hearts. Recent consensus indicates the importance of nNOS protein in cardiac protection under pathological stress. In addition, a dietary regime with high nitrate intake from fruit and vegetables together with unsaturated fatty acids is strongly associated with reduced cardiovascular events. Collectively, NO-dependent mechanisms in healthy and diseased hearts are better understood and shed light on the therapeutic prospects for NO and NOSs in clinical applications for fatal human heart diseases.
Collapse
Affiliation(s)
- Yin Hua Zhang
- Department of Physiology & Biomedical Sciences, College of Medicine, Seoul National University, 103 Dae Hak Ro, Chong No Gu, 110-799 Seoul, Korea, South.,Yanbian University Hospital, Yanji, Jilin Province, 133000, China.,Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Price ME, Pavlik JA, Liu M, Ding SJ, Wyatt TA, Sisson JH. Alcohol drives S-nitrosylation and redox activation of protein phosphatase 1, causing bovine airway cilia dysfunction. Am J Physiol Lung Cell Mol Physiol 2017; 312:L432-L439. [PMID: 28062487 DOI: 10.1152/ajplung.00513.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 11/22/2022] Open
Abstract
Individuals with alcohol (ethanol)-use disorders are at increased risk for lung infections, in part, due to defective mucociliary clearance driven by motile cilia in the airways. We recently reported that isolated, demembranated bovine cilia (axonemes) are capable of producing nitric oxide (∙NO) when exposed to biologically relevant concentrations of alcohol. This increased presence of ∙NO can lead to protein S-nitrosylation, a posttranslational modification signaling mechanism involving reversible adduction of nitrosonium cations or ∙NO to thiolate or thiyl radicals, respectively, of proteins forming S-nitrosothiols (SNOs). We quantified and compared SNO content between isolated, demembranated axonemes extracted from bovine tracheae, with or without in situ alcohol exposure (100 mM × 24 h). We demonstrate that relevant concentrations of alcohol exposure shift the S-nitrosylation status of key cilia regulatory proteins, including 20-fold increases in S-nitrosylation of proteins that include protein phosphatase 1 (PP1). With the use of an ATP-reactivated axoneme motility system, we demonstrate that alcohol-driven S-nitrosylation of PP1 is associated with PP1 activation and dysfunction of axoneme motility. These new data demonstrate that alcohol can shift the S-nitrothiol balance at the level of the cilia organelle and highlight S-nitrosylation as a novel signaling mechanism to regulate PP1 and cilia motility.
Collapse
Affiliation(s)
- Michael E Price
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jacqueline A Pavlik
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Miao Liu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shi-Jian Ding
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Todd A Wyatt
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska; and.,Research Service, Nebraska-Western Iowa VA Healthcare System, Omaha, Nebraska
| | - Joseph H Sisson
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska;
| |
Collapse
|
13
|
Roof SR, Ho HT, Little SC, Ostler JE, Brundage EA, Periasamy M, Villamena FA, Györke S, Biesiadecki BJ, Heymes C, Houser SR, Davis JP, Ziolo MT. Obligatory role of neuronal nitric oxide synthase in the heart's antioxidant adaptation with exercise. J Mol Cell Cardiol 2015; 81:54-61. [PMID: 25595735 DOI: 10.1016/j.yjmcc.2015.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 12/18/2014] [Accepted: 01/06/2015] [Indexed: 02/07/2023]
Abstract
Excessive oxidative stress in the heart results in contractile dysfunction. While antioxidant therapies have been a disappointment clinically, exercise has shown beneficial results, in part by reducing oxidative stress. We have previously shown that neuronal nitric oxide synthase (nNOS) is essential for cardioprotective adaptations caused by exercise. We hypothesize that part of the cardioprotective role of nNOS is via the augmentation of the antioxidant defense with exercise by positively shifting the nitroso-redox balance. Our results show that nNOS is indispensable for the augmented anti-oxidant defense with exercise. Furthermore, exercise training of nNOS knockout mice resulted in a negative shift in the nitroso-redox balance resulting in contractile dysfunction. Remarkably, overexpressing nNOS (conditional cardiac-specific nNOS overexpression) was able to mimic exercise by increasing VO2max. This study demonstrates that exercise results in a positive shift in the nitroso-redox balance that is nNOS-dependent. Thus, targeting nNOS signaling may mimic the beneficial effects of exercise by combating oxidative stress and may be a viable treatment strategy for heart disease.
Collapse
Affiliation(s)
- Steve R Roof
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Hsiang-Ting Ho
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Sean C Little
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Joseph E Ostler
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Elizabeth A Brundage
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Muthu Periasamy
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Frederick A Villamena
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Sandor Györke
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Brandon J Biesiadecki
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, Toulouse, France
| | - Steven R Houser
- Department of Physiology, Cardiovascular Research Center, Temple University, Philadelphia, PA, USA
| | - Jonathan P Davis
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mark T Ziolo
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Zhang YH, Jin CZ, Jang JH, Wang Y. Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophysiology. J Physiol 2014; 592:3189-200. [PMID: 24756636 DOI: 10.1113/jphysiol.2013.270306] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neuronal nitric oxide synthase (nNOS or NOS1) is the major endogenous source of myocardial nitric oxide (NO), which facilitates cardiac relaxation and modulates contraction. In the healthy heart it regulates intracellular Ca(2+), signalling pathways and oxidative homeostasis and is upregulated from early phases upon pathogenic insult. nNOS plays pivotal roles in protecting the myocardium from increased oxidative stress, systolic/diastolic dysfunction, adverse structural remodelling and arrhythmias in the failing heart. Here, we show that the downstream target proteins of nNOS and underlying post-transcriptional modifications are shifted during disease progression from Ca(2+)-handling proteins [e.g. PKA-dependent phospholamban phosphorylation (PLN-Ser(16))] in the healthy heart to cGMP/PKG-dependent PLN-Ser(16) with acute angiotensin II (Ang II) treatment. In early hypertension, nNOS-derived NO is involved in increases of cGMP/PKG-dependent troponin I (TnI-Ser(23/24)) and cardiac myosin binding protein C (cMBP-C-Ser(273)). However, nNOS-derived NO is shown to increase S-nitrosylation of various Ca(2+)-handling proteins in failing myocardium. The spatial compartmentation of nNOS and its translocation for diverse binding partners in the diseased heart or various nNOS splicing variants and regulation in response to pathological stress may be responsible for varied underlying mechanisms and functions. In this review, we endeavour to outline recent advances in knowledge of the molecular mechanisms mediating the functions of nNOS in the myocardium in both normal and diseased hearts. Insights into nNOS gene regulation in various tissues are discussed. Overall, nNOS is an important cardiac protector in the diseased heart. The dynamic localization and various mediating mechanisms of nNOS ensure that it is able to regulate functions effectively in the heart under stress.
Collapse
Affiliation(s)
- Yin Hua Zhang
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea Ischaemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, South Korea Clinical Research Center, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Chun Zi Jin
- Clinical Research Center, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Ji Hyun Jang
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Yue Wang
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
15
|
Kotlo K, Xing Y, Lather S, Grillon JM, Johnson K, Skidgel RA, Solaro RJ, Danziger RS. PR65A phosphorylation regulates PP2A complex signaling. PLoS One 2014; 9:e85000. [PMID: 24465463 PMCID: PMC3897379 DOI: 10.1371/journal.pone.0085000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 11/27/2013] [Indexed: 01/12/2023] Open
Abstract
Serine-threonine Protein phosphatase 2 A (PP2A), a member of the PPP family of phosphatases, regulates a variety of essential cellular processes, including cell-cycling, DNA replication, transcription, translation, and secondary signaling pathways. In the heart, increased PP2A activity/signaling has been linked to cardiac remodeling, contractile dysfunction and, in failure, arrythmogenicity. The core PP2A complex is a hetero-trimeric holoenzyme consisting of a 36 kDa catalytic subunit (PP2Ac); a regulatory scaffold subunit of 65 kDa (PR65A or PP2Aa); and one of at least 18 associated variable regulatory proteins (B subunits) classified into 3 families. In the present study, three in vivo sites of phosphorylation in cardiac PR65A are identified (S303, T268, S314). Using HEK cells transfected with recombinant forms of PR65A with phosphomimetic (P-PR65A) and non-phosphorylated (N-PR65A) amino acid substitutions at these sites, these phosphorylations were shown to inhibit the interaction of PR65A with PP2Ac and PP2A holoenzyme signaling. Forty-seven phospho-proteins were increased in abundance in HEK cells transfected with P-PR65A versus N-PR65A by phospho-protein profiling using 2D-DIGE analysis on phospho-enriched whole cell protein extracts. Among these proteins were elongation factor 1α (EF1A), elongation factor 2, heat shock protein 60 (HSP60), NADPH-dehydrogenase 1 alpha sub complex, annexin A, and PR65A. Compared to controls, failing hearts from the Dahl rat had less phosphorylated PR65A protein abundance and increased PP2A activity. Thus, PR65A phosphorylation is an in vivo mechanism for regulation of the PP2A signaling complex and increased PP2A activity in heart failure.
Collapse
Affiliation(s)
- Kumar Kotlo
- Department of Medicine and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yongna Xing
- Department of Oncology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sonia Lather
- Jesse Brown Veterans Administration, Chicago, Illinois, United States of America
| | - Jean Michel Grillon
- Department of Medicine and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Keven Johnson
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Randal A. Skidgel
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - R. John Solaro
- Department of Medicine and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Physiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Robert S. Danziger
- Department of Medicine and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Physiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown Veterans Administration, Chicago, Illinois, United States of America
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
16
|
Tang L, Wang H, Ziolo MT. Targeting NOS as a therapeutic approach for heart failure. Pharmacol Ther 2013; 142:306-15. [PMID: 24380841 DOI: 10.1016/j.pharmthera.2013.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 02/07/2023]
Abstract
Nitric oxide is a key signaling molecule in the heart and is produced endogenously by three isoforms of nitric oxide synthase, neuronal NOS (NOS1), endothelial NOS (NOS3), and inducible NOS (NOS2). Nitric oxide signals via cGMP-dependent or independent pathways to modulate downstream proteins via specific post translational modifications (i.e. cGMP-dependent protein kinase phosphorylation, S-nitrosylation, etc.). Dysfunction of NOS (i.e. altered expression, location, coupling, activity, etc.) exists in various cardiac disease conditions, such as heart failure, contributing to the contractile dysfunction, adverse remodeling, and hypertrophy. This review will focus on the signaling pathways of each NOS isoform during health and disease, and discuss current and potential therapeutic approaches targeting nitric oxide signaling to treat heart disease.
Collapse
Affiliation(s)
- Lifei Tang
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, USA
| | - Honglan Wang
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, USA
| | - Mark T Ziolo
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, USA.
| |
Collapse
|
17
|
Differential effects of the peroxynitrite donor, SIN-1, on atrial and ventricular myocyte electrophysiology. J Cardiovasc Pharmacol 2013; 61:401-7. [PMID: 23364607 DOI: 10.1097/fjc.0b013e31828748ca] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative stress has been implicated in the pathogenesis of heart failure and atrial fibrillation and can result in increased peroxynitrite production in the myocardium. Atrial and ventricular canine cardiac myocytes were superfused with 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1), a peroxynitrite donor, to evaluate the acute electrophysiologic effects of peroxynitrite. Perforated whole-cell patch clamp techniques were used to record action potentials. SIN-1 (200 µM) increased the action potential duration (APD) in atrial and ventricular myocytes; however, in the atria, APD prolongation was rate independent, whereas in the ventricle APD, prolongation was rate dependent. In addition to prolongation of the action potential, beat-to-beat variability of repolarization was significantly increased in ventricular but not in atrial myocytes. We examined the contribution of intracellular calcium cycling to the effects of SIN-1 by treating myocytes with the SERCA blocker, thapsigargin (5-10 µM). Inhibition of calcium cycling prevented APD prolongation in the atrial and ventricular myocytes, and prevented the SIN-1-induced increase in ventricular beat-to-beat APD variability. Collectively, these data demonstrate that peroxynitrite affects atrial and ventricular electrophysiology differentially. A detailed understanding of oxidative modulation of electrophysiology in specific chambers is critical to optimize therapeutic approaches for cardiac diseases.
Collapse
|
18
|
Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 2013; 62:263-71. [PMID: 23684677 DOI: 10.1016/j.jacc.2013.02.092] [Citation(s) in RCA: 2545] [Impact Index Per Article: 212.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/07/2013] [Accepted: 02/05/2013] [Indexed: 12/17/2022]
Abstract
Over the past decade, myocardial structure, cardiomyocyte function, and intramyocardial signaling were shown to be specifically altered in heart failure with preserved ejection fraction (HFPEF). A new paradigm for HFPEF development is therefore proposed, which identifies a systemic proinflammatory state induced by comorbidities as the cause of myocardial structural and functional alterations. The new paradigm presumes the following sequence of events in HFPEF: 1) a high prevalence of comorbidities such as overweight/obesity, diabetes mellitus, chronic obstructive pulmonary disease, and salt-sensitive hypertension induce a systemic proinflammatory state; 2) a systemic proinflammatory state causes coronary microvascular endothelial inflammation; 3) coronary microvascular endothelial inflammation reduces nitric oxide bioavailability, cyclic guanosine monophosphate content, and protein kinase G (PKG) activity in adjacent cardiomyocytes; 4) low PKG activity favors hypertrophy development and increases resting tension because of hypophosphorylation of titin; and 5) both stiff cardiomyocytes and interstitial fibrosis contribute to high diastolic left ventricular (LV) stiffness and heart failure development. The new HFPEF paradigm shifts emphasis from LV afterload excess to coronary microvascular inflammation. This shift is supported by a favorable Laplace relationship in concentric LV hypertrophy and by all cardiac chambers showing similar remodeling and dysfunction. Myocardial remodeling in HFPEF differs from heart failure with reduced ejection fraction, in which remodeling is driven by loss of cardiomyocytes. The new HFPEF paradigm proposes comorbidities, plasma markers of inflammation, or vascular hyperemic responses to be included in diagnostic algorithms and aims at restoring myocardial PKG activity.
Collapse
Affiliation(s)
- Walter J Paulus
- Department of Physiology, Institute for Cardiovascular Research VU, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.
| | | |
Collapse
|
19
|
DeGrande ST, Little SC, Nixon DJ, Wright P, Snyder J, Dun W, Murphy N, Kilic A, Higgins R, Binkley PF, Boyden PA, Carnes CA, Anderson ME, Hund TJ, Mohler PJ. Molecular mechanisms underlying cardiac protein phosphatase 2A regulation in heart. J Biol Chem 2013; 288:1032-46. [PMID: 23204520 PMCID: PMC3542989 DOI: 10.1074/jbc.m112.426957] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/21/2012] [Indexed: 11/06/2022] Open
Abstract
Kinase/phosphatase balance governs cardiac excitability in health and disease. Although detailed mechanisms for cardiac kinase regulation are established, far less is known regarding cardiac protein phosphatase 2A (PP2A) regulation. This is largely due to the complexity of the PP2A holoenzyme structure (combinatorial assembly of three subunit enzyme from >17 subunit genes) and the inability to segregate "global" PP2A function from the activities of multiple "local" holoenzyme populations. Here we report that PP2A catalytic, regulatory, and scaffolding subunits are tightly regulated at transcriptional, translational, and post-translational levels to tune myocyte function at base line and in disease. We show that past global read-outs of cellular PP2A activity more appropriately represent the collective activity of numerous individual PP2A holoenzymes, each displaying a specific subcellular localization (dictated by select PP2A regulatory subunits) as well as local specific post-translational catalytic subunit methylation and phosphorylation events that regulate local and rapid holoenzyme assembly/disassembly (via leucine carboxymethyltransferase 1/phosphatase methylesterase 1 (LCMT-1/PME-1). We report that PP2A subunits are selectively regulated between human and animal models, across cardiac chambers, and even within specific cardiac cell types. Moreover, this regulation can be rapidly tuned in response to cellular activation. Finally, we report that global PP2A is altered in human and experimental models of heart disease, yet each pathology displays its own distinct molecular signature though specific PP2A subunit modulatory events. These new data provide an initial view into the signaling pathways that govern PP2A function in heart but also establish the first step in defining specific PP2A regulatory targets in health and disease.
Collapse
Affiliation(s)
- Sean T. DeGrande
- From The Dorothy M. Davis Heart and Lung Research Institute
- Department of Internal Medicine, Division of Cardiovascular Medicine
- the Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, and
| | - Sean C. Little
- From The Dorothy M. Davis Heart and Lung Research Institute
| | - Derek J. Nixon
- From The Dorothy M. Davis Heart and Lung Research Institute
| | - Patrick Wright
- From The Dorothy M. Davis Heart and Lung Research Institute
| | - Jedidiah Snyder
- From The Dorothy M. Davis Heart and Lung Research Institute
- Department of Internal Medicine, Division of Cardiovascular Medicine
- College of Engineering, Department of Biomedical Engineering, and
| | - Wen Dun
- the Department of Pharmacology, Columbia University, New York, New York 10032
| | | | - Ahmet Kilic
- From The Dorothy M. Davis Heart and Lung Research Institute
- Division of Cardiac Surgery, The Ohio State University Wexner Medical Center
| | - Robert Higgins
- From The Dorothy M. Davis Heart and Lung Research Institute
- Division of Cardiac Surgery, The Ohio State University Wexner Medical Center
| | - Philip F. Binkley
- From The Dorothy M. Davis Heart and Lung Research Institute
- Department of Internal Medicine, Division of Cardiovascular Medicine
| | - Penelope A. Boyden
- the Department of Pharmacology, Columbia University, New York, New York 10032
| | - Cynthia A. Carnes
- From The Dorothy M. Davis Heart and Lung Research Institute
- The College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Mark E. Anderson
- the Department of Internal Medicine, Division of Cardiovascular Medicine and
- the Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, and
| | - Thomas J. Hund
- From The Dorothy M. Davis Heart and Lung Research Institute
- Department of Internal Medicine, Division of Cardiovascular Medicine
- College of Engineering, Department of Biomedical Engineering, and
| | - Peter J. Mohler
- From The Dorothy M. Davis Heart and Lung Research Institute
- Department of Internal Medicine, Division of Cardiovascular Medicine
- Department of Physiology and Cell Biology
| |
Collapse
|
20
|
Kohr MJ, Roof SR, Zweier JL, Ziolo MT. Modulation of myocardial contraction by peroxynitrite. Front Physiol 2012; 3:468. [PMID: 23248603 PMCID: PMC3520483 DOI: 10.3389/fphys.2012.00468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/26/2012] [Indexed: 12/18/2022] Open
Abstract
Peroxynitrite is a potent oxidant that is quickly emerging as a crucial modulator of myocardial function. This review will focus on the regulation of myocardial contraction by peroxynitrite during health and disease, with a specific emphasis on cardiomyocyte Ca2+ handling, proposed signaling pathways, and protein end-targets.
Collapse
Affiliation(s)
- Mark J Kohr
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA ; Division of Cardiovascular Pathology, Department of Pathology, Johns Hopkins University Baltimore, MD, USA
| | | | | | | |
Collapse
|
21
|
Hyperactivation of protein phosphatase 2A in models of glucolipotoxicity and diabetes: potential mechanisms and functional consequences. Biochem Pharmacol 2012; 84:591-7. [PMID: 22583922 DOI: 10.1016/j.bcp.2012.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/03/2012] [Accepted: 05/03/2012] [Indexed: 01/22/2023]
Abstract
The protein phosphatase 2A [PP2A] family of enzymes has been implicated in the regulation of a variety of cellular functions including hormone secretion, growth, survival and apoptosis. PP2A accounts for ~1% of total cellular protein and ∼ 80% of total serine/threonine phosphatases, thus representing a major class of protein phosphatases in mammalian cells. Despite significant advances in our current understanding of regulation of cellular function by PP2A under physiological conditions, little is understood with regard to its regulation under various pathological conditions, such as diabetes. Emerging evidence suggests hyperactivation of PP2A in liver, muscle, retina and the pancreatic islet under the duress of glucolipotoxicity and diabetes. Interestingly, pharmacological inhibition of PP2A or siRNA-mediated depletion of the catalytic subunit of PP2A [PP2Ac] levels largely restored PP2A activity to near normal levels under these conditions. Herein, we provide an overview of PP2A subunit expression and activity in in vitro and in vivo models of glucolipotoxicity and diabetes, and revisit the existing data, which are suggestive of alterations in post-translational methylation, phosphorylation and nitration of PP2Ac under these conditions. Potential significance of hyperactive PP2A in the context of cell function, survival and apoptosis is also highlighted. It is hoped that this commentary will provide a basis for future studies to explore the potential for PP2Ac as a therapeutic target for the treatment of diabetes and other metabolic disorders.
Collapse
|
22
|
Dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: mechanisms and implications. Nitric Oxide 2012; 26:274-84. [PMID: 22484629 DOI: 10.1016/j.niox.2012.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 02/11/2012] [Accepted: 03/22/2012] [Indexed: 11/21/2022]
Abstract
Doxorubicin (DOX) is one of the most powerful and widely prescribed chemotherapeutic agents to treat divergent human cancers. However, the clinical use of DOX is restricted due to its severe cardiotoxic side-effects. There has been ongoing search for cardioprotectants against DOX toxicity. Inorganic nitrate has emerged as a bioactive compound that can be reduced into nitrite and nitric oxide in vivo and in turn plays a therapeutic role in diseases associated with nitric oxide insufficiency or dysregulation. In this review, we describe a novel concept of using dietary supplementation of inorganic nitrate to reduce DOX-induced cardiac cellular damage and dysfunction, based on our recent promising studies in a mouse model of DOX cardiotoxicity. Our data show that chronic oral ingestion of sodium nitrate, at a dose equivalent to ~400% of the Acceptable Daily Intake of the World Health Organization, alleviated DOX-induced left ventricular dysfunction and mitochondrial respiratory chain damage. Such cardioprotective effects were associated with reduction of cardiomyocyte necrosis/apoptosis, tissue lipid peroxidation, and mitochondrial H(2)O(2) generation following DOX treatment. Furthermore, proteomic studies revealed enhanced cardiac expression of mitochondrial antioxidant enzyme - peroxiredoxin 5 in the nitrate-treated animals. These studies suggest that inorganic nitrate could be an inexpensive therapeutic agent for long-term oral administration in preventing DOX-induced cardiac toxicity and myopathy during the prolonged pathological process. Future clinical trials in the cancer patients undergoing DOX chemotherapy are warranted to translate these experimental findings into an effective new therapy in preventing the DOX-induced cardiomyopathy.
Collapse
|
23
|
Abstract
AMP-activated protein kinase (AMPK) is proposed to be a key regulator of cellular and organismal metabolism and has reported vasculoprotective effects. In addition, many therapeutic agents used in the treatment of diabetes and atherosclerosis such as metformin, thiazolidinediones and statins may exert their vasculoprotective effects through activation of AMPK. Activation of AMPK has a number of potentially beneficial anti-atherosclerotic effects including reducing adhesion of inflammatory cells to the blood vessel endothelium, reducing lipid accumulation and the proliferation of inflammatory cells caused by oxidised lipids, stimulation of gene expression responsible for cellular antioxidant defenses and stimulation of enzymes responsible for nitric oxide formation. In humans and animals the AMPK cascade triggers vascular protective mechanisms that have been shown to reduce myocardial ischaemic injury and mutations in AMPK can cause familial hypertrophic cardiomyopathy. Taken together, these data suggest that activation and function of AMPK contributes to cardiovascular health. In this review we propose to focus on the vasculoprotective effects of AMPK, the evidence for AMPK activation with currently used therapeutic agents and the potential for agents which specifically activate AMPK as a treatment for vascular disease.
Collapse
Affiliation(s)
- Marie-Ann Ewart
- College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | | |
Collapse
|
24
|
McLean S, Bowman LAH, Sanguinetti G, Read RC, Poole RK. Peroxynitrite toxicity in Escherichia coli K12 elicits expression of oxidative stress responses and protein nitration and nitrosylation. J Biol Chem 2010; 285:20724-31. [PMID: 20427277 PMCID: PMC2898335 DOI: 10.1074/jbc.m109.085506] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 04/27/2010] [Indexed: 11/06/2022] Open
Abstract
Peroxynitrite is formed in macrophages by the diffusion-limited reaction of superoxide and nitric oxide. This highly reactive species is thought to contribute to bacterial killing by interaction with diverse targets and nitration of protein tyrosines. This work presents for the first time a comprehensive analysis of transcriptional responses to peroxynitrite under tightly controlled chemostat growth conditions. Up-regulation of the cysteine biosynthesis pathway and an increase in S-nitrosothiol levels suggest S-nitrosylation to be a consequence of peroxynitrite exposure. Genes involved in the assembly/repair of iron-sulfur clusters also show enhanced transcription. Unexpectedly, arginine biosynthesis gene transcription levels were also elevated after treatment with peroxynitrite. Analysis of the negative regulator for these genes, ArgR, showed that post-translational nitration of tyrosine residues within this protein is responsible for its degradation in vitro. Further up-regulation was seen in oxidative stress response genes, including katG and ahpCF. However, genes known to be up-regulated by nitric oxide and nitrosating agents (e.g. hmp and norVW) were unaffected. Probabilistic modeling of the transcriptomic data identified five altered transcription factors in response to peroxynitrite exposure, including OxyR and ArgR. Hydrogen peroxide can be present as a contaminant in commercially available peroxynitrite preparations. Transcriptomic analysis of cells treated with hydrogen peroxide alone also revealed up-regulation of oxidative stress response genes but not of many other genes that are up-regulated by peroxynitrite. Thus, the cellular responses to peroxynitrite and hydrogen peroxide are distinct.
Collapse
Affiliation(s)
- Samantha McLean
- Departments of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| | | | | | | | | |
Collapse
|
25
|
Kohr MJ, Traynham CJ, Roof SR, Davis JP, Ziolo MT. cAMP-independent activation of protein kinase A by the peroxynitrite generator SIN-1 elicits positive inotropic effects in cardiomyocytes. J Mol Cell Cardiol 2010; 48:645-8. [PMID: 20083118 DOI: 10.1016/j.yjmcc.2010.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 11/30/2022]
Abstract
The phosphatase vs. kinase equilibrium plays a critical role in the regulation of myocardial contractility. Previous studies have demonstrated that peroxynitrite exerts a biphasic effect on cardiomyocyte contraction, such that high peroxynitrite reduced beta-adrenergic-stimulated myocyte contraction by inducing the dephosphorylation of phospholamban (PLB) via phosphatase activation. Conversely, low peroxynitrite increased basal and beta-adrenergic-stimulated contraction also through a PLB-dependent mechanism. However, previous studies have not elucidated the mechanism underlying the positive effects of low peroxynitrite on myocyte contraction. In the current study, we examined the phosphatase vs. kinase equilibrium as a potential mechanism underlying the positive effects of peroxynitrite. SIN-1 (peroxynitrite donor, 10 mumol/L) increased myocyte Ca(2+) transient and shortening amplitude, accelerated myocyte relaxation, and enhanced PLB phosphorylation. Specific inhibition of PP1/PP2a with okadaic acid failed to inhibit this positive effect. However, inhibition of PKA with KT5720 completely abolished the effects of SIN-1 on myocyte contraction. Additionally, SIN-1 induced a significant increase in PKA activity in cardiac homogenates, which was inhibited with FeTPPS (peroxynitrite decomposition catalyst). Surprisingly, SIN-1 also increased activity in purified preparations (i.e., in the absence of cAMP) of PKA. Therefore, our data suggest that peroxynitrite directly activates PKA (independent from cAMP), resulting in the enhancement of myocyte contraction and relaxation through the phosphorylation of PLB.
Collapse
Affiliation(s)
- Mark J Kohr
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
26
|
Han M, Pendem S, Teh SL, Sukumaran DK, Wu F, Wilson JX. Ascorbate protects endothelial barrier function during septic insult: Role of protein phosphatase type 2A. Free Radic Biol Med 2010; 48:128-35. [PMID: 19840845 PMCID: PMC2818310 DOI: 10.1016/j.freeradbiomed.2009.10.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/07/2009] [Accepted: 10/13/2009] [Indexed: 02/08/2023]
Abstract
Endothelial barrier dysfunction contributes to morbidity in sepsis. We tested the hypothesis that raising the intracellular ascorbate concentration protects the endothelial barrier from septic insult by inhibiting protein phosphatase type 2A. Monolayer cultures of microvascular endothelial cells were incubated with ascorbate, dehydroascorbic acid (DHAA), the NADPH oxidase inhibitors apocynin and diphenyliodonium, or the PP2A inhibitor okadaic acid and then were exposed to septic insult (lipopolysaccharide and interferon-gamma). Under standard culture conditions that depleted intracellular ascorbate, septic insult stimulated oxidant production and PP2A activity, dephosphorylated phosphoserine and phosphothreonine residues in the tight junction-associated protein occludin, decreased the abundance of occludin at cell borders, and increased monolayer permeability to albumin. NADPH oxidase inhibitors prevented PP2A activation and monolayer leak, showing that these changes required reactive oxygen species. Okadaic acid, at a concentration that inhibited PP2A activity and monolayer leak, prevented occludin dephosphorylation and redistribution, implicating PP2A in the response of occludin to septic insult. Incubation with ascorbate or DHAA raised intracellular ascorbate concentrations and mitigated the effects of septic insult. In conclusion, ascorbate acts within microvascular endothelial cells to inhibit septic stimulation of oxidant production by NADPH oxidase and thereby prevents PP2A activation, PP2A-dependent dephosphorylation and redistribution of occludin, and disruption of the endothelial barrier.
Collapse
Affiliation(s)
- Min Han
- Department of Exercise and Nutrition Sciences, University at Buffalo, 3435 Main Street, Buffalo, NY 14214-8028, USA
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China 430030
| | - Suresh Pendem
- Department of Exercise and Nutrition Sciences, University at Buffalo, 3435 Main Street, Buffalo, NY 14214-8028, USA
| | - Suet Ling Teh
- Department of Exercise and Nutrition Sciences, University at Buffalo, 3435 Main Street, Buffalo, NY 14214-8028, USA
| | | | - Feng Wu
- Department of Exercise and Nutrition Sciences, University at Buffalo, 3435 Main Street, Buffalo, NY 14214-8028, USA
| | - John X. Wilson
- Department of Exercise and Nutrition Sciences, University at Buffalo, 3435 Main Street, Buffalo, NY 14214-8028, USA
- Corresponding author. Telephone: +1 716 829 5596. Fax: +1 716 829 2428.
| |
Collapse
|