1
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
2
|
Wu J, Jia J, Ji D, Jiao W, Huang Z, Zhang Y. Advances in nitric oxide regulators for the treatment of ischemic stroke. Eur J Med Chem 2023; 262:115912. [PMID: 37931330 DOI: 10.1016/j.ejmech.2023.115912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Ischemic stroke (IS) is a life-threatening disease worldwide. Nitric oxide (NO) derived from l-arginine catalyzed by NO synthase (NOS) is closely associated with IS. Three isomers of NOS (nNOS, eNOS and iNOS) produce different concentrations of NO, resulting in quite unlike effects during IS. Of them, n/iNOSs generate high levels of NO, detrimental to brain by causing nerve cell apoptosis and/or necrosis, whereas eNOS releases small amounts of NO, beneficial to the brain via increasing cerebral blood flow and improving nerve function. As a result, a large variety of NO regulators (NO donors or n/iNOS inhibitors) have been developed for fighting IS. Regrettably, up to now, no review systematically introduces the progresses in this area. This article first outlines dynamic variation rule of NOS/NO in IS, subsequently highlights advances in NO regulators against IS, and finally presents perspectives based on concentration-, site- and timing-effects of NO production to promote this field forward.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China; Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Weijie Jiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Younis NS, Mohamed ME. Anethole Pretreatment Modulates Cerebral Ischemia/Reperfusion: The Role of JNK, p38, MMP-2 and MMP-9 Pathways. Pharmaceuticals (Basel) 2023; 16:ph16030442. [PMID: 36986541 PMCID: PMC10057436 DOI: 10.3390/ph16030442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Anethole (AN) is one of the major constituents of several plant oils, demonstrating plentiful pharmacological actions. Ischemic stroke is the main cause of morbidity and death worldwide, particularly since ischemic stroke therapeutic choices are inadequate and limited; thus, the development of new therapeutic options is indispensable. This study was planned to explore the preventive actions of AN in ameliorating cerebral ischemia/reperfusion-induced brain damage and BBB permeability leakage, as well as to explore anethole’s potential mechanisms of action. The proposed mechanisms included modulating JNK and p38 as well as MMP-2 and MMP-9 pathways. Sprague–Dawley male rats were randomly assigned into four groups: sham, middle cerebral artery occlusion (MCAO), AN125 + MCAO, and AN250 + MCAO. Animals in the third and fourth groups were pretreated with AN 125 or 250 mg/kg orally, respectively, for two weeks before performing middle cerebral artery occlusion (MCAO)-induced cerebral ischemic/reperfusion surgery. Animals that experienced cerebral ischemia/reperfusion exhibited amplified infarct volume, Evans blue intensity, brain water content, Fluoro-Jade B-positive cells, severe neurological deficits, and numerous histopathological alterations. MCAO animals exhibited elevated MMP-9 and MMP-2 gene expressions, enzyme activities, augmented JNK, and p38 phosphorylation. On the other hand, pretreatment with AN diminished the infarct volume, Evans blue dye intensity, brain water content, and Fluoro-Jade B-positive cells, improved the neurological score and enhanced histopathological examination. AN effectively lowered MMP-9 and MMP-2 gene expression and enzyme activities and diminished phosphorylated JNK, p38. AN decreased MDA content, amplified GSH/GSSG ratio, SOD, and CAT, decreased the serum and brain tissue homogenate inflammatory cytokines (TNF-α, IL-6, IL-1β), NF-κB, and deterred the apoptotic status. This study revealed the neuroprotective ability of AN against cerebral ischemia/reperfusion in rats. AN boosted blood–brain barrier integrity via modulating MMPs and diminished oxidative stress, inflammation, and apoptosis through the JNK/p38 pathway.
Collapse
Affiliation(s)
- Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Zagazig University Hospitals, Zagazig University, Zagazig 44519, Egypt
- Correspondence:
| | - Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
4
|
Hu C, He M, Chen M, Xu Q, Li S, Cui Y, Qiu X, Tian W. Amelioration of Neuropathic Pain and Attenuation of Neuroinflammation Responses by Tetrahydropalmatine Through the p38MAPK/NF-κB/iNOS Signaling Pathways in Animal and Cellular Models. Inflammation 2021; 45:891-903. [PMID: 34757554 PMCID: PMC8956562 DOI: 10.1007/s10753-021-01593-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/18/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Neuropathic pain (NP) treatment remains a challenge because the pathomechanism is not yet fully understood. Because of low treatment efficacy, there is an important unmet need in neuropathic pain patients, and the development of a more effective pharmacotherapy is urgently required. Neuroinflammation induced by oxidative stress-mediated activation of nuclear factor-kappa B (NF-κB) plays an important role in NP. In this study, we aimed to investigate the protective properties of tetrahydropalmatine (THP) on a spared nerve injury (SNI) model of neuropathic pain in mice in in vivo and also in in vitro experiments. THP decreased mechanical hyperalgesia and cold allodynia compared with the SNI group. A microarray was applied to analyze differentially expressed of mRNA among different groups, and THP noticeably changed the expression of MAPK-related proteins compared with the SNI groups. H&E staining showed that the THP changed the inflammation after the spared nerve injury, with decreased NO expression in the THP group as compared to the SNI group. In addition, SNI-induced pain was reversed by intraperitoneal administration of THP, and further results indicated that THP suppressed inducible nitric oxide synthase (iNOS, pro-nociceptive mediators), phosphorylated MAPKs, and p65 in the dorsal root ganglions and sciatic nerve, while the serum levels of the pro-inflammatory cytokines IL-1β were significantly higher in the SNI group as compared to the THP group. To identify the molecular mechanism of the antineuropathic activity of THP, sodium nitroprusside (SNP)-induced neuro-2a (N2a) cells, LPS-induced BV2 cells, and LTA-induced astrocytes were further investigated in signaling pathways. In vitro experiments indicated that THP suppressed the expression of IL-1β, iNOS, phosphorylated MAPKs, and p65, which were assayed using western blotting, and immunofluorescence.
Collapse
Affiliation(s)
- Cheng Hu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Menglin He
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Meijuan Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Xu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Sha Li
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Yaomei Cui
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Xizi Qiu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Weiqian Tian
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
5
|
Guo P, Lu Q, Hu S, Martínez MA, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I. The NO-dependent caspase signaling pathway is a target of deoxynivalenol in growth inhibition in vitro. Food Chem Toxicol 2021; 158:112629. [PMID: 34673182 DOI: 10.1016/j.fct.2021.112629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/12/2022]
Abstract
DON is commonly found in foods and feeds; it presents health risks, especially an increase of growth inhibition in humans, particularly infants and young children. However, there are relatively few research studies devoted to the mechanism of DON-mediated growth retardation. Interestingly, our results showed that DON does not cause any significant production of ROS but results in a persistent and significant release of NO with iNOS increasing activity, mitochondrial ultrastructural changes and decreasing ΔΨm. Moreover, the significant decreases in GH production and secretion induced by DON were dose-dependent, accompanied by an increase of caspase 3, 8 and 9, IL-11, IL-lβ and GHRH. NO scavenging agent (haemoglobin) and free radical scavenging agent (N-acetylcysteine) partially reversed mitochondrial damage, and Z-VAD-FMK increased the levels of GH and decreased the levels of caspase 3, 8 and 9, while haemoglobin decreased the levels of caspase 3, 8 and 9, indicating that NO is the primary target of DON-mediated inhibition. Present research study firstly demonstrated that NO is a key mediator of DON-induced growth inhibition and plays critical roles in the interference of GH transcription and synthesis. The current research is conducive to future research on the molecular mechanisms of DON-induced growth inhibition in humans, especially children.
Collapse
Affiliation(s)
- Pu Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Siyi Hu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
6
|
Zhao Y, Shi X, Wang J, Mang J, Xu Z. Betulinic Acid Ameliorates Cerebral Injury in Middle Cerebral Artery Occlusion Rats through Regulating Autophagy. ACS Chem Neurosci 2021; 12:2829-2837. [PMID: 34296845 DOI: 10.1021/acschemneuro.1c00198] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cerebral ischemic stroke (CIS) is an acute cerebrovascular disease that is caused by the sudden rupture of blood vessels inside the brain and the intervention of reperfusion to the brain, resulting in severe cerebral injury. Autophagy has been reported to be involved in the occurrence and progression of CIS. Betulinic acid (BA) is a pentacyclic triterpene acid mainly extracted from birch bark. Studies have shown the neuroprotective effects of BA. Here, the effect and mechanism of BA on ischemia-reperfusion induced cerebral injury was explored using a CIS model in vivo via 1 h middle cerebral artery occlusion (MCAO) and 24 h reperfusion in rats and in vitro via oxygen-glucose deprivation/reperfusion (OGD/R) of PC12 cells, respectively. We found that BA not only reduced cerebral injury by reducing oxidative stress but also activated the SIRT1/FoxO1 pathway to suppress autophagy and improve cerebral injury in MCAO rats. These results provide a basis for the potential clinical application of BA.
Collapse
Affiliation(s)
- Yuelin Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Xiaohua Shi
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| |
Collapse
|
7
|
N-Palmitoylethanolamide-Oxazoline Protects against Middle Cerebral Artery Occlusion Injury in Diabetic Rats by Regulating the SIRT1 Pathway. Int J Mol Sci 2019; 20:ijms20194845. [PMID: 31569558 PMCID: PMC6801841 DOI: 10.3390/ijms20194845] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
Diabetes causes various macrovascular and microvascular alterations, often culminating in major clinical complications (first of all, stroke) that lack an effective therapeutic intervention. N-palmitoylethanolamide-oxazoline (PEA-OXA) possesses anti-inflammatory and potent neuroprotective effects. Although recent studies have explained the neuroprotective properties of PEA-OXA, nothing is known about its effects in treating cerebral ischemia. Methods: Focal cerebral ischemia was induced by transient middle cerebral artery occlusion (MCAo) in the right hemisphere. Middle cerebral artery (MCA) occlusion was provided by introducing a 4–0 nylon monofilament (Ethilon; Johnson & Johnson, Somerville, NJ, USA) precoated with silicone via the external carotid artery into the internal carotid artery to occlude the MCA. Results: A neurological severity score and infarct volumes were carried out to assess the neuroprotective effects of PEA-OXA. Moreover, we observed PEA-OXA-mediated improvements in tissue histology shown by a reduction in lesion size and an improvement in apoptosis level (assessed by caspases, Bax, and Bcl-2 modulation and a TUNEL assay), which further supported the efficacy of PEA-OXA therapy. We also found that PEA-OXA treatment was able to reduce mast cell degranulation and reduce the MCAo-induced expression of NF-κB pathways, cytokines, and neurotrophic factors. Conclusions: based on these findings, we propose that PEA-OXA could be useful in decreasing the risk of impairment or improving function in ischemia/reperfusion brain injury-related disorders.
Collapse
|
8
|
Abstract
Stroke is considered to be an acute cerebrovascular disease, including ischemic stroke and hemorrhagic stroke. The high incidence and poor prognosis of stroke suggest that it is a highly disabling and highly lethal disease which can pose a serious threat to human health. Nitric oxide (NO), a common gas in nature, which is often thought as a toxic gas, because of its intimate relationship with the pathological processes of many diseases, especially in the regulation of blood flow and cell inflammation. However, recent years have witnessed an increased interest that NO plays a significant and positive role in stroke as an essential gas signal molecule. In view of the fact that the neuroprotective effect of NO is closely related to its concentration, cell type and time, only in the appropriate circumstances can NO play a protective effect. The purpose of this review is to summarize the roles of NO in ischemic stroke and hemorrhagic stroke.
Collapse
Affiliation(s)
- Zhou-Qing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ru-Tao Mou
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dong-Xia Feng
- Department of Scott & White Clinic-Temple, Temple, TX, USA
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
9
|
Hu GQ, Du X, Li YJ, Gao XQ, Chen BQ, Yu L. Inhibition of cerebral ischemia/reperfusion injury-induced apoptosis: nicotiflorin and JAK2/STAT3 pathway. Neural Regen Res 2017; 12:96-102. [PMID: 28250754 PMCID: PMC5319249 DOI: 10.4103/1673-5374.198992] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nicotiflorin is a flavonoid extracted from Carthamus tinctorius. Previous studies have shown its cerebral protective effect, but the mechanism is undefined. In this study, we aimed to determine whether nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis through the JAK2/STAT3 pathway. The cerebral ischemia/reperfusion injury model was established by middle cerebral artery occlusion/reperfusion. Nicotiflorin (10 mg/kg) was administered by tail vein injection. Cell apoptosis in the ischemic cerebral cortex was examined by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Bcl-2 and Bax expression levels in ischemic cerebral cortex were examined by immunohistochemial staining. Additionally, p-JAK2, p-STAT3, Bcl-2, Bax, and caspase-3 levels in ischemic cerebral cortex were examined by western blot assay. Nicotiflorin altered the shape and structure of injured neurons, decreased the number of apoptotic cells, down-regulates expression of p-JAK2, p-STAT3, caspase-3, and Bax, decreased Bax immunoredactivity, and increased Bcl-2 protein expression and immunoreactivity. These results suggest that nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Guang-Qiang Hu
- Department of Anatomy, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xi Du
- Department of Chemistry, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yong-Jie Li
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiao-Qing Gao
- Department of Anatomy and Neurobiology, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Bi-Qiong Chen
- Department of Chemistry, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Lu Yu
- Department of Chemistry, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
10
|
Hong Z, Tian Y, Yuan Y, Qi M, Li Y, Du Y, Chen L, Chen L. Enhanced Oxidative Stress Is Responsible for TRPV4-Induced Neurotoxicity. Front Cell Neurosci 2016; 10:232. [PMID: 27799895 PMCID: PMC5065954 DOI: 10.3389/fncel.2016.00232] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/26/2016] [Indexed: 11/20/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) has been reported to be responsible for neuronal injury in pathological conditions. Excessive oxidative stress can lead to neuronal damage, and activation of TRPV4 increases the production of reactive oxygen species (ROS) and nitric oxide (NO) in many types of cells. The present study explored whether TRPV4-induced neuronal injury is mediated through enhancing oxidative stress. We found that intracerebroventricular injection of the TRPV4 agonist GSK1016790A increased the content of methane dicarboxylic aldehyde (MDA) and NO in the hippocampus, which was blocked by administration of the TRPV4 specific antagonist HC-067047. The activities of catalase (CAT) and glutathione peroxidase (GSH-Px) were decreased by GSK1016790A, whereas the activity of superoxide dismutase (SOD) remained unchanged. Moreover, the protein level and activity of neuronal nitric oxide synthase (nNOS) were increased by GSK1016790A, and the GSK1016790A-induced increase in NO content was blocked by an nNOS specific antagonist ARL-17477. The GSK1016790A-induced modulations of CAT, GSH-Px and nNOS activities and the protein level of nNOS were significantly inhibited by HC-067047. Finally, GSK1016790A-induced neuronal death and apoptosis in the hippocampal CA1 area were markedly attenuated by administration of a ROS scavenger Trolox or ARL-17477. We conclude that activation of TRPV4 enhances oxidative stress by inhibiting CAT and GSH-Px and increasing nNOS, which is responsible, at least in part, for TRPV4-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhiwen Hong
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Yujing Tian
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Yibiao Yuan
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University Nanjing, China
| | - Mengwen Qi
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Yingchun Li
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Yimei Du
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University Nanjing, China
| |
Collapse
|
11
|
Wang X, Luo Y, Sun H, Feng J, Ma S, Liu J, Huang B. Dynamic expression changes of Bcl-2, Caspase-3 and Hsp70 in middle cerebral artery occlusion rats. Brain Inj 2016; 29:93-7. [PMID: 25158066 DOI: 10.3109/02699052.2014.945958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND This study aimed to study the dynamic changes of B cell lymphoma/leukaemia 2 (Bcl-2), caspase-3 and heat shock response protein 70 (Hsp70) in blood serum following acute middle cerebral artery occlusion (MCAO) in rats. METHODS Occlusion of the cerebral artery was accomplished via the intraluminal filament, followed by the TTC staining evaluation and neurological deficit score. Meanwhile, the blood serum was extracted at 0.5, 2, 3, 6, 12 and 24 hours and 3 and 7 days after surgery. The serum expression levels of caspase-3, Bcl-2 and Hsp70 were determined using ELISA kits according to the manufacturer's protocols. Expression correlations between Bcl-2 and Hsp70, Bcl-2 and caspase-3 were analysed using correl function. A rats model was successfully established. RESULTS The expression of all three indexes, including Bcl-2, caspase-3 and Hsp70, was significantly increased after surgery (p < 0.05) and peaked at 12, 24 and 24 hours, respectively. Up to 7 days after MCAO, the expression levels of these proteins recovered to the control levels. There were positive correlations between the expressions of Bcl-2 and Hsp70, Bcl-2 and caspase-3 (p < 0.05). CONCLUSIONS The altered expressions of these proteins in the blood serum may result in many symptoms in acute ischaemic stroke individuals.
Collapse
Affiliation(s)
- Xiaoping Wang
- a Department of Neurology , Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital , Chengdu, Sichuan , PR China , and
| | | | | | | | | | | | | |
Collapse
|
12
|
Zheng L, Ding J, Wang J, Zhou C, Zhang W. Effects and Mechanism of Action of Inducible Nitric Oxide Synthase on Apoptosis in a Rat Model of Cerebral Ischemia-Reperfusion Injury. Anat Rec (Hoboken) 2015; 299:246-55. [PMID: 26598930 DOI: 10.1002/ar.23295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 09/21/2015] [Accepted: 10/08/2015] [Indexed: 12/20/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is a key enzyme in regulating nitric oxide (NO) synthesis under stress, and NO has varying ability to regulate apoptosis. The aim of this study was to investigate the effects and possible mechanism of action of iNOS on neuronal apoptosis in a rat model of cerebral focal ischemia and reperfusion injury in rats treated with S-methylisothiourea sulfate (SMT), a high-selective inhibitor of iNOS. Seventy-two male Sprague-Dawley (SD) rats were randomly divided into three groups: the sham, middle cerebral artery occlusion (MCAO) + vehicle, and MCAO + SMT groups. Neurobehavioral deficits, infarct zone size, and cortical neuron morphology were evaluated through the modified Garcia scores, 2,3,5-triphenyltetrazolium chloride (TTC), and Nissl staining, respectively. Brain tissues and serum samples were collected at 72 hr post-reperfusion for immunohistochemical analysis, Western blotting, Terminal deoxynucleotidyl transferase-mediated dUTP-biotin Nick End Labeling assay (TUNEL) staining, and enzyme assays. The study found that inhibition of iNOS significantly attenuated the severity of the pathological changes observed as a result of ischemia-reperfusion injury: SMT reduced NO content as well as total nitric oxide synthase (tNOS) and iNOS activities in both ischemic cerebral hemisphere and serum, improved neurobehavioral scores, reduced mortality, reduced the infarct volume ratio, attenuated morphological changes in cortical neurons, decreased the rate of apoptosis (TUNEL and caspase-3-positive), and increased phospho (p)-AKT expression in ischemic penumbra. These results suggested that inhibition of iNOS might reduce the severity of ischemia-reperfusion injury by inhibiting neuronal apoptosis via maintaining p-AKT activity.
Collapse
Affiliation(s)
- Li Zheng
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Junli Ding
- Department of Neurology, the Center Hospital of China Natural Petroleum Corporation, Lang Fang, 065000, China
| | - Jianwei Wang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Changman Zhou
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Weiguang Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| |
Collapse
|
13
|
Caltagirone C, Cisari C, Schievano C, Di Paola R, Cordaro M, Bruschetta G, Esposito E, Cuzzocrea S. Co-ultramicronized Palmitoylethanolamide/Luteolin in the Treatment of Cerebral Ischemia: from Rodent to Man. Transl Stroke Res 2015; 7:54-69. [PMID: 26706245 PMCID: PMC4720704 DOI: 10.1007/s12975-015-0440-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/08/2015] [Accepted: 12/13/2015] [Indexed: 12/30/2022]
Abstract
Acute ischemic stroke, the most frequent cause of permanent disability in adults worldwide, results from transient or permanent reduction in regional cerebral blood flow and involves oxidative stress and inflammation. Despite the success of experimental animal models of stroke in identifying anti-inflammatory/neuroprotective compounds, translation of these putative neuroprotectants to human clinical trials has failed to produce a positive outcome. Tissue injury and stress activate endogenous mechanisms which function to restore homeostatic balance and prevent further damage by upregulating the synthesis of lipid signaling molecules, including N-palmitoylethanolamine (PEA or palmitoylethanolamide). PEA exerts neuroprotection and reduces inflammatory secondary events associated with brain ischemia reperfusion injury (middle cerebral artery occlusion (MCAo)). Here, we examined the neuroprotective potential of a co-ultramicronized composite containing PEA and the antioxidant flavonoid luteolin (10:1 by mass), nominated co-ultraPEALut. The study consisted of two arms. In the first, rats subjected to MCAo and treated with co-ultraPEALut post-ischemia showed reduced edema and brain infract volume, improved neurobehavioral functions, and reduced expression of pro-inflammatory markers and astrocyte markers. In the second arm, a cohort of 250 stroke patients undergoing neurorehabilitation on either an inpatient or outpatient basis were treated for 60 days with a pharmaceutical preparation of co-ultraPEALut (Glialia). At baseline and after 30 days of treatment, all patients underwent a battery of evaluations to assess neurological status, impairment of cognitive abilities, the degree of spasticity, pain, and independence in daily living activities. All indices showed statistically significant gains at study end. Despite its observational nature, this represents the first description of co-ultraPEALut administration to human stroke patients and clinical improvement not otherwise expected from spontaneous recovery. Further, controlled trials are warranted to confirm the utility of co-ultraPEALut to improve clinical outcome in human stroke.
Collapse
Affiliation(s)
- Carlo Caltagirone
- Fondazione Santa Lucia IRCCS, Via Ardeatina, 306-00179, Rome, Italy.
| | - Carlo Cisari
- Dipartimento di Scienze della Salute, Amedeo Avogadro University of Eastern Piedmont, Novara, Piedmont, Italy
| | | | - Rosanna Di Paola
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, no. 31, Messina, 98166, Italy
| | - Marika Cordaro
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, no. 31, Messina, 98166, Italy
| | - Giuseppe Bruschetta
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, no. 31, Messina, 98166, Italy
| | - Emanuela Esposito
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, no. 31, Messina, 98166, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, no. 31, Messina, 98166, Italy.
| | | |
Collapse
|
14
|
Liu H, Li J, Zhao F, Wang H, Qu Y, Mu D. Nitric oxide synthase in hypoxic or ischemic brain injury. Rev Neurosci 2015; 26:105-17. [PMID: 25720056 DOI: 10.1515/revneuro-2014-0041] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/30/2014] [Indexed: 12/29/2022]
Abstract
Abstract Hypoxic or ischemic stress causes many serious brain injuries, including stroke and neonatal hypoxia ischemia encephalopathy. During brain hypoxia ischemia processes, nitric oxide (NO) may play either a neurotoxic or a neuroprotective role, depending upon factors such as the NO synthase (NOS) isoform, the cell type by which NO is produced, and the temporal stage after the onset of the hypoxic ischemic brain injury. Excessive NO production can be neurotoxic, leading to cascade reactions of excitotoxicity, inflammation, apoptosis, and deteriorating primary brain injury. In contrast, NO produced by endothelial NOS plays a neuroprotective role by maintaining cerebral blood flow and preventing neuronal injury, as well as inhibiting platelet and leukocyte adhesion. Sometimes, NO-derived inducible NOS and neuronal NOS in special areas may also play neuroprotective roles. Therefore, this review summarizes the different roles and the regulation of the three NOS isoforms in hypoxic or ischemic brain injury as revealed in research in recent years, focusing on the neurotoxic role of the three NOS isoforms involved in mechanisms of hypoxic or ischemic brain injury.
Collapse
|
15
|
Ahmad SF, Zoheir KMA, Ansari MA, Nadeem A, Bakheet SA, Al-Hoshani AR, Al-Shabanah OA, Al-Harbi MM, Attia SM. Histamine 4 receptor promotes expression of costimulatory B7.1/B7.2 molecules, CD28 signaling and cytokine production in stress-induced immune responses. J Neuroimmunol 2015; 289:30-42. [PMID: 26616869 DOI: 10.1016/j.jneuroim.2015.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 01/01/2023]
Abstract
Recently, the expression of histamine 4 receptor (H4R) on neurons was reported, however its function in cells within the central nervous system (CNS) remains poorly understood. To this end, we used the H4R agonist, 4-methylhistamine (4-MeH), and the H4R antagonist, JNJ77777120 (JNJ), to investigate the function of H4R signaling in immune cells in a murine model of chronic stress. Treatment of stressed mice with 4-MeH resulted in an increase in the proportion of lymphocyte subsets (CD3(+), CD8(+), CD28(+), and CD4(+)CD28(+)) and cells expressing the co-stimulatory molecules CD80(+) (B7.1) and CD86(+) (B7.2) in heparinized blood as compared to normal control (NC) and stressed control (SC) groups. We also observed that as compared to NC and SC mice, 4-MeH-treated mice showed greater production of IL-2(+), IL-6(+), IL-9(+), IL-21(+), and IL-27(+) cytokines in the spleen and by splenic CD4(+) T cells. Furthermore, 4-MeH treatment of stressed mice led to an increase in the levels of serum Th1/Th17 cytokines and corticosterone, and a decrease in Th2 cytokines. Treatment of chronically-stressed mice with 4-MeH also augmented expression of IL-6, IL-21, NF-κB p65, and STAT3 mRNA. Moreover, Western blot analyses confirmed increased protein expression of NF-κB, iNOS, and STAT3 expression following 4-MeH treatment of chronically-stressed mice as compared to controls. These proteins provide a novel relevant targets for the manipulation of chronic stress induced immune regulation. In striking contrast, treatment of stressed mice with the H4R antagonist, JNJ, resulted in a substantial reduction in all of the aforementioned effects upon immune cell percentages and cytokine production.
Collapse
Affiliation(s)
- Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Khairy M A Zoheir
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Cell Biology, National Research Centre, Cairo, Egypt
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali R Al-Hoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Othman A Al-Shabanah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
16
|
Chen JH, Kuo HC, Lee KF, Tsai TH. Magnolol protects neurons against ischemia injury via the downregulation of p38/MAPK, CHOP and nitrotyrosine. Toxicol Appl Pharmacol 2014; 279:294-302. [DOI: 10.1016/j.taap.2014.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 01/17/2023]
|
17
|
Chen X, Deng A, Zhou T, Ding F. Pretreatment with 2-(4-methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside attenuates cerebral ischemia/reperfusion-induced injury in vitro and in vivo. PLoS One 2014; 9:e100126. [PMID: 24991917 PMCID: PMC4084628 DOI: 10.1371/journal.pone.0100126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/22/2014] [Indexed: 01/06/2023] Open
Abstract
Salidroside, extracted from the root of Rhodiola rosea L, is known for its pharmacological properties, in particular its neuroprotective effects. 2-(4-Methoxyphenyl) ethyl-2-acetamido-2-deoxy-β-D-pyranoside (GlcNAc-Sal), an analog of salidroside, was recently synthesized and shown to possess neuroprotective properties. The purpose of the current study was to investigate the neuroprotective effects of GlcNAc-Sal against oxygen-glucose deprivation-reperfusion (OGD-R)-induced neurotoxicity in vitro and global cerebral ischemia-reperfusion (GCI-R) injury in vivo. Cell viability tests and Hoechst 33342 staining confirmed that GlcNAc-Sal pretreatment markedly attenuated OGD-R induced apoptotic cell death in immortalized mouse hippocampal HT22 cells. Western blot, immunofluorescence and PCR analyses revealed that GlcNAc-Sal pretreatment restored the balance of pro- and anti-apoptotic proteins and inhibited the activation of caspase-3 and PARP induced by OGD-R treatment. Further analyses showed that GlcNAc-Sal pretreatment antagonized reactive oxygen species (ROS) generation, iNOS-derived NO production and NO-related apoptotic cell death during OGD-R stimulation. GCI-R was induced by bilateral common carotid artery occlusion (BCCAO) and reperfusion in mice in vivo. Western blot analysis showed that GlcNAc-Sal pretreatment decreased the expression of caspase-3 and increased the expression of Bcl-2 (B-cell lymphoma 2)/Bax (Bcl-2-associated X protein) induced by GCI-R treatment. Our findings suggest that GlcNAc-Sal pretreatment prevents brain ischemia reperfusion injury by the direct or indirect suppression of cell apoptosis and GlcNAc-Sal could be developed as a broad-spectrum agent for the prevention and/or treatment of cerebral ischemic injury.
Collapse
Affiliation(s)
- Xia Chen
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, China
| | - Aiqing Deng
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
| | - Tianqiu Zhou
- Department of ophtalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
- * E-mail:
| |
Collapse
|
18
|
Flores JJ, Zhang Y, Klebe DW, Lekic T, Fu W, Zhang JH. Small molecule inhibitors in the treatment of cerebral ischemia. Expert Opin Pharmacother 2014; 15:659-80. [PMID: 24491068 DOI: 10.1517/14656566.2014.884560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Stroke is the world's second leading cause of death. Although recombinant tissue plasminogen activator is an effective treatment for cerebral ischemia, its limitations and ischemic stroke's complex pathophysiology dictate an increased need for the development of new therapeutic interventions. Small molecule inhibitors (SMIs) have the potential to be used as novel therapeutic modalities for stroke, since many preclinical and clinical trials have established their neuroprotective capabilities. AREAS COVERED This paper provides a summary of the pathophysiology of stroke as well as clinical and preclinical evaluations of SMIs as therapeutic interventions for cerebral ischemia. Cerebral ischemia is broken down into four mechanisms in this article: thrombosis, ischemic insult, mitochondrial injury and immune response. Insight is provided into preclinical and current clinical assessments of SMIs targeting each mechanism as well as a summary of reported results. EXPERT OPINION Many studies demonstrated that pre- or post-treatment with certain SMIs significantly ameliorated adverse effects from stroke. Although some of these promising SMIs moved on to clinical trials, they generally failed, possibly due to the poor translation of preclinical to clinical experiments. Yet, there are many steps being taken to improve the quality of experimental research and translation to clinical trials.
Collapse
Affiliation(s)
- Jerry J Flores
- Loma Linda University School of Medicine, Department of Physiology and Pharmacology , Risley Hall, Room 223, Loma Linda, CA 92354 , USA
| | | | | | | | | | | |
Collapse
|
19
|
Wang B, Wu N, Liang F, Zhang S, Ni W, Cao Y, Xia D, Xi H. 7,8-dihydroxyflavone, a small-molecule tropomyosin-related kinase B (TrkB) agonist, attenuates cerebral ischemia and reperfusion injury in rats. J Mol Histol 2013; 45:129-40. [DOI: 10.1007/s10735-013-9539-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/02/2013] [Indexed: 12/26/2022]
|
20
|
Muley MM, Thakare VN, Patil RR, Bafna PA, Naik SR. Amelioration of cognitive, motor and endogenous defense functions with silymarin, piracetam and protocatechuic acid in the cerebral global ischemic rat model. Life Sci 2013; 93:51-57. [DOI: 10.1016/j.lfs.2013.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/06/2013] [Accepted: 05/23/2013] [Indexed: 12/27/2022]
|
21
|
Nitric oxide donors as neuroprotective agents after an ischemic stroke-related inflammatory reaction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:297357. [PMID: 23691263 PMCID: PMC3649699 DOI: 10.1155/2013/297357] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment.
Collapse
|
22
|
Ahmad A, Genovese T, Impellizzeri D, Crupi R, Velardi E, Marino A, Esposito E, Cuzzocrea S. Reduction of ischemic brain injury by administration of palmitoylethanolamide after transient middle cerebral artery occlusion in rats. Brain Res 2012; 1477:45-58. [PMID: 23046519 DOI: 10.1016/j.brainres.2012.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Stroke is the third leading cause of death and the leading cause of long-term disability in adults. Current therapeutic strategies for stroke, including thrombolytic drugs, such as tissue plasminogen activator offer great promise for the treatment, but complimentary neuroprotective treatments are likely to provide a better outcome. To counteract the ischemic brain injury in mice, a new therapeutic approach has been employed by using palmitoylethanolamide (PEA). PEA is one of the members of N-acyl-ethanolamine family maintain not only redox balance but also inhibit the mechanisms of secondary injury on ischemic brain injury. Treatment of the middle cerebral artery occlusion (MCAo)-induced animals with PEA reduced edema and brain infractions as evidenced by decreased 2,3,5-triphenyltetrazolium chloride (TTC) staining across brain sections. PEA-mediated improvements in tissues histology shown by reduction of lesion size and improvement in apoptosis level (assayed by Bax and Bcl-2) further support the efficacy of PEA therapy. We demonstrated that PEA treatment blocked infiltration of astrocytes and restored MCAo-mediated reduced expression of PAR, nitrotyrosine, iNOS, chymase, tryptase, growth factors (BDNF and GDNF) and GFAP. PEA also inhibited the MCAo-mediated increased expression of pJNK, NF-κB, and degradation of IκB-α. PEA-treated injured animals improved neurobehavioral functions as evaluated by motor deficits. Based on these findings we propose that PEA would be useful in lowering the risk of damage or improving function in ischemia-reperfusion brain injury-related disorders.
Collapse
Affiliation(s)
- Akbar Ahmad
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cevik-Demirkan A, Oztaşan N, Oguzhan EO, Cil N, Coskun S. Poppy seed oil protection of the hippocampus after cerebral ischemia and re-perfusion in rats. Biotech Histochem 2012; 87:499-505. [DOI: 10.3109/10520295.2012.701763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- A Cevik-Demirkan
- Department of Anatomy, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey.
| | | | | | | | | |
Collapse
|
24
|
Muley MM, Thakare VN, Patil RR, Kshirsagar AD, Naik SR. Silymarin improves the behavioural, biochemical and histoarchitecture alterations in focal ischemic rats: a comparative evaluation with piracetam and protocatachuic acid. Pharmacol Biochem Behav 2012; 102:286-93. [PMID: 22584042 DOI: 10.1016/j.pbb.2012.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/10/2012] [Accepted: 05/05/2012] [Indexed: 01/17/2023]
Abstract
Comparative neuroprotective potential of silymarin, piracetam and protocatechuic acid ethyl ester (PCA) was evaluated in focal ischemic rats. Various pharmacological, biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite content, brain water content) and behavioural (memory impairment, motor control, neurological score) including infarct size and histopathological alterations were evaluated. Silymarin (200mg/kg) and PCA treatment significantly improved behavioural, biochemical and histopathological changes, and reduced water content and infarct size. However, piracetam only improved behavioural and histopathological changes, reduced water content and infarct size. The findings indicate that silymarin exhibits neuroprotective activity better than PCA and piracetam in focal ischemia/reperfusion reflected by its better restoration of behavioural and antioxidant profile.
Collapse
Affiliation(s)
- Milind M Muley
- Padm. Dr. D. Y. Patil Institute of Pharmaceutical Sciences & Research, Pimpri, Pune 411018, India
| | | | | | | | | |
Collapse
|
25
|
Kim YC, Park TY, Baik E, Lee SH. Fructose-1,6-bisphosphate attenuates induction of nitric oxide synthase in microglia stimulated with lipopolysaccharide. Life Sci 2011; 90:365-72. [PMID: 22227475 DOI: 10.1016/j.lfs.2011.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/21/2011] [Accepted: 12/13/2011] [Indexed: 11/28/2022]
Abstract
AIMS Fructose-1,6-bisphosphate (FBP) is a glycolytic intermediate with neuroprotective action in various brain injury models. However, the mechanism underlying the neuroprotection of FBP has not been fully defined. In this study, we investigated whether FBP inhibits endotoxin-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in microglial cells and explored the possible mechanisms of the effects of FBP. MAIN METHODS Murine microglial cell line BV2 and primary cultured murine microglial cells were used. NO production and iNOS expression were determined by Griess reaction, RT-PCR and Western blot. Luciferase assay using iNOS promoter-luciferase (iNOS-Luc) construct was adopted for measuring transcriptional activity. KEY FINDINGS FBP dose-dependently suppressed lipopolysaccharide (LPS)-induced NO production, along with reducing the expression of iNOS at both the protein and mRNA level in primary cultured murine microglia and BV2 cells. FBP significantly inhibited iNOS promoter activity but stabilized iNOS mRNA. Among transcription factors known to be related to iNOS expression, activator protein (AP-1) activation was significantly blocked by FBP. FBP suppressed LPS-induced phosphorylation of three MAPK subtypes-p38 MAPK, JNK and ERK. FBP inhibited LPS-induced production of reactive oxygen species (ROS) and decreased intracellular GSSG/GSH ratio. SIGNIFICANCE Our findings suggest that FBP attenuates the LPS-induced iNOS expression through inhibition of JNK and p38 MAPK, which might be related to ROS downregulation.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Physiology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | | | | | | |
Collapse
|
26
|
Kalay Z, Cevher SC. Oxidant and antioxidant events during epidermal growth factor therapy to cutaneous wound healing in rats. Int Wound J 2011; 9:362-71. [PMID: 22129466 DOI: 10.1111/j.1742-481x.2011.00895.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cutaneous wound healing is a highly complex process, which includes inflammation, cell proliferation, matrix deposition and remodelling phases. Various growth factors, like epidermal growth factor (EGF), play an important role during wound healing. However, little is known about relationship between EGF and oxidant-antioxidant events in cutaneous wound healing models. Thus we planned to evaluate the connection between EGF therapy and oxidative stress in dermal tissue followed by wounding. Fifty-four adult male Wistar-albino rats were randomly divided into three groups: control, untreated and topical EGF administrated group. A linear full-thickness excision of 40 mm in length on both sides of spinal cord was made on the back of each rat and sutured under anaesthesia and sterile conditions. Excision was closed with 4/0 atraumatic silk suture. EGF solution was freshly prepared at 10 ng/ml dose in thilotears gel under aseptic conditions. Following the surgery, 1 ml of EGF solution was administered to wound strips one time in everyday. The animals were euthanised and wound tissues were collected on days 1, 5, 7 and 14. Thiobarbituric acid reactive substans (TBARS), glutathione (GSH), reactive nitrogen oxide species (NOx), ascorbic acid levels and superoxide dismutase activity were measured spectrophotometrically. TBARS levels decreased and NOx levels increased on day 5 after operation, and GSH levels were increased on day 14 in EGF administered group compared with untreated group. Our data showed that EGF may act like an antioxidant by scavenging toxic oxidation products in wound tissue. In addition, it may contribute healing of the wound tissue in earlier stages and suggest a potential effective role for antioxidant therapies, especially until day 5.
Collapse
Affiliation(s)
- Zeynep Kalay
- Department of Biology, Faculty of Science, Gazi University, Ankara 06500, Turkey.
| | | |
Collapse
|
27
|
Kunak ZI, Macit E, Yaren H, Yaman H, Cakir E, Aydin I, Turker T, Kurt YG, Ozcan A, Uysal B, Isbilir S, Akgul EO, Cayci T, Korkmaz A, Kenar L. Protective effects of melatonin and S-methylisothiourea on mechlorethamine induced nephrotoxicity. J Surg Res 2011; 175:e17-23. [PMID: 22261582 DOI: 10.1016/j.jss.2011.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/12/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND In this study, we aimed to investigate the protective effects of melatonin (MEL) and S-methylisothiourea (SMT) on mechlorethamine (MEC) induced nephrotoxicity. MATERIALS AND METHODS A total of 36 male Sprague-Dawley rats were divided into four groups: control, MEC, MEC+MEL, and MEC+SMT. Three groups received single dose of MEC (3.5 mg/kg) via transdermal route. Control animals were given saline only via transdermal route. MEL (100 mg/kg) was administered intraperitoneally 30 min after the application of MEC, and after the same dose of MEL was given every 12 h for a total of six doses. SMT (50 mg/kg) was also given intraperitoneally 30 min after the application of MEC. RESULTS The tissue TNF-α, IL-1β, and NOx levels were found significantly different for all groups (P < 0.001). MEC application resulted in severe histopathological changes. Melatonin showed meaningful protection against kidney damage. But protection by SMT was weaker. TNF-α and IL-1β levels increased significantly with MEC application, and MEL and SMT ameliorated these increases in kidney tissue. MEC also elevated NOx levels in kidney tissue. CONCLUSIONS Both inflammation and oxidative stress may have an important role in the MEC induced nephrotoxicity. MEL and SMT may also have anti-inflammatory properties, as well as anti-oxidant properties.
Collapse
Affiliation(s)
- Zeki Ilker Kunak
- Department of CBRN Defense, Gulhane Military Medical Academy, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Garg P, Duncan RS, Kaja S, Zabaneh A, Chapman KD, Koulen P. Lauroylethanolamide and linoleoylethanolamide improve functional outcome in a rodent model for stroke. Neurosci Lett 2011; 492:134-8. [PMID: 21296126 DOI: 10.1016/j.neulet.2011.01.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 11/19/2022]
Abstract
Ischemic stroke is a significant health problem affecting over 6 million people in the United States alone. In addition to surgical and thrombolytic therapeutic strategies for stroke, neuroprotective therapies may offer additional benefit. N-acylethanolamines (NAEs) are signaling lipids whose synthesis is upregulated in response to ischemia, suggesting that they may be neuroprotective. To date only three NAEs, arachidonylethanolamide (NAE 20:4), palmitoylethanolamide (NAE 16:0) and oleoylethanolamide (NAE 18:1) have shown to exert neuroprotective effect in animal models for stroke. Here, we describe neuroprotective effects of the hitherto uncharacterized NAEs, lauroylethanolamide (NAE 12:0) and linoleoylethanolamide (NAE 18:2) in a middle cerebral artery occlusion model of stroke. Pretreatment with NAE 18:2 prior to ischemia/reperfusion (I/R) injury resulted in both significantly reduced cortical infarct volume and improved functional outcome as determined using the neurological deficit score. NAE 12:0 improved neurological deficits without a significant reduction lesion size. Our results suggest that NAEs, as a whole, provide neuroprotection during I/R injury and may have therapeutic benefit when used as complementary treatment with other therapies to improve stroke outcome.
Collapse
Affiliation(s)
- Puja Garg
- Vision Research Center and Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, Kansas City, MO 64108, United States
| | | | | | | | | | | |
Collapse
|
29
|
Uchida H, Fujita Y, Matsueda M, Umeda M, Matsuda S, Kato H, Kasahara J, Araki T. Damage to neurons and oligodendrocytes in the hippocampal CA1 sector after transient focal ischemia in rats. Cell Mol Neurobiol 2010; 30:1125-34. [PMID: 20625811 PMCID: PMC11498810 DOI: 10.1007/s10571-010-9545-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
Abstract
Focal brain lesions such as transient focal cerebral ischemia can lead to neuronal damage in remote areas, including the ipsilateral substantia nigra and hippocampus, as well as in the ischemic core. In this study, we investigated acute changes in the ipsilateral hippocampus from 1 up to 7 days after 90 min of transient focal cerebral ischemia in rats, using anti-NeuN (neuronal nuclei), anti-Cu/Zn-superoxide dismutase (Cu/Zn-SOD), anti-Mn-SOD, anti-neuronal nitric oxide synthase (nNOS), anti-inducible NOS (iNOS), anti-glial fibrillary acidic protein (GFAP), anti-ionized calcium-binding adaptor molecule 1(Iba 1) and anti-2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) antibodies. In our western blot and histochemical analyses, present results show that transient focal cerebral ischemia in rats can cause a severe and acute damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector. The present findings also demonstrate that the expression of iNOS produced by Iba 1-immunopositive microglia precedes the damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector after transient focal cerebral ischemia. In contrast, our results suggest that increased reactive oxygen species (ROS) production during reperfusion cannot lead to damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector after transient focal cerebral ischemia, because of an insufficient expression of Cu/Zn-SOD and Mn-SOD. Our double-labeled immunohistochemical study demonstrates that the overexpression of iNOS produced by Iba 1-immunopositive microglia may play a pivotal role in the damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector at an acute stage after transient focal cerebral ischemia.
Collapse
Affiliation(s)
- Hiroto Uchida
- Department of Neurobiology and Therapeutics, Institute of Health Biosciences, The University of Tokushima Graduate School, 1-78 Sho-machi, Tokushima, 770-8505 Japan
| | - Yuki Fujita
- Department of Neurobiology and Therapeutics, Institute of Health Biosciences, The University of Tokushima Graduate School, 1-78 Sho-machi, Tokushima, 770-8505 Japan
| | - Misato Matsueda
- Department of Neurobiology and Therapeutics, Institute of Health Biosciences, The University of Tokushima Graduate School, 1-78 Sho-machi, Tokushima, 770-8505 Japan
| | - Masahiro Umeda
- Department of Neurobiology and Therapeutics, Institute of Health Biosciences, The University of Tokushima Graduate School, 1-78 Sho-machi, Tokushima, 770-8505 Japan
| | - Shunsuke Matsuda
- Department of Neurobiology and Therapeutics, Institute of Health Biosciences, The University of Tokushima Graduate School, 1-78 Sho-machi, Tokushima, 770-8505 Japan
| | - Hiroyuki Kato
- Department of Neurology, Organized Center of Clinical Medicine, International University of Health and Welfare, Tochigi, Japan
| | - Jiro Kasahara
- Department of Neurobiology and Therapeutics, Institute of Health Biosciences, The University of Tokushima Graduate School, 1-78 Sho-machi, Tokushima, 770-8505 Japan
| | - Tsutomu Araki
- Department of Neurobiology and Therapeutics, Institute of Health Biosciences, The University of Tokushima Graduate School, 1-78 Sho-machi, Tokushima, 770-8505 Japan
| |
Collapse
|
30
|
S-Methylisothiourea Induces Apoptosis of Herpes Simplex Virus-1-Infected Microglial Cells. Inflammation 2010; 34:388-401. [DOI: 10.1007/s10753-010-9246-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|