1
|
Liu T, Zhang M, Li Q, Schroeder H, Power GG, Blood AB. Nitrite reverses nitroglycerin tolerance via repletion of a nitrodilator-activated nitric oxide store in vascular smooth muscle cells. Redox Biol 2025; 80:103513. [PMID: 39879735 PMCID: PMC11815961 DOI: 10.1016/j.redox.2025.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Repeated use of nitroglycerin results in a loss of its vasodilatory efficacy which limits its clinical use for the treatment of angina pectoris. This tolerance phenomenon is a defining characteristic of all compounds classified as nitrodilators, which includes NTG as well as S-nitrosothiols and dinitrosyl iron complexes. These compounds vasodilate via activation of soluble guanylate cyclase, although they do not release requisite amounts of free nitric oxide (NO) and some do not even cross the plasma membrane. Here we demonstrate that nitrodilators cause vasodilation via mobilization of NO moiety from a nitrodilator-activated NO store (NANOS) pre-formed in the vascular smooth muscle cell, similar to the mechanism by which UV light is also known to cause vasodilation and tolerance. Intraperitoneal nitrite prevented NTG tolerance in coronary arteries of rats that received NTG transdermal patches for 4 days, and potentiated NTG- and GSNO- mediated mesenteric vasodilation in intact rats. Consistent with the incorporation of nitrite into the depletable NANOS, incubation of arteries with 15N-nitrite resulted in the accumulation of high molecular weight 15N-NO-containing compounds in arteries, and subsequent exposure to NTG, GSNO, or UV light resulted in efflux of 15N-NO species. In addition, H2O2 and metal/metalloproteins synergistically facilitated NO release from nitrite, while the oxidative stress associated with inflammation and nitrite synergistically potentiated the nitrodilator-mediated vasodilation. In conclusion, NTG mediates vasodilation via activation of a depletable intracellular store of NO that can be replenished by nitrite, thereby preventing tolerance.
Collapse
Affiliation(s)
- Taiming Liu
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Meijuan Zhang
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Qian Li
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hobe Schroeder
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Gordon G Power
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arlin B Blood
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
2
|
Teffera M, Veith AC, Ronnekleiv-Kelly S, Bradfield CA, Nikodemova M, Tussing-Humphreys L, Malecki K. Diverse mechanisms by which chemical pollutant exposure alters gut microbiota metabolism and inflammation. ENVIRONMENT INTERNATIONAL 2024; 190:108805. [PMID: 38901183 PMCID: PMC12024183 DOI: 10.1016/j.envint.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
The human gut microbiome, the host, and the environment are inextricably linked across the life course with significant health impacts. Consisting of trillions of bacteria, fungi, viruses, and other micro-organisms, microbiota living within our gut are particularly dynamic and responsible for digestion and metabolism of diverse classes of ingested chemical pollutants. Exposure to chemical pollutants not only in early life but throughout growth and into adulthood can alter human hosts' ability to absorb and metabolize xenobiotics, nutrients, and other components critical to health and longevity. Inflammation is a common mechanism underlying multiple environmentally related chronic conditions, including cardiovascular disease, multiple cancer types, and mental health. While growing research supports complex interactions between pollutants and the gut microbiome, significant gaps exist. Few reviews provide descriptions of the complex mechanisms by which chemical pollutants interact with the host microbiome through either direct or indirect pathways to alter disease risk, with a particular focus on inflammatory pathways. This review focuses on examples of several classes of pollutants commonly ingested by humans, including (i) heavy metals, (ii) persistent organic pollutants (POPs), and (iii) nitrates. Digestive enzymes and gut microbes are the first line of absorption and metabolism of these chemicals, and gut microbes have been shown to alter compounds from a less to more toxic state influencing subsequent distribution and excretion. In addition, chemical pollutants may interact with or alter the selection of more harmful and less commensal microbiota, leading to gut dysbiosis, and changes in receptor-mediated signaling pathways that alter the integrity and function of the gut intestinal tract. Arsenic, cadmium, and lead (heavy metals), influence the microbiome directly by altering different classes of bacteria, and subsequently driving inflammation through metabolite production and different signaling pathways (LPS/TLR4 or proteoglycan/TLR2 pathways). POPs can alter gut microbial composition either directly or indirectly depending on their ability to activate key signaling pathways within the intestine (e.g., PCB-126 and AHR). Nitrates and nitrites' effect on the gut and host may depend on their ability to be transformed to secondary and tertiary metabolites by gut bacteria. Future research should continue to support foundational research both in vitro, in vivo, and longitudinal population-based research to better identify opportunities for prevention, gain additional mechanistic insights into the complex interactions between environmental pollutants and the microbiome and support additional translational science.
Collapse
Affiliation(s)
- Menna Teffera
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI, US; Biotechnology Center, University of Wisconsin-Madison, Madison, WI, US.
| | - Alex C Veith
- Department of Oncology, University of Wisconsin-Madison, Madison, WI, US.
| | - Sean Ronnekleiv-Kelly
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI, US; Biotechnology Center, University of Wisconsin-Madison, Madison, WI, US; Department of Surgery, University of Wisconsin-Madison, Madison, WI, US.
| | - Christopher A Bradfield
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI, US; Department of Surgery, University of Wisconsin-Madison, Madison, WI, US; Department of Oncology, University of Wisconsin-Madison, Madison, WI, US.
| | - Maria Nikodemova
- College of Public Health and Health Professionals, University of Florida, FL, US.
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois-Chicago, Chicago, IL, US; University of Illinois Cancer Center, University of Illinois-Chicago, Chicago, IL, US.
| | - Kristen Malecki
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI, US; Biotechnology Center, University of Wisconsin-Madison, Madison, WI, US; University of Illinois Cancer Center, University of Illinois-Chicago, Chicago, IL, US; Environmental Occupational Health Sciences, University of Illinois-Chicago, Chicago, IL, US.
| |
Collapse
|
3
|
Kim DJK, Gao Z, Luck JC, Brandt K, Miller AJ, Kim-Shapiro D, Basu S, Leuenberger U, Gardner AW, Muller MD, Proctor DN. Effects of short-term dietary nitrate supplementation on exercise and coronary blood flow responses in patients with peripheral artery disease. Front Nutr 2024; 11:1398108. [PMID: 39027664 PMCID: PMC11257697 DOI: 10.3389/fnut.2024.1398108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Peripheral arterial disease (PAD) is a prevalent vascular disorder characterized by atherosclerotic occlusion of peripheral arteries, resulting in reduced blood flow to the lower extremities and poor walking ability. Older patients with PAD are also at a markedly increased risk of cardiovascular events, including myocardial infarction. Recent evidence indicates that inorganic nitrate supplementation, which is abundant in certain vegetables, augments nitric oxide (NO) bioavailability and may have beneficial effects on walking, blood pressure, and vascular function in patients with PAD. Objective We sought to determine if short-term nitrate supplementation (via beetroot juice) improves peak treadmill time and coronary hyperemic responses to plantar flexion exercise relative to placebo (nitrate-depleted juice) in older patients with PAD. The primary endpoints were peak treadmill time and the peak coronary hyperemic response to plantar flexion exercise. Methods Eleven PAD patients (52-80 yr.; 9 men/2 women; Fontaine stage II) were randomized (double-blind) to either nitrate-rich (Beet-IT, 0.3 g inorganic nitrate twice/day; BRnitrate) or nitrate-depleted (Beet-IT, 0.04 g inorganic nitrate twice/day, BRplacebo) beetroot juice for 4 to 6 days, followed by a washout of 7 to 14 days before crossing over to the other treatment. Patients completed graded plantar flexion exercise with their most symptomatic leg to fatigue, followed by isometric handgrip until volitional fatigue at 40% of maximum on day 4 of supplementation, and a treadmill test to peak exertion 1-2 days later while continuing supplementation. Hemodynamics and exercise tolerance, and coronary blood flow velocity (CBV) responses were measured. Results Although peak walking time and claudication onset time during treadmill exercise did not differ significantly between BRplacebo and BRnitrate, the diastolic blood pressure response at the peak treadmill walking stage was significantly lower in the BRnitrate condition. Increases in CBV from baseline to peak plantar flexion exercise after BRplacebo and BRnitrate showed a trend for a greater increase in CBV at the peak workload of plantar flexion with BRnitrate (p = 0.06; Cohen's d = 0.56). Conclusion Overall, these preliminary findings suggest that inorganic nitrate supplementation in PAD patients is safe, well-tolerated, and may improve the coronary hyperemic and blood pressure responses when their calf muscles are most predisposed to ischemia.Clinical trial registration:https://clinicaltrials.gov/, identifier NCT02553733.
Collapse
Affiliation(s)
- Danielle Jin-Kwang Kim
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Zhaohui Gao
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Jonathan C. Luck
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Kristen Brandt
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Amanda J. Miller
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Daniel Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States
| | - Urs Leuenberger
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Andrew W. Gardner
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Matthew D. Muller
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - David N. Proctor
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
- Noll Laboratory, Department of Kinesiology, Penn State University, University Park, PA, United States
| |
Collapse
|
4
|
Akhtar S, Sagar K, Singh A, Hote MP, Roy A, Sharma A. Inflammation-induced sialin mediates nitrate efflux in dysfunctional endothelium affecting NO bioavailability. Nitric Oxide 2024; 146:37-47. [PMID: 38579899 DOI: 10.1016/j.niox.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
AIM The mechanism of NO bioavailability in endothelial dysfunction, the trigger for atherogenesis is still unclear as exogenous nitrate therapy fails to alleviate endothelial dysfunction. Recently, sialin, a nitrate transporter, has been linked to affect tissue nitrate/nitrite levels. Hence, we investigated the role of sialin in NO bioavailability in endothelial dysfunction. METHODS Serum-starved HUVECs were stimulated with either TNFα or AT-2 for 24 h either alone or in the presence of autophagy inducer or autophagy inhibitor alone. Nitric oxide, nitrite, and nitrate levels were measured in cell supernatant and cell lysate. Quantitative real-time PCR, Annexin V-PI, and monocyte adhesion assays were performed. Immunofluorescence staining for sialin, vWF, and LC3 was performed. STRING database was used to create protein interacting partners for sialin. RESULTS Sialin is strongly expressed in activated EC in vitro and atherosclerotic plaque as well as tumor neo-vessel ECs. Sialin mediates nitrate ion efflux and is negatively regulated by autophagy via mTOR pathway. Blocking sialin enhances NO bioavailability, autophagy, cell survival, and eNOS expression while decreasing monocyte adhesion. PPI shows LGALS8 to directly interact with sialin and regulate autophagy, cell-cell adhesion, and apoptosis. CONCLUSION Sialin is a potential novel therapeutic target for treating endothelial dysfunction in atherosclerosis and cancer.
Collapse
Affiliation(s)
| | - Komal Sagar
- Department of Biochemistry, AIIMS, New Delhi, India
| | | | - Milind P Hote
- Department of Cardiothoracic and Vascular Surgery, AIIMS, New Delhi, India
| | - Ambuj Roy
- Department of Cardiology, AIIMS, New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, AIIMS, New Delhi, India.
| |
Collapse
|
5
|
Tian Y, Tian X, Li T, Wang W. Overview of the effects and mechanisms of NO and its donors on biofilms. Crit Rev Food Sci Nutr 2023; 65:647-666. [PMID: 37942962 DOI: 10.1080/10408398.2023.2279687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microbial biofilm is undoubtedly a challenging problem in the food industry. It is closely associated with human health and life, being difficult to remove and antibiotic resistance. Therefore, an alternate method to solve these problems is needed. Nitric oxide (NO) as an antimicrobial agent, has shown great potential to disrupt biofilms. However, the extremely short half-life of NO in vivo (2 s) has facilitated the development of relatively more stable NO donors. Recent studies reported that NO could permeate biofilms, causing damage to cellular biomacromolecules, inducing biofilm dispersion by quorum sensing (QS) pathway and reducing intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) levels, and significantly improving the bactericidal effect without drug resistance. In this review, biofilm hazards and formation processes are presented, and the characteristics and inhibitory effects of NO donors are carefully discussed, with an emphasis on the possible mechanisms of NO resistance to biofilms and some advanced approaches concerning the remediation of NO donor deficiencies. Moreover, the future perspectives, challenges, and limitations of NO donors were summarized comprehensively. On the whole, this review aims to provide the application prospects of NO and its donors in the food industry and to make reliable choices based on these available research results.
Collapse
Affiliation(s)
- Yanan Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Teng Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
6
|
da Silva DVT, Baião DDS, Almeida CC, Paschoalin VMF. A Critical Review on Vasoactive Nutrients for the Management of Endothelial Dysfunction and Arterial Stiffness in Individuals under Cardiovascular Risk. Nutrients 2023; 15:nu15112618. [PMID: 37299579 DOI: 10.3390/nu15112618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Pathophysiological conditions such as endothelial dysfunction and arterial stiffness, characterized by low nitric oxide bioavailability, deficient endothelium-dependent vasodilation and heart effort, predispose individuals to atherosclerotic lesions and cardiac events. Nitrate (NO3-), L-arginine, L-citrulline and potassium (K+) can mitigate arterial dysfunction and stiffness by intensifying NO bioavailability. Dietary compounds such as L-arginine, L-citrulline, NO3- and K+ exert vasoactive effects as demonstrated in clinical interventions by noninvasive flow-mediated vasodilation (FMD) and pulse-wave velocity (PWV) prognostic techniques. Daily L-arginine intakes ranging from 4.5 to 21 g lead to increased FMD and reduced PWV responses. Isolated L-citrulline intake of at least 5.6 g has a better effect compared to watermelon extract, which is only effective on endothelial function when supplemented for longer than 6 weeks and contains at least 6 g of L-citrulline. NO3- supplementation employing beetroot at doses greater than 370 mg promotes hemodynamic effects through the NO3--NO2-/NO pathway, a well-documented effect. A potassium intake of 1.5 g/day can restore endothelial function and arterial mobility, where decreased vascular tone takes place via ATPase pump/hyperpolarization and natriuresis, leading to muscle relaxation and NO release. These dietary interventions, alone or synergically, can ameliorate endothelial dysfunction and should be considered as adjuvant therapies in cardiovascular diseases.
Collapse
Affiliation(s)
- Davi Vieira Teixeira da Silva
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Diego Dos Santos Baião
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Cristine Couto Almeida
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
7
|
Yousefzadeh N, Jeddi S, Zarkesh M, Norouzirad R, Kashfi K, Ghasemi A. Protective effects of long-term nitrate administration against ovariectomy-induced kidney dysfunction in rats. Pharmacol Rep 2023:10.1007/s43440-023-00499-9. [PMID: 37258800 DOI: 10.1007/s43440-023-00499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Menopause is associated with higher risks of chronic kidney disease. We determined the effect of nitrate on ovariectomy-induced kidney dysfunction METHODS: Control, ovariectomized (OVX), control + nitrate, and OVX + nitrate female Wistar rats (n = 10/group); sodium nitrate (100 mg/L) administered in drinking water for 9 months. Glomerular filtration rate (GFR) and albumin excretion rate (AER) were calculated from serum and urine parameters. At month 9, serum and kidney levels of nitric oxide (NO) metabolites (NOx), oxidative stress indices, and mRNA expression of endothelial NO synthase (eNOS) were measured; with histological analyses of the kidney. RESULTS Compared to controls, OVX rats had lower GFR (31%, p = 0.0079), higher glomerular tuft volume (30%, p = 0.0402), and Bowman's capsule space (39%, p = 0.0224). OVX rats had lower serum NOx (33%, p = 0.0061) and kidney eNOS mRNA expression (34%, p = 0.0368). Nitrate administration to: (i) control rats increased serum NOx (59%, p < 0.0001), with no effect on other parameters; (ii) OVX rats increased serum (85%, p < 0.0001) and kidney (106%, p = 0.0008) NOx values, and restored kidney eNOS expression to normal value. Nitrate administration to OVX rats increased GFR (36%, p = 0.0361) and restored glomerular tuft volume and Bowman's capsule space to normal values. In OVX rats, it also increased serum catalase (CAT) activity, serum and kidney total antioxidant capacity (TAC), and decreased serum malondialdehyde (MDA). CONCLUSIONS Low-dose long-term nitrate administration protects against ovariectomy-induced kidney dysfunction in rats. This effect is associated with reducing ovariectomy-induced oxidative stress and restoring eNOS-derived NO deficiency in systemic circulation and the kidney.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Norouzirad
- Department of Biochemistry, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, Newyork, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Bryan NS, Ahmed S, Lefer DJ, Hord N, von Schwarz ER. Dietary nitrate biochemistry and physiology. An update on clinical benefits and mechanisms of action. Nitric Oxide 2023; 132:1-7. [PMID: 36690137 DOI: 10.1016/j.niox.2023.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
It is now more than 35 years since endothelium derived relaxing factor was identified as nitric oxide (NO). The last few decades have seen an explosion around nitric oxide biochemistry, physiology and clinical translation. The science reveals that all chronic disease is associated with decreased blood flow to the affected organ which results in increased inflammation, oxidative stress and immune dysfunction. This is true for cardiovascular disease, neurological disease, kidney, lung, liver disorders and every other major disorder. Since nitric oxide controls and regulates blood flow, oxygen and nutrient delivery to every cell, tissue and organ in the body and also mitigates inflammation, oxidative stress and immune dysfunction, a focus on restoring nitric oxide production is an obvious therapeutic strategy for a number of poorly managed chronic diseases. Since dietary nitrate is a major contributor to endogenous nitric oxide production, it should be considered as a means of therapy and restoration of nitric oxide. This review will update on the current state of the science and effects of inorganic nitrate administered through the diet on several chronic conditions and reveal how much is needed. It is clear now that antiseptic mouthwash and use of antacids disrupt nitrate metabolism to nitric oxide leading to clinical symptoms of nitric oxide deficiency. Based on the science, nitrate should be considered an indispensable nutrient that should be accounted for in dietary guidelines.
Collapse
Affiliation(s)
| | | | - David J Lefer
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, United States
| | - Norman Hord
- OU Health, Harold Hamm Diabetes Center, Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | |
Collapse
|
9
|
Pan W, Hu G, Li S, Li G, Feng X, Wu Z, Zhang D, Qin L, Wang X, Hu L, Xu J, Hu L, Jia Y, Wen X, Wang J, Zhang C, Zhou J, Li W, Wang X, Wang Y, Wang S. Nanonitrator: novel enhancer of inorganic nitrate’s protective effects, predicated on swarm learning approach. Sci Bull (Beijing) 2023; 68:838-850. [PMID: 37029030 DOI: 10.1016/j.scib.2023.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Inorganic nitrate is an indispensable nutrient that has been used in experimental studies for the prevention and treatment of several diseases. However, the short half-life of nitrate limits its clinical application. To increase the usability of nitrate and overcome the challenges of traditional combination drug discovery through large-scale high-throughput biological experiments, we developed a swarm learning-based combination drug prediction system that identified vitamin C as the drug of choice to be combined with nitrate. Employing microencapsulation technology, we used vitamin C, sodium nitrate, and chitosan 3000 as the core materials to prepare a nitrate nanoparticle, which we named Nanonitrator. The long-circulating delivery ability of nitrate by Nanonitrator significantly increased the efficacy and effect duration of nitrate in irradiation-induced salivary gland injury, without compromising safety. Nanonitrator at the same dose could better maintain intracellular homeostasis than nitrate (with or without vitamin C), emphasizing its potential for clinical use. More importantly, our work provides a method for incorporating inorganic compounds into sustained-release nanoparticles.
Collapse
|
10
|
Pan W, Gu J, Xu S, Zhang C, Wang J, Wang S, Xu J. Dietary nitrate improves jaw bone remodelling in zoledronate-treated mice. Cell Prolif 2023:e13395. [PMID: 36810909 DOI: 10.1111/cpr.13395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 02/24/2023] Open
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a serious complication that occurs in patients with osteoporosis or metastatic bone cancer treated with bisphosphonate. There is still no effective treatment and prevention strategy for BRONJ. Inorganic nitrate, which is abundant in green vegetables, has been reported to be protective in multiple diseases. To investigate the effects of dietary nitrate on BRONJ-like lesions in mice, we utilized a well-established mouse BRONJ model, in which tooth extraction was performed. Specifically, 4 mM sodium nitrate was administered in advance through drinking water to assess the short- and long-term effects on BRONJ. Zoledronate injection could induce severe healing inhibition of the tooth extraction socket, while addition of pretreating dietary nitrate could alleviate the inhibition by reducing monocyte necrosis and inflammatory cytokines production. Mechanistically, nitrate intake increased plasma nitric oxide levels, which attenuated necroptosis of monocytes by downregulating lipid and lipid-like molecule metabolism via a RIPK3 dependent pathway. Our findings revealed that dietary nitrate could inhibit monocyte necroptosis in BRONJ, regulate the bone immune microenvironment and promote bone remodelling after injury. This study contributes to the understanding of the immunopathogenesis of zoledronate and supports the feasibility of dietary nitrate for the clinical prevention of BRONJ.
Collapse
Affiliation(s)
- Wen Pan
- Salivary Gland Disease Centre and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jianyu Gu
- Salivary Gland Disease Centre and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shihan Xu
- Salivary Gland Disease Centre and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chunmei Zhang
- Salivary Gland Disease Centre and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinsong Wang
- Salivary Gland Disease Centre and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Centre and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Research Units of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Junji Xu
- Salivary Gland Disease Centre and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Research Units of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.,Department of Periodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Beijing, China.,Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Festa J, Singh H, Hussain A, Da Boit M. Elderberries as a potential supplement to improve vascular function in a SARS-CoV-2 environment. J Food Biochem 2022; 46:e14091. [PMID: 35118699 DOI: 10.1111/jfbc.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has been triggered by the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Although recent studies demonstrate that SARS-CoV-2 possibly does not directly infect endothelial cells (EC), the endothelium may be affected as a secondary response due to the damage of neighboring cells, circulating pro-inflammatory cytokines, and/or other mechanisms. Long-term COVID-19 symptoms specifically nonrespiratory symptoms are due to the persistence of endothelial dysfunction (ED). Based on the literature, anthocyanins a major subgroup of flavonoid polyphenols found in berries, have been well researched for their vascular protective properties as well as the prevention of cardiovascular disease (CVD)-related deaths. Elderberries have been previously used as a natural remedy for treating influenza, cold, and consequently cardiovascular health due to a high content of cyanidin-3-glucoside (C3G) a major anthocyanin found in the human diet. The literature reported many studies demonstrating that EE has both antiviral and vascular protective properties that should be further investigated as a nutritional component used against the (in)direct effect of SARS-CoV-2 in vascular function. PRACTICAL APPLICATIONS: While previous work among the literature looks promising and builds a suggestion for investigating elderberry extract (EE) against COVID-19, further in vitro and in vivo research is required to fully evaluate EE mechanisms of action and its use as a supplement to aid current therapies.
Collapse
Affiliation(s)
- Joseph Festa
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Harprit Singh
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Aamir Hussain
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK.,Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Mariasole Da Boit
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
12
|
Kim J, Thomas SN. Opportunities for Nitric Oxide in Potentiating Cancer Immunotherapy. Pharmacol Rev 2022; 74:1146-1175. [PMID: 36180108 PMCID: PMC9553106 DOI: 10.1124/pharmrev.121.000500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/15/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Despite nearly 30 years of development and recent highlights of nitric oxide (NO) donors and NO delivery systems in anticancer therapy, the limited understanding of exogenous NO's effects on the immune system has prevented their advancement into clinical use. In particular, the effects of exogenously delivered NO differing from that of endogenous NO has obscured how the potential and functions of NO in anticancer therapy may be estimated and exploited despite the accumulating evidence of NO's cancer therapy-potentiating effects on the immune system. After introducing their fundamentals and characteristics, this review discusses the current mechanistic understanding of NO donors and delivery systems in modulating the immunogenicity of cancer cells as well as the differentiation and functions of innate and adaptive immune cells. Lastly, the potential for the complex modulatory effects of NO with the immune system to be leveraged for therapeutic applications is discussed in the context of recent advancements in the implementation of NO delivery systems for anticancer immunotherapy applications. SIGNIFICANCE STATEMENT: Despite a 30-year history and recent highlights of nitric oxide (NO) donors and delivery systems as anticancer therapeutics, their clinical translation has been limited. Increasing evidence of the complex interactions between NO and the immune system has revealed both the potential and hurdles in their clinical translation. This review summarizes the effects of exogenous NO on cancer and immune cells in vitro and elaborates these effects in the context of recent reports exploiting NO delivery systems in vivo in cancer therapy applications.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience (J.K., S.N.T.), George W. Woodruff School of Mechanical Engineering (J.K., S.N.T.), and Wallace H. Coulter Department of Biomedical Engineering (S.N.T.), Georgia Institute of Technology, Atlanta, Georgia; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia (S.N.T.); and Division of Biological Science and Technology, Yonsei University, Wonju, South Korea (J.K.)
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience (J.K., S.N.T.), George W. Woodruff School of Mechanical Engineering (J.K., S.N.T.), and Wallace H. Coulter Department of Biomedical Engineering (S.N.T.), Georgia Institute of Technology, Atlanta, Georgia; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia (S.N.T.); and Division of Biological Science and Technology, Yonsei University, Wonju, South Korea (J.K.)
| |
Collapse
|
13
|
Yousefzadeh N, Jeddi S, Afzali H, Kashfi K, Ghasemi A. Chronic nitrate administration increases the expression the genes involved in the browning of white adipose tissue in female rats. Cell Biochem Funct 2022; 40:750-759. [PMID: 36098488 DOI: 10.1002/cbf.3741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022]
Abstract
Nitrate, a nitric oxide (NO) donor, has antiobesity effect in female rats. This study hypothesized that the antiobesity effect of nitrate in female rats is due to the browning of white adipose tissue (WAT). Female Wistar rats (aged 8 months) were divided into two groups (n = 10/group): the control group received tap water and the nitrate group received water containing 100 mg/L of sodium nitrate for 9 months. At months 0, 3, 6, and 9, obesity indices were measured. At month 9, gonadal adipose tissue was used to measure messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor-γ (PPAR-γ), PPAR-γ coactivator 1-α (PGC1-α), uncoupling protein 1 (UCP1), and adipocyte density and area. After the 9-month intervention, nitrate-treated rats had lower body weight, body mass index, thoracic circumference, and abdominal circumference by 6.4% (p = .012), 9.1% (p = .029), 6.0% (p = .056), and 5.7% (p = .098), respectively. In addition, nitrate-treated rats had higher PPAR-γ (mRNA: 1.78-fold, p = .016 and protein: 19%, p = .076), PGC1-α (mRNA: 1.69-fold, p = .012 and protein: 68%, p = .001), and UCP1 (mRNA: 2.50-fold, p = .001 and protein: 81%, p = .001) in gonadal adipose tissue. Nitrate also reduced adipocyte area by 35% (p = .054) and increased adipocyte density by 31% (p = .086). In conclusion, antiobesity effect of nitrate in female rats is associated with increased browning of gonadal adipose tissue as indicated by higher expression of PPAR-γ, PGC1-α, and UCP1 and reduced adipocyte area and increased adipocyte density.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, New York, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
García Torres E, Pérez Morales R, González Zamora A, Ríos Sánchez E, Olivas Calderón EH, Alba Romero JDJ, Calleros Rincón EY. Consumption of water contaminated by nitrate and its deleterious effects on the human thyroid gland: a review and update. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:984-1001. [PMID: 32866080 DOI: 10.1080/09603123.2020.1815664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, the nitrates have been established as carcinogenic components due to the endogenous formation of N-nitroso compounds, however, the consumption of water contaminated with nitrates has only been strongly related to the presence of methemoglobinemia in infants, as an acute effect, leaving out other side effects that demand attention. The thyroid gland takes relevance because it can be altered by many pollutants known as endocrine disruptors, which are agents capable of interfering with the synthesis of hormones, thus far, it is known that nitrates may disrupt the amount of iodine uptake causing most of the time hypothyroidism and affecting the metabolic functions of the organism in all development stages, resulting in an important health burden for the exposed population. Here, this review and update highlighted the impact of consumption of water contaminated with nitrates and effects on the thyroid gland in humans, concluding that nitrates could act as true endocrine disruptor.
Collapse
Affiliation(s)
- Edgar García Torres
- Doctorado en Ciencias Biomédicas. Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | - Rebeca Pérez Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | - Alberto González Zamora
- Laboratorio de Biología Evolutiva, Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | - Efraín Ríos Sánchez
- Doctorado en Ciencias Biomédicas. Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | | | - José de Jesús Alba Romero
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | | |
Collapse
|
15
|
Cavalcanti ALDM, Rocha PKL, Zhuge Z, Paulo LL, Mendes-Júnior LDG, Brandão MCR, Athayde-Filho PF, Lundberg JO, Weitzberg E, Carlström M, Braga VDA, Montenegro MF. Cardiovascular characterization of the novel organic mononitrate NDIBP in rats. Nitric Oxide 2022; 119:50-60. [PMID: 34958954 DOI: 10.1016/j.niox.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Organic nitrates are widely used to restore endogenous nitric oxide (NO) levels reduced by endothelial nitric oxide synthase dysfunction. However, these drugs are associated with undesirable side effects, including tolerance. This study aims to investigate the cardiovascular effects of the new organic nitrate 1,3-diisobutoxypropan-2-yl nitrate (NDIBP). Specifically, we assessed its effects on blood pressure, vascular reactivity, acute toxicity, and the ability to induce tolerance. In vitro and ex vivo techniques showed that NDIBP released NO both in a cell-free system and in isolated mesenteric arteries preparations through a process catalyzed by xanthine oxidoreductase. NDIBP also evoked endothelium-independent vasorelaxation, which was significantly attenuated by 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO, 300 μM), a nitric oxide scavenger; 1-H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 μM), a soluble guanylyl cyclase inhibitor; tetraethylammonium (TEA, 3 mM), a potassium channel blocker; febuxostat (500 nM), a xanthine oxidase inhibitor; and proadifen (10 μM), an inhibitor of cytochrome P450 enzyme. Furthermore, this organic nitrate did not induce tolerance in isolated vessels and presented low toxicity following acute oral administration. In vivo changes on cardiovascular parameters were assessed using normotensive and renovascular hypertensive rats. NDIBP evoked a reduction of blood pressure that was significantly higher in hypertensive animals. Our results suggest that NDIBP acts as a NO donor, inducing blood pressure reduction without having the undesirable effects of tolerance. Those effects seem to be mediated by activation of NO-sGC-cGMP pathway and positive modulation of K+ channels in vascular smooth muscle.
Collapse
Affiliation(s)
| | - Patrícia Keytth Lins Rocha
- Biotechnology Center, Federal University of Paraíba, Cidade Universitária, 58051970, João Pessoa, PB, Brazil
| | - Zhengbing Zhuge
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Luciano Leite Paulo
- Biotechnology Center, Federal University of Paraíba, Cidade Universitária, 58051970, João Pessoa, PB, Brazil
| | | | | | - Petrônio F Athayde-Filho
- Department of Chemistry, Federal University of Paraíba, Cidade Universitária, 58059900, João Pessoa, PB, Brazil
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Valdir de Andrade Braga
- Biotechnology Center, Federal University of Paraíba, Cidade Universitária, 58051970, João Pessoa, PB, Brazil.
| | - Marcelo F Montenegro
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| |
Collapse
|
16
|
Kudale VS, Chu CP, Wang JJ. Selective C 3-nitrosation of imidazopyridines using AgNO 3 as the NO source. NEW J CHEM 2022. [DOI: 10.1039/d2nj02115c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a novel method for selective radical nitrosation of imidazo[1, 2-a]pyridine derivatives using AgNO3 as a NO source.
Collapse
Affiliation(s)
- Vishal Suresh Kudale
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Ching-Piao Chu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No. 100 Tzyou 1st Rd, Sanmin District, Kaohsiung City 807, Taiwan
| |
Collapse
|
17
|
da Silva GM, da Silva MC, Nascimento DVG, Lima Silva EM, Gouvêa FFF, de França Lopes LG, Araújo AV, Ferraz Pereira KN, de Queiroz TM. Nitric Oxide as a Central Molecule in Hypertension: Focus on the Vasorelaxant Activity of New Nitric Oxide Donors. BIOLOGY 2021; 10:1041. [PMID: 34681140 PMCID: PMC8533285 DOI: 10.3390/biology10101041] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases include all types of disorders related to the heart or blood vessels. High blood pressure is an important risk factor for cardiac complications and pathological disorders. An increase in circulating angiotensin-II is a potent stimulus for the expression of reactive oxygen species and pro-inflammatory cytokines that activate oxidative stress, perpetuating a deleterious effect in hypertension. Studies demonstrate the capacity of NO to prevent platelet or leukocyte activation and adhesion and inhibition of proliferation, as well as to modulate inflammatory or anti-inflammatory reactions and migration of vascular smooth muscle cells. However, in conditions of low availability of NO, such as during hypertension, these processes are impaired. Currently, there is great interest in the development of compounds capable of releasing NO in a modulated and stable way. Accordingly, compounds containing metal ions coupled to NO are being investigated and are widely recognized as having great relevance in the treatment of different diseases. Therefore, the exogenous administration of NO is an attractive and pharmacological alternative in the study and treatment of hypertension. The present review summarizes the role of nitric oxide in hypertension, focusing on the role of new NO donors, particularly the metal-based drugs and their protagonist activity in vascular function.
Collapse
Affiliation(s)
- Gabriela Maria da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Mirelly Cunha da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Déborah Victória Gomes Nascimento
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Ellen Mayara Lima Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Fabíola Furtado Fialho Gouvêa
- School of Technical Health, Health Sciences Center, Federal University of Paraíba, João Pessoa 58.051-900, PB, Brazil;
| | - Luiz Gonzaga de França Lopes
- Laboratory of Bioinorganic Chemistry, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza 60.020-181, CE, Brazil;
| | - Alice Valença Araújo
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Kelli Nogueira Ferraz Pereira
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| |
Collapse
|
18
|
Feng X, Wu Z, Xu J, Xu Y, Zhao B, Pang B, Qu X, Hu L, Hu L, Fan Z, Jin L, Xia D, Chang S, Wang J, Zhang C, Wang S. Dietary nitrate supplementation prevents radiotherapy-induced xerostomia. eLife 2021; 10:70710. [PMID: 34581269 PMCID: PMC8563005 DOI: 10.7554/elife.70710] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Management of salivary gland hypofunction caused by irradiation (IR) therapy for head and neck cancer remains lack of effective treatments. Salivary glands, especially the parotid gland, actively uptake dietary nitrate and secrete it into saliva. Here, we investigated the effect of dietary nitrate on the prevention and treatment of IR-induced parotid gland hypofunction in miniature pigs, and elucidated the underlying mechanism in human parotid gland cells. We found that nitrate administration prevented IR-induced parotid gland damage in a dose-dependent manner, by maintaining the function of irradiated parotid gland tissue. Nitrate could increase sialin expression, a nitrate transporter expressed in the parotid gland, making the nitrate-sialin feedback loop that facilitates nitrate influx into cells for maintaining cell proliferation and inhibiting apoptosis. Furthermore, nitrate enhanced cell proliferation via the epidermal growth factor receptor (EGFR)-protein kinase B (AKT)-mitogen-activated protein kinase (MAPK) signaling pathway in irradiated parotid gland tissue. Collectively, nitrate effectively prevented IR-induced xerostomia via the EGFR-AKT-MAPK signaling pathway. Dietary nitrate supplementation may provide a novel, safe, and effective way to resolve IR-induced xerostomia.
Collapse
Affiliation(s)
- Xiaoyu Feng
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,Department of Pediatric Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Zhifang Wu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Junji Xu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yipu Xu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Bin Zhao
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Baoxing Pang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Xingmin Qu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Liang Hu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lei Hu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Luyuan Jin
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Dengsheng Xia
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Shimin Chang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Jingsong Wang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing, China
| | - Chunmei Zhang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Songlin Wang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Festa J, Da Boit M, Hussain A, Singh H. Potential Benefits of Berry Anthocyanins on Vascular Function. Mol Nutr Food Res 2021; 65:e2100170. [PMID: 34346156 DOI: 10.1002/mnfr.202100170] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease (CVD), such as hypertension and atherosclerosis, is the leading cause of global death. Endothelial dysfunction (ED) is a strong predictor for most CVD making it a therapeutic target for both drug and nutrition interventions. It has been previously shown that polyphenols from wine and grape extracts possess vasodilator activities, due to the increased expression and phosphorylation of the endothelial nitric oxide synthase (eNOS), and consequent vasodilator nitric oxide (NO) production. This is vital in the prevention of ED, as NO production contributes to the maintenance of endothelial homeostasis. Moreover, polyphenols have the ability to inhibit reactive oxygen species (ROS), which can cause oxidative stress, as well as suppress the upregulation of inflammatory markers within the endothelium. However, while the majority of the research has focused on red wine, this has overshadowed the potential of other nutritional components for targeting ED, such as the use of berries. Berries are high in anthocyanin flavonoids a subtype of polyphenols with studies suggesting improved vascular function as a result of inducing NO production and reducing oxidative stress and inflammation. This review focuses on the protective effects of berries within the vasculature.
Collapse
Affiliation(s)
- Joseph Festa
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Mariasole Da Boit
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Aamir Hussain
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.,Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Harprit Singh
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| |
Collapse
|
20
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
21
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/18/2023] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M. Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M. Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L. Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J. Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
22
|
Mononitrate Isosorbide as an Adjunctive Therapy in Schizophrenia: A Randomized Controlled Crossover Trial. J Clin Psychopharmacol 2021; 41:260-266. [PMID: 33857028 DOI: 10.1097/jcp.0000000000001388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Schizophrenia is a complex disabling mental disorder, and many patients present poor response to available treatments. Accumulating evidence about the role of the glutamate/nitric oxide pathway in mediating the positive and negative symptoms of schizophrenia suggests potential benefits of drugs that modulate this system. The aim of this study was to test the efficacy of isosorbide mononitrate (ISMN) as an adjunctive therapy for symptomatic outpatients with schizophrenia. METHODS This was a 2-month randomized, double-blind, placebo-controlled trial with 24 schizophrenia patients. Participants were treated with ISMN 50 mg for 1 month and placebo for another month in a crossover design. The Positive and Negative Syndrome Scale (PANSS), Clinical Global Impression Scale, Global Assessment of Functioning, and MATRICS Cognitive Consensual Battery were used for symptom assessment and arterial spin labeling was used to assess brain activation patterns. RESULTS We found significant differences in the total, general, and positive subscales of the PANSS, Global Assessment of Functioning scores, and Clinical Global Impression scores during treatment with ISMN relative to placebo. No treatment effects were found comparing scores in the MATRICS Cognitive Consensual Battery and the negative subscale of the PANSS between the active and placebo conditions. A post hoc analysis of neuroimaging data showed reduced activity in the thalamus in subgroup of patients with severe psychopathology. CONCLUSIONS Schizophrenia patients with persistent symptoms showed significant improvement after 4 weeks of treatment with ISMN 50 mg/d compared with placebo. Isosorbide mononitrate added beneficial effects to antipsychotic treatment in terms of positive symptoms and functioning.
Collapse
|
23
|
Senefeld JW, Wiggins CC, Regimbal RJ, Dominelli PB, Baker SE, Joyner MJ. Ergogenic Effect of Nitrate Supplementation: A Systematic Review and Meta-analysis. Med Sci Sports Exerc 2021; 52:2250-2261. [PMID: 32936597 PMCID: PMC7494956 DOI: 10.1249/mss.0000000000002363] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supplemental digital content is available in the text. Although over 100 studies and reviews have examined the ergogenic effects of dietary nitrate (NO3−) supplementation in young, healthy men and women, it is unclear if participant and environmental factors modulate the well-described ergogenic effects—particularly relevant factors include biological sex, aerobic fitness, and fraction of inspired oxygen (FiO2) during exercise. To address this limitation, the literature was systematically reviewed for randomized, crossover, placebo-controlled studies reporting exercise performance outcome metrics with NO3− supplementation in young, healthy adults. Of the 2033 articles identified, 80 were eligible for inclusion in the meta-analysis. Random-effects meta-analysis demonstrated that exercise performance improved with NO3− supplementation compared with placebo (d = 0.174; 95% confidence interval (CI), 0.120–0.229; P < 0.001). Subgroup analyses conducted on biological sex, aerobic fitness, and FiO2 demonstrated that the ergogenic effect of NO3− supplementation was as follows: 1) not observed in studies with only women (n = 6; d = 0.116; 95% CI, −0.126 to 0.358; P = 0.347), 2) not observed in well-trained endurance athletes (≥65 mL·kg−1·min−1; n = 26; d = 0.021; 95% CI, −0.103 to 0.144; P = 0.745), and 3) not modulated by FiO2 (hypoxia vs normoxia). Together, the meta-analyses demonstrated a clear ergogenic effect of NO3− supplementation in recreationally active, young, healthy men across different exercise paradigms and NO3− supplementation parameters; however, the effect size of NO3− supplementation was objectively small (d = 0.174). NO3− supplementation has more limited utility as an ergogenic aid in participants with excellent aerobic fitness that have optimized other training parameters. Mechanistic research and studies incorporating a wide variety of subjects (e.g., women) are needed to advance the study of NO3− supplementation; however, additional descriptive studies of young, healthy men may have limited utility.
Collapse
Affiliation(s)
- Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Riley J Regimbal
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | | | - Sarah E Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
24
|
Abstract
There is increasing evidence for the health benefits of dietary nitrates including lowering blood pressure and enhancing cardiovascular health. Although commensal oral bacteria play an important role in converting dietary nitrate to nitrite, very little is known about the potential role of these bacteria in blood pressure regulation and maintenance of vascular tone. The main purpose of this review is to present the current evidence on the involvement of the oral microbiome in mediating the beneficial effects of dietary nitrate on vascular function and to identify sources of inter-individual differences in bacterial composition. A systematic approach was used to identify the relevant articles published on PubMed and Web of Science in English from January 1950 until September 2019 examining the effects of dietary nitrate on oral microbiome composition and association with blood pressure and vascular tone. To date, only a limited number of studies have been conducted, with nine in human subjects and three in animals focusing mainly on blood pressure. In general, elimination of oral bacteria with use of a chlorhexidine-based antiseptic mouthwash reduced the conversion of nitrate to nitrite and was accompanied in some studies by an increase in blood pressure in normotensive subjects. In conclusion, our findings suggest that oral bacteria may play an important role in mediating the beneficial effects of nitrate-rich foods on blood pressure. Further human intervention studies assessing the potential effects of dietary nitrate on oral bacteria composition and relationship to real-time measures of vascular function are needed, particularly in individuals with hypertension and those at risk of developing CVD.
Collapse
|
25
|
Cherukuri L, Birudaraju D, Kinninger A, Chaganti BT, Shekar C, Hamal S, Shaikh K, Flores F, Roy SK, Sotka W, Green SJ, Budoff MJ. Effect of a plant-based bioequivalent inorganic nitrate (NO3−) complex with vitamins, antioxidants and phytophenol rich food extracts in hypertensive individuals - A randomized, double-blind, placebo-controlled study. Clin Nutr ESPEN 2020; 40:327-335. [DOI: 10.1016/j.clnesp.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/28/2020] [Accepted: 08/14/2020] [Indexed: 02/08/2023]
|
26
|
A Synergistic Effect of Reactive Oxygen and Reactive Nitrogen Species in Plasma Activated Liquid Media Triggers Astrocyte Wound Healing. Int J Mol Sci 2020; 21:ijms21093343. [PMID: 32397300 PMCID: PMC7247562 DOI: 10.3390/ijms21093343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Astrocyte proliferation and migration toward injured Central Nervous System (CNS) areas are key features of astrogliosis and glial scar formation. Even though it is known that intracellular and environmental Reactive Oxygen and Nitrogen Species (RONS) affect astrocyte behaviour in physiological and pathophysiological conditions, their effects on the migration and growth of astrocytes are still unclear. Plasma-technologies are emerging in medicine as a tool to generate RONS for treating cells directly or through Plasma Activated Liquid Media (PALM). In this paper, we show for the first time how the use of PALM can modulate both astrocyte growth and migration as a function of active species produced by plasma in liquids. Our results show that PALM, generated by means of cold atmospheric pressure plasmas fed with N2, air or O2, can modulate astrocyte behaviour depending on the content of hydrogen peroxide and nitrite in the liquid. In particular, H2O2 enriched PALM induced a negative effect on cell growth associated with the mild wound healing improvement of primary astrocytes, in a scratch assay. Nitrite enriched PALM induced a selective effect on the wound healing without affecting cell growth. PALM containing a more balanced level of H2O2 and NO2- were able to affect cell growth, as well as significantly ameliorate wound healing. None of the PALM investigated induced upregulation of the gliotic inflammatory marker glial fibrillary acidic protein (GFAP), or of the astrocyte markers Aquaporin-4 (AQP4) and Connexin-43 (Cx-43) analysed by Western blot. Finally, immunofluorescence analysis revealed the presence of NO2- able to induce elongated protrusions at the front end of wounded astrocytes in the direction of cell migration. With our study we believe to have shown that PALM offer a novel tool to modulate astrocyte behaviour and that they are promising candidates for controlling astrogliosis in the case of CNS injuries.
Collapse
|
27
|
Mills CE, Govoni V, Faconti L, Casagrande M, Morant SV, Crickmore H, Iqbal F, Maskell P, Masani A, Nanino E, Webb AJ, Cruickshank JK. A randomised, factorial trial to reduce arterial stiffness independently of blood pressure: Proof of concept? The VaSera trial testing dietary nitrate and spironolactone. Br J Clin Pharmacol 2020; 86:891-902. [PMID: 31833569 PMCID: PMC7163378 DOI: 10.1111/bcp.14194] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 12/23/2022] Open
Abstract
AIMS To test if spironolactone or dietary nitrate from beetroot juice could reduce arterial stiffness as aortic pulse wave velocity (PWVart), a potential treatment target, independently of blood pressure. METHODS Daily spironolactone (≤50 mg) vs doxazosin (control ≤16 mg) and 70 mL beetroot juice (Beet-It ≤11 mmol nitrate) vs nitrate-depleted juice (placebo; 0 mmol nitrate) were tested in people at risk or with type-2 diabetes using a double-blind, 6-month factorial trial. Vascular indices (baseline, 12, 24 weeks) were cardiac-ankle vascular index (CAVI), a nominally pressure-independent stiffness measure (primary outcome), PWVart secondary, central systolic pressure and augmentation. Analysis was intention-to-treat, adjusted for systolic pressure differences between trial arms. RESULTS Spironolactone did not reduce stiffness, with evidence for reduced CAVI on doxazosin rather than spironolactone (mean difference [95% confidence interval]; 0.25 [-0.3, 0.5] units, P = .080), firmer for PWVart (0.37 [0.01, 0.7] m/s, P = .045). There was no difference in systolic pressure reduction between spironolactone and doxazosin (0.7 [-4.8, 3.3] mmHg, P = .7). Circulating nitrate and nitrite increased on active vs placebo juice, with central systolic pressure lowered -2.6 [-4.5, - 0.8] mmHg, P = .007 more on the active juice, but did not reduce CAVI, PWVart or peripheral pressure. Change in nitrate and nitrite concentrations were 1.5-fold [1.1-2.2] and 2.2-fold [1.3, 3.6] higher on spironolactone than on doxazosin respectively; both P < .05. CONCLUSION Contrary to our hypothesis, in at-risk/type 2 diabetes patients, spironolactone did not reduce arterial stiffness, rather PWVart was lower on doxazosin. Dietary nitrate elevated plasma nitrite, selectively lowering central systolic pressure, observed previously for nitrite.
Collapse
Affiliation(s)
- Charlotte E. Mills
- Cardiovascular Medicine Group, Department of Nutritional SciencesSchool of Life Course SciencesKing's College LondonUK
- Biomedical Research Centre, Clinical Research Facility, 4 Floor, North Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation TrustLondonUK
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional SciencesUniversity of ReadingUK
| | - Virginia Govoni
- Cardiovascular Medicine Group, Department of Nutritional SciencesSchool of Life Course SciencesKing's College LondonUK
- Biomedical Research Centre, Clinical Research Facility, 4 Floor, North Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation TrustLondonUK
| | - Luca Faconti
- Biomedical Research Centre, Clinical Research Facility, 4 Floor, North Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation TrustLondonUK
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, Department of Clinical PharmacologyUK
| | - Maria‐Linda Casagrande
- Cardiovascular Medicine Group, Department of Nutritional SciencesSchool of Life Course SciencesKing's College LondonUK
- Biomedical Research Centre, Clinical Research Facility, 4 Floor, North Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation TrustLondonUK
| | | | - Hannah Crickmore
- Cardiovascular Medicine Group, Department of Nutritional SciencesSchool of Life Course SciencesKing's College LondonUK
| | - Fahad Iqbal
- Cardiovascular Medicine Group, Department of Nutritional SciencesSchool of Life Course SciencesKing's College LondonUK
| | - Perry Maskell
- Medicines Monitoring Unit (MEMO)University of DundeeUK
| | - Alisha Masani
- Medicines Monitoring Unit (MEMO)University of DundeeUK
| | - Elisa Nanino
- Cardiovascular Medicine Group, Department of Nutritional SciencesSchool of Life Course SciencesKing's College LondonUK
- Biomedical Research Centre, Clinical Research Facility, 4 Floor, North Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation TrustLondonUK
| | - Andrew J. Webb
- Biomedical Research Centre, Clinical Research Facility, 4 Floor, North Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation TrustLondonUK
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, Department of Clinical PharmacologyUK
| | - J. Kennedy Cruickshank
- Cardiovascular Medicine Group, Department of Nutritional SciencesSchool of Life Course SciencesKing's College LondonUK
- Biomedical Research Centre, Clinical Research Facility, 4 Floor, North Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation TrustLondonUK
| |
Collapse
|
28
|
Nutraceutical support in heart failure: a position paper of the International Lipid Expert Panel (ILEP). Nutr Res Rev 2020; 33:155-179. [PMID: 32172721 DOI: 10.1017/s0954422420000049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is a complex clinical syndrome that represents a major cause of morbidity and mortality in Western countries. Several nutraceuticals have shown interesting clinical results in HF prevention as well as in the treatment of the early stages of the disease, alone or in combination with pharmacological therapy. The aim of the present expert opinion position paper is to summarise the available clinical evidence on the role of phytochemicals in HF prevention and/or treatment that might be considered in those patients not treated optimally as well as in those with low therapy adherence. The level of evidence and the strength of recommendation of particular HF treatment options were weighed up and graded according to predefined scales. A systematic search strategy was developed to identify trials in PubMed (January 1970 to June 2019). The terms 'nutraceuticals', 'dietary supplements', 'herbal drug' and 'heart failure' or 'left verntricular dysfunction' were used in the literature search. The experts discussed and agreed on the recommendation levels. Available clinical trials reported that the intake of some nutraceuticals (hawthorn, coenzyme Q10, l-carnitine, d-ribose, carnosine, vitamin D, probiotics, n-3 PUFA and beet nitrates) might be associated with improvements in self-perceived quality of life and/or functional parameters such as left ventricular ejection fraction, stroke volume and cardiac output in HF patients, with minimal or no side effects. Those benefits tended to be greater in earlier HF stages. Available clinical evidence supports the usefulness of supplementation with some nutraceuticals to improve HF management in addition to evidence-based pharmacological therapy.
Collapse
|
29
|
Liu Y, Croft KD, Hodgson JM, Mori T, Ward NC. Mechanisms of the protective effects of nitrate and nitrite in cardiovascular and metabolic diseases. Nitric Oxide 2020; 96:35-43. [PMID: 31954804 DOI: 10.1016/j.niox.2020.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Abstract
Within the body, NO is produced by nitric oxide synthases via converting l-arginine to citrulline. Additionally, NO is also produced via the NOS-independent nitrate-nitrite-NO pathway. Unlike the classical pathway, the nitrate-nitrite-NO pathway is oxygen independent and viewed as a back-up function to ensure NO generation during ischaemia/hypoxia. Dietary nitrate and nitrite have emerged as substrates for endogenous NO generation and other bioactive nitrogen oxides with promising protective effects on cardiovascular and metabolic function. In brief, inorganic nitrate and nitrite can decrease blood pressure, protect against ischaemia-reperfusion injury, enhance endothelial function, inhibit platelet aggregation, modulate mitochondrial function and improve features of the metabolic syndrome. However, many questions regarding the specific mechanisms of these protective effects on cardiovascular and metabolic diseases remain unclear. In this review, we focus on nitrate/nitrite bioactivation, as well as the potential mechanisms for nitrate/nitrite-mediated effects on cardiovascular and metabolic diseases. Understanding how dietary nitrate and nitrite induce beneficial effect on cardiovascular and metabolic diseases could open up novel therapeutic opportunities in clinical practice.
Collapse
Affiliation(s)
- Yang Liu
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Jonathan M Hodgson
- School of Biomedical Sciences, University of Western Australia, Perth, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Trevor Mori
- Medical School, University of Western Australia, Perth, Australia
| | - Natalie C Ward
- Medical School, University of Western Australia, Perth, Australia; School of Public Health and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| |
Collapse
|
30
|
The Role of Arterial Stiffness and Central Hemodynamics in Heart Failure. ACTA ACUST UNITED AC 2020; 2:209-230. [PMID: 36262174 PMCID: PMC9536727 DOI: 10.36628/ijhf.2020.0029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Whereas traditional understanding of left ventricular afterload was focused on a steady-state circulation model with continuous pressures and flow, a more realistic concept is emerging, taking the pulsatile nature of the heart and the arterial system into account. The most simple measure of pulsatility is brachial pulse pressure, representing the pulsatility fluctuating around the mean blood pressure level. Brachial pulse pressure is widely available, fundamentally associated with the development and treatment of heart failure (HF), but its analysis is often confounded in patients with established HF. The next step of analysis consists of arterial stiffness, central (rather than brachial) pressures, and of wave reflections. The latter are closely related to left ventricular late systolic afterload, ventricular remodeling, diastolic dysfunction, exercise capacity, and, in the long term, the risk of new-onset HF. Wave reflection may also evolve as a suitable therapeutic target for HF with preserved and reduced ejection fraction. A full understanding of ventricular-arterial coupling, however, requires dedicated analysis of time-resolved pressure and flow signals. This review provides a summary of current understanding of pulsatile hemodynamics in HF.
Collapse
|
31
|
Weber T, Chirinos JA. Pulsatile arterial haemodynamics in heart failure. Eur Heart J 2019; 39:3847-3854. [PMID: 29947746 DOI: 10.1093/eurheartj/ehy346] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Due to the cyclic function of the human heart, pressure and flow in the circulation are pulsatile rather than continuous. Addressing pulsatile haemodynamics starts with the most convenient measurement, brachial pulse pressure, which is widely available, related to development and treatment of heart failure (HF), but often confounded in patients with established HF. The next level of analysis consists of central (rather than brachial) pressures and, more importantly, of wave reflections. The latter are closely related to left ventricular late systolic afterload, ventricular remodelling, diastolic dysfunction, exercise capacity, and, in the long-term, the risk of new-onset HF. Wave reflection may also represent a suitable therapeutic target. Treatments for HF with preserved and reduced ejection fraction, based on a reduction of wave reflection, are emerging. A full understanding of ventricular-arterial coupling, however, requires dedicated analysis of time-resolved pressure and flow signals, which can be readily accomplished with contemporary non-invasive imaging and modelling techniques. This review provides a summary of our current understanding of pulsatile haemodynamics in HF.
Collapse
Affiliation(s)
- Thomas Weber
- Department of Cardiology, Klinikum Wels-Grieskirchen, Austria
| | - Julio A Chirinos
- University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Fischer A, Lüersen K, Schultheiß G, de Pascual-Teresa S, Mereu A, Ipharraguerre IR, Rimbach G. Supplementation with nitrate only modestly affects lipid and glucose metabolism in genetic and dietary-induced murine models of obesity. J Clin Biochem Nutr 2019; 66:24-35. [PMID: 32001953 PMCID: PMC6983433 DOI: 10.3164/jcbn.19-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 01/07/2023] Open
Abstract
To gain a better understanding of how nitrate may affect carbohydrate and lipid metabolism, female wild-type mice were fed a high-fat, high-fructose diet supplemented with either 0, 400, or 800 mg nitrate/kg diet for 28 days. Additionally, obese female db/db mice were fed a 5% fat diet supplemented with the same levels and source of nitrate. Nitrate decreased the sodium-dependent uptake of glucose by ileal mucosa in wild-type mice. Moreover, nitrate significantly decreased triglyceride content and mRNA expression levels of Pparγ in liver and Glut4 in skeletal muscle. Oral glucose tolerance as well as plasma cholesterol, triglyceride, insulin, leptin, glucose and the activity of ALT did not significantly differ between experimental groups but was higher in db/db mice than in wild-type mice. Nitrate changed liver fatty acid composition and mRNA levels of Fads only slightly. Further hepatic genes encoding proteins involved in lipid and carbohydrate metabolism were not significantly different between the three groups. Biomarkers of inflammation and autophagy in the liver were not affected by the different dietary treatments. Overall, the present data suggest that short-term dietary supplementation with inorganic nitrate has only modest effects on carbohydrate and lipid metabolism in genetic and dietary-induced mouse models of obesity.
Collapse
Affiliation(s)
- Alexandra Fischer
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | - Gerhard Schultheiß
- Animal Welfare Officer, University of Kiel, Hermann-Rodewald-Strasse 12, 24118 Kiel, Germany
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain
| | - Alessandro Mereu
- Yara Iberian, C/ Infanta Mercedes 31 - 2nd floor, 28020 Madrid, Spain
| | - Ignacio R Ipharraguerre
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| |
Collapse
|
33
|
Senkus KE, Crowe-White KM. Influence of mouth rinse use on the enterosalivary pathway and blood pressure regulation: A systematic review. Crit Rev Food Sci Nutr 2019; 60:2874-2886. [DOI: 10.1080/10408398.2019.1665495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Katelyn E. Senkus
- Department of Human Nutrition, The University of Alabama, Tuscaloosa, Alabama, USA
| | | |
Collapse
|
34
|
Shepherd AI, Costello JT, Bailey SJ, Bishop N, Wadley AJ, Young-Min S, Gilchrist M, Mayes H, White D, Gorczynski P, Saynor ZL, Massey H, Eglin CM. "Beet" the cold: beetroot juice supplementation improves peripheral blood flow, endothelial function, and anti-inflammatory status in individuals with Raynaud's phenomenon. J Appl Physiol (1985) 2019; 127:1478-1490. [PMID: 31343948 DOI: 10.1152/japplphysiol.00292.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Raynaud's phenomenon (RP) is characterized by recurrent transient peripheral vasospasm and lower nitric oxide (NO) bioavailability in the cold. We investigated the effect of nitrate-rich beetroot juice (BJ) supplementation on 1) NO-mediated vasodilation, 2) cutaneous vascular conductance (CVC) and skin temperature (Tsk) following local cooling, and 3) systemic anti-inflammatory status. Following baseline testing, 23 individuals with RP attended four times, in a double-blind, randomized crossover design, following acute and chronic (14 days) BJ and nitrate-depleted beetroot juice (NDBJ) supplementation. Peripheral Tsk and CVC were measured during and after mild hand and foot cooling, and during transdermal delivery of acetylcholine and sodium nitroprusside. Markers of anti-inflammatory status were also measured. Plasma nitrite concentration ([nitrite]) was increased in the BJ conditions (P < 0.001). Compared with the baseline visit, thumb CVC was greater following chronic-BJ (Δ2.0 flux/mmHg, P = 0.02) and chronic-NDBJ (Δ1.45 flux/mmHg, P = 0.01) supplementation; however, no changes in Tsk were observed (P > 0.05). Plasma [interleukin-10] was greater, pan endothelin and systolic and diastolic blood pressure (BP) were reduced, and forearm endothelial function was improved, by both BJ and NDBJ supplementation (P < 0.05). Acute and chronic BJ and NDBJ supplementation improved anti-inflammatory status, endothelial function and blood pressure (BP). CVC following cooling increased post chronic-BJ and chronic-NDBJ supplementation, but no effect on Tsk was observed. The key findings are that beetroot supplementation improves thumb blood flow, improves endothelial function and anti-inflammatory status, and reduces BP in people with Raynaud's.NEW & NOTEWORTHY This is the first study to examine the effect of dietary nitrate supplementation in individuals with Raynaud's phenomenon. The principal novel findings from this study were that both beetroot juice and nitrate-depleted beetroot juice 1) increased blood flow in the thumb following a cold challenge; 2) enhanced endothelium-dependent and -independent vasodilation in the forearm; 3) reduced systolic and diastolic blood pressure, and pan-endothelin concentration; and 4) improved inflammatory status in comparison to baseline.
Collapse
Affiliation(s)
- Anthony I Shepherd
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Joseph T Costello
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Stephen J Bailey
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, United Kingdom
| | - Nicolette Bishop
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, United Kingdom.,University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, United Kingdom
| | - Alex J Wadley
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, United Kingdom.,University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, United Kingdom
| | - Steven Young-Min
- Rheumatology Department, Portsmouth Hospitals NHS Trust, Portsmouth, United Kingdom
| | - Mark Gilchrist
- University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, United Kingdom
| | - Harry Mayes
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Danny White
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Paul Gorczynski
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Zoe L Saynor
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Heather Massey
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Clare M Eglin
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
35
|
Abstract
Nitric oxide (NO) plays a plethora of important roles in the human body. Insufficient production of NO (for example, during older age and in various disease conditions) can adversely impact health and physical performance. In addition to its endogenous production through the oxidation of l-arginine, NO can be formed nonenzymatically via the reduction of nitrate and nitrite, and the storage of these anions can be augmented by the consumption of nitrate-rich foodstuffs such as green leafy vegetables. Recent studies indicate that dietary nitrate supplementation, administered most commonly in the form of beetroot juice, can ( a) improve muscle efficiency by reducing the O2 cost of submaximal exercise and thereby improve endurance exercise performance and ( b) enhance skeletal muscle contractile function and thereby improve muscle power and sprint exercise performance. This review describes the physiological mechanisms potentially responsible for these effects, outlines the circumstances in which ergogenic effects are most likely to be evident, and discusses the effects of dietary nitrate supplementation on physical performance in a range of human populations.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Christopher Thompson
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Lee J Wylie
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Anni Vanhatalo
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| |
Collapse
|
36
|
Kukadia S, Dehbi HM, Tillin T, Coady E, Chaturvedi N, Hughes AD. A Double-Blind Placebo-Controlled Crossover Study of the Effect of Beetroot Juice Containing Dietary Nitrate on Aortic and Brachial Blood Pressure Over 24 h. Front Physiol 2019; 10:47. [PMID: 30778302 PMCID: PMC6369216 DOI: 10.3389/fphys.2019.00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023] Open
Abstract
Dietary inorganic nitrate in beetroot can act as a source of nitric oxide and has been reported to lower brachial blood pressure (BP). This study examined the effect of inorganic nitrate in beetroot juice on aortic (central) BP acutely and over the subsequent 24-h period. A double blind, randomized, placebo-controlled crossover trial was performed in fifteen healthy, normotensive men and women (age 22–40 years). Participants were randomized to receive beetroot juice containing nitrate (6.5–7.3 mmol) or placebo beetroot juice from which nitrate had been removed (<0.06 mmol nitrate). Effects on aortic systolic BP were measured at 30 min (primary endpoint), 60 min and over a subsequent 24 h period using an ambulatory BP monitor. Carotid-femoral pulse wave velocity (cfPWV) was also measured at 30 min. Following a washout period, the procedure was repeated within 7 days with crossover to the opposite arm of the trial. Compared with placebo, ingestion of beetroot juice containing nitrate lowered aortic systolic BP at 30 min by 5.2 (1.9–8.5) mmHg [mean (95% confidence interval); p < 0.01]. A smaller effect on aortic systolic BP was observed at 60 min. There were minimal effects on brachial BP or cfPWV. Effects on aortic systolic BP were not sustained over the subsequent 24 h and there were no effects on other hemodynamic parameters during ambulatory monitoring. A single dose of beetroot juice containing nitrate lowers aortic BP more effectively than brachial BP in the short term, but the effects are comparatively short-lived and do not persist over the course of the same day.
Collapse
Affiliation(s)
- Suraj Kukadia
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Hakim-Moulay Dehbi
- Institute of Cardiovascular Science, University College London, London, United Kingdom.,CRUK Cancer Trials Centre, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Therese Tillin
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Emma Coady
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Nish Chaturvedi
- Institute of Cardiovascular Science, University College London, London, United Kingdom.,MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom
| | - Alun D Hughes
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.,Institute of Cardiovascular Science, University College London, London, United Kingdom.,MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom
| |
Collapse
|
37
|
Alimoradi H, Greish K, Gamble AB, Giles GI. Controlled Delivery of Nitric Oxide for Cancer Therapy. Pharm Nanotechnol 2019; 7:279-303. [PMID: 31595847 PMCID: PMC6967185 DOI: 10.2174/2211738507666190429111306] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/21/2019] [Accepted: 04/16/2019] [Indexed: 04/13/2023]
Abstract
Nitric oxide (NO) is a short-lived, endogenously produced, signaling molecule which plays multiple roles in mammalian physiology. Underproduction of NO is associated with several pathological processes; hence a broad range of NO donors have emerged as potential therapeutics for cardiovascular and respiratory disorders, wound healing, the immune response to infection, and cancer. However, short half-lives, chemical reactivity, rapid systemic clearance, and cytotoxicity have hindered the clinical development of most low molecular weight NO donors. Hence, for controlled NO delivery, there has been extensive effort to design novel NO-releasing biomaterials for tumor targeting. This review covers the effects of NO in cancer biology, NO releasing moieties which can be used for NO delivery, and current advances in the design of NO releasing biomaterials focusing on their applications for tumor therapy.
Collapse
Affiliation(s)
| | - Khaled Greish
- Address correspondence to these authors at the Department of Molecular Medicine and Nanomedicine Unit, Princess
Al-Jawhara Centre for Molecular Medicine and Inherited Disorders, College of Medicine and Medical Sciences,
Arabian Gulf University, Manama, Kingdom of Bahrain; Tel: +973 17 237 393; E-mail: and Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand; Tel: +6434797322;, E-mail:
| | | | - Gregory I. Giles
- Address correspondence to these authors at the Department of Molecular Medicine and Nanomedicine Unit, Princess
Al-Jawhara Centre for Molecular Medicine and Inherited Disorders, College of Medicine and Medical Sciences,
Arabian Gulf University, Manama, Kingdom of Bahrain; Tel: +973 17 237 393; E-mail: and Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand; Tel: +6434797322;, E-mail:
| |
Collapse
|
38
|
Faconti L, Mills CE, Govoni V, Gu H, Morant S, Jiang B, Cruickshank JK, Webb AJ. Cardiac effects of 6 months' dietary nitrate and spironolactone in patients with hypertension and with/at risk of type 2 diabetes, in the factorial design, double-blind, randomized controlled VaSera trial. Br J Clin Pharmacol 2018; 85:169-180. [PMID: 30294825 DOI: 10.1111/bcp.13783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/13/2018] [Accepted: 09/09/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS The aims of the present study were to explore whether a long-term intervention with dietary nitrate [(NO3 - ), a potential tolerance-free source of beneficial vasoactive nitric oxide] and spironolactone (to oppose aldosterone's potential deleterious cardiovascular effects) improve cardiac structure/function, independently of blood pressure (BP), in patients with/at risk of type 2 diabetes (a population at risk of heart failure). METHODS A subsample of participants in our double-blind, randomized, factorial-design intervention (VaSera) trial of active beetroot juice as a nitrate source (≤11.2 mmol) or placebo (nitrate depleted) beetroot juice, and either ≤50 mg spironolactone or ≤16 mg doxazosin (control), had transthoracic cardiac ultrasounds at baseline (n = 105), and at 3 months and 6 months (n = 87) after the start of the intervention. Analysis was by modified intent-to-treat. RESULTS Nitrate-containing juice (n = 40) decreased left ventricular (LV) end-diastolic volume {-6.3 [95% confidence interval (CI) -11.1, -1.6] ml} and end-systolic volume [-3.2 (95% CI -5.9, -0.5) ml], and increased end-diastolic mass/volume ratio [+0.04 (95% CI 0.00, 0.07)], relative to placebo juice (n = 47). Spironolactone (n = 44) reduced relative wall thickness compared with doxazosin (n = 43) [-0.01 (95% CI -0.02, -0.00)]. Although spironolactone reduced LV mass index relative to baseline [-1.48 (95% CI -2.08, -0.88) g m-2.7 ], there was no difference vs. doxazosin [-0.85 (95% CI -1.76, 0.05) g m-2.7 ]. Spironolactone also decreased the E/A ratio [-0.12 (95% CI -0.19, -0.04)] and increased S' (a tissue-Doppler systolic function index) by 0.52 (95% CI 0.05, 1.0) cm s-1 . BP did not differ between the juices, or between the drugs. CONCLUSIONS Six months' dietary nitrate decreased LV volumes ~5%, representing new, sustained, BP-independent benefits on cardiac structure, extending mechanisms characterized in preclinical models of heart failure. Spironolactone's effects on cardiac remodelling and systolic-diastolic function, although confirmatory, were independent of BP.
Collapse
Affiliation(s)
- Luca Faconti
- Department of Clinical Pharmacology, School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, London, UK.,Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Charlotte Elizabeth Mills
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Virginia Govoni
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Haotian Gu
- Department of Clinical Pharmacology, School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Steven Morant
- Medicines Monitoring Unit (MEMO), University of Dundee, Dundee, UK
| | - Benju Jiang
- Department of Clinical Pharmacology, School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - J Kennedy Cruickshank
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andrew James Webb
- Department of Clinical Pharmacology, School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
39
|
Efird JT, Jindal C, Kiser AC, Akhter SA, Crane PB, Kypson AP, Sverdlov AL, Davies SW, Kindell LC, Anderson EJ. Increased risk of atrial fibrillation among patients undergoing coronary artery bypass graft surgery while receiving nitrates and antiplatelet agents. J Int Med Res 2018; 46:3183-3194. [PMID: 29808744 PMCID: PMC6134635 DOI: 10.1177/0300060518773934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/09/2018] [Indexed: 01/13/2023] Open
Abstract
Background Postoperative atrial fibrillation (POAF) is a frequent complication of coronary artery bypass graft (CABG) surgery. This arrhythmia occurs more frequently among patients who receive perioperative inotropic therapy (PINOT). Administration of nitrates with antiplatelet agents reduces the conversion rate of cyclic guanosine monophosphate to guanosine monophosphate. This process is associated with increased concentrations of free radicals, catecholamines, and blood plasma volume. We hypothesized that patients undergoing CABG surgery who receive PINOT may be more susceptible to POAF when nitrates are administered with antiplatelet agents. Methods Clinical records were examined from a prospectively maintained cohort of 4,124 patients undergoing primary isolated CABG surgery to identify POAF-associated factors. Results POAF risk was increased among patients receiving PINOT, and the greatest effect was observed when nitrates were administered with antiplatelet therapy. Adjustment for comorbidities did not substantively change the study results. Conclusions Administration of nitrates with certain antiplatelet agents was associated with an increased POAF risk among patients undergoing CABG surgery. Additional studies are needed to determine whether preventive strategies such as administration of antioxidants will reduce this risk.
Collapse
Affiliation(s)
- Jimmy T. Efird
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Charulata Jindal
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Andy C. Kiser
- Department of Cardiovascular Sciences, Brody School of Medicine, Greenville, NC, USA
| | - Shahab A. Akhter
- Department of Cardiovascular Sciences, Brody School of Medicine, Greenville, NC, USA
| | - Patricia B. Crane
- Office of the Dean, College of Nursing, East Carolina University, Greenville, NC, USA
| | - Alan P. Kypson
- Cardiac Surgical Specialists, REX Health Care, University of North Carolina, Raleigh, NC, USA
| | - Aaron L. Sverdlov
- Priority Clinical Centre for Cardiovascular Health, School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Stephen W. Davies
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Linda C. Kindell
- Department of Cardiovascular Sciences, Brody School of Medicine, Greenville, NC, USA
| | - Ethan J. Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
40
|
McDonagh STJ, Wylie LJ, Thompson C, Vanhatalo A, Jones AM. Potential benefits of dietary nitrate ingestion in healthy and clinical populations: A brief review. Eur J Sport Sci 2018. [PMID: 29529987 DOI: 10.1080/17461391.2018.1445298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article provides an overview of the current literature relating to the efficacy of dietary nitrate (NO3-) ingestion in altering aspects of cardiovascular and metabolic health and exercise capacity in healthy and diseased individuals. The consumption of NO3--rich vegetables, such as spinach and beetroot, have been variously shown to promote nitric oxide bioavailability, reduce systemic blood pressure, enhance tissue blood flow, modulate muscle O2 utilisation and improve exercise tolerance both in normoxia and in hypoxia, as is commonly observed in a number of disease states. NO3- ingestion may, therefore, act as a natural means for augmenting performance and attenuating complications associated with limited O2 availability or transport, hypertension and the metabolic syndrome. Recent studies indicate that dietary NO3- might also augment intrinsic skeletal muscle contractility and improve the speed and power of muscle contraction. Moreover, several investigations suggest that NO3- supplementation may improve aspects of cognitive performance both at rest and during exercise. Collectively, these observations position NO3- as more than a putative ergogenic aid and suggest that increasing natural dietary NO3- intake may act as a prophylactic in countering the predations of senescence and certain cardiovascular-metabolic diseases.
Collapse
Affiliation(s)
- Sinead T J McDonagh
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Lee J Wylie
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Christopher Thompson
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Anni Vanhatalo
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Andrew M Jones
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| |
Collapse
|
41
|
Chirinos JA. The Nitrate-Nitrite-NO Pathway as a Novel Therapeutic Target in Heart Failure with Reduced Ejection Fraction. J Card Fail 2018; 24:74-77. [DOI: 10.1016/j.cardfail.2017.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 11/26/2022]
|
42
|
The novel organic mononitrate NDHP attenuates hypertension and endothelial dysfunction in hypertensive rats. Redox Biol 2017; 15:182-191. [PMID: 29268201 PMCID: PMC5735329 DOI: 10.1016/j.redox.2017.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 01/13/2023] Open
Abstract
Rationale Development and progression of cardiovascular diseases, including hypertension, are often associated with impaired nitric oxide synthase (NOS) function and nitric oxide (NO) deficiency. Current treatment strategies to restore NO bioavailability with organic nitrates are hampered by undesirable side effects and development of tolerance. In this study, we evaluated NO release capability and cardiovascular effects of the newly synthesized organic nitrate 1, 3-bis (hexyloxy) propan-2-yl nitrate (NDHP). Methods A combination of in vitro and in vivo approaches was utilized to assess acute effects of NDHP on NO release, vascular reactivity and blood pressure. The therapeutic value of chronic NDHP treatment was assessed in an experimental model of angiotensin II-induced hypertension in combination with NOS inhibition. Results NDHP mediates NO formation in both cell-free system and small resistance arteries, a process which is catalyzed by xanthine oxidoreductase. NDHP-induced vasorelaxation is endothelium independent and mediated by NO release and modulation of potassium channels. Reduction of blood pressure following acute intravenous infusion of NDHP was more pronounced in hypertensive rats (two-kidney-one-clip model) than in normotensive sham-operated rats. Toxicological tests did not reveal any harmful effects following treatment with high doses of NDHP. Finally, chronic treatment with NDHP significantly attenuated the development of hypertension and endothelial dysfunction in rats with chronic NOS inhibition and angiotensin II infusion. Conclusion Acute treatment with the novel organic nitrate NDHP increases NO formation, which is associated with vasorelaxation and a significant reduction of blood pressure in hypertensive animals. Chronic NDHP treatment attenuates the progression of hypertension and endothelial dysfunction, suggesting a potential for therapeutic applications in cardiovascular disease. The organic nitrate NDHP mediates NO formation in cell-free system and blood vessels. NDHP-mediated NO release is dependent on functional XOR. NDHP induces endothelium-independent vasorelaxation and significant reduction of blood pressure. NDHP-mediated vasorelaxation involves activation of NO/cGMP/PKG pathway and K+ channels (Kv and BKCa). Chronic treatment with NDHP attenuates the development of hypertension and endothelial dysfunction.
Collapse
|
43
|
Eglin CM, Costello JT, Bailey SJ, Gilchrist M, Massey H, Shepherd AI. Effects of dietary nitrate supplementation on the response to extremity cooling and endothelial function in individuals with cold sensitivity. A double blind, placebo controlled, crossover, randomised control trial. Nitric Oxide 2017; 70:76-85. [PMID: 28941934 DOI: 10.1016/j.niox.2017.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/09/2023]
Abstract
Individuals with cold sensitivity have low peripheral skin blood flow and skin temperature possibly due to reduced nitric oxide (NO•) bioavailability. Beetroot has a high concentration of inorganic nitrate and may increase NO-mediated vasodilation. Using a placebo-controlled, double blind, randomised, crossover design, this study tested the hypotheses that acute beetroot supplementation would increase the rate of cutaneous rewarming following a local cold challenge and augment endothelium-dependent vasodilation in cold sensitive individuals. Thirteen cold sensitive participants completed foot and hand cooling (separately, in 15 °C water for 2 min) with spontaneous rewarming in 30 °C air whilst skin temperature and cutaneous vascular conductance (CVC) were measured (Baseline). On two further separate visits, participants consumed 140 ml of either concentrated beetroot juice (nitrate supplementation) or nitrate-depleted beetroot juice (Placebo) 90 min before resting seated blood pressure was measured. Endothelial function was assessed by measuring CVC at the forearm, finger and foot during iontophoresis of 1% w/v acetylcholine followed by foot and hand cooling as for Baseline. Plasma nitrite concentrations significantly increased in nitrate supplementation compared to Placebo and Baseline (502 ± 246 nmol L-1; 73 ± 45 nmol L-1; 74 ± 49 nmol L-1 respectively; n = 11; P < 0.001). Resting blood pressure and the response to foot and hand cooling did not differ between conditions (all P > 0.05). Nitrate supplementation did not alter endothelial function in the forearm, finger or foot (all P > 0.05) compared to Placebo. Despite a physiologically meaningful rise in plasma nitrite concentrations, acute nitrate supplementation does not alter extremity rewarming, endothelial function or blood pressure in individuals with cold sensitivity.
Collapse
Affiliation(s)
- Clare M Eglin
- Department of Sport and Exercise Science, University of Portsmouth, UK
| | - Joseph T Costello
- Department of Sport and Exercise Science, University of Portsmouth, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mark Gilchrist
- University of Exeter Medical School, NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, UK
| | - Heather Massey
- Department of Sport and Exercise Science, University of Portsmouth, UK
| | | |
Collapse
|
44
|
Arlt J, Wei W, Xie C, Homeyer A, Settmacher U, Dahmen U, Dirsch O. Modulation of hepatic perfusion did not improve recovery from hepatic outflow obstruction. BMC Pharmacol Toxicol 2017; 18:50. [PMID: 28651622 PMCID: PMC5485608 DOI: 10.1186/s40360-017-0155-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023] Open
Abstract
Background Focal hepatic venous outflow obstruction frequently occurs after extended liver resection and leads to a portal hypertension, arterial hypoperfusion and parenchymal necrosis. In this study, we investigated the pharmacological modulation of liver perfusion and hepatic damage in a surgical model of hepatic outflow obstruction after extended liver resection by administration of 5 different drugs in comparison to an operative intervention, splenectomy. Methods Male inbred Lewis rats (Lew/Crl) were subjected to right median hepatic vein ligation + 70% partial hepatectomy. Treatment consisted of a splenectomy or the application of saline, carvedilol or isosorbide-5-mononitrate (ISMN) (5 mg · kg−1 respectively 7,2 mg · kg−1 per gavage 12 h−1). The splenectomy was performed during operation. The effect of the treatments on hepatic hemodynamics were measured in non-operated animals, immediately after operation (n = 4/group) and 24 h after operation (n = 5/group). Assessment of hepatic damage (liver enzymes, histology) and liver cell proliferation (BrdU-immunohistochemistry) was performed 24 h after operation. Furthermore sildenafil (10 μg · kg−1 i.p. 12h−1), terlipressin (0.05 mg · kg−1 i.v. 12 h−1) and octreotide (10 μg · kg−1 s.c. 12 h−1) were investigated regarding their effect on hepatic hemodynamics and hepatic damage 24 h after operation (n = 4/group). Results Carvedilol and ISMN significantly decreased the portal pressure in normal non-operated rats from 11,1 ± 1,1 mmHg (normal rats) to 8,4 ± 0,3 mmHg (carvedilol) respectively 7,4 ± 1,8 mmHg (ISMN). ISMN substantially reduced surgery-induced portal hypertension from 15,4 ± 4,4 mmHg to 9,6 ± 2,3 mmHg. Only splenectomy reduced the portal flow immediately after operation by approximately 25%. No treatment had an immediate effect on the hepatic arterial perfusion. In all treatment groups, portal flow increased by approximately 3-fold within 24 h after operation, whereas hepatic arterial flow decreased substantially. Neither treatment reduced hepatic damage as assessed 24 h after operation. The distribution of proliferating cells appeared very similar in all drug treated groups and the splenectomy group. Conclusion Transient relative reduction of portal pressure did not result in a reduction of hepatic damage. This might be explained by the development of portal hyperperfusion which was accompanied by arterial hypoperfusion. Electronic supplementary material The online version of this article (doi:10.1186/s40360-017-0155-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Arlt
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Drackendorfer Str. 1, 07747, Jena, Germany
| | - W Wei
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Drackendorfer Str. 1, 07747, Jena, Germany
| | - C Xie
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Drackendorfer Str. 1, 07747, Jena, Germany
| | - A Homeyer
- Fraunhofer Institute for Medical Image Computing MEVIS, Universitätsallee 29, 28359, Bremen, Germany
| | - U Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
| | - U Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Drackendorfer Str. 1, 07747, Jena, Germany.
| | - O Dirsch
- Institute of Pathology, Klinikum Chemnitz, Flemmingstraße 2, 09116, Chemnitz, Germany
| |
Collapse
|
45
|
Abstract
AbstractCVD is the leading cause of death worldwide, a consequence of mostly poor lifestyle and dietary behaviours. Although whole fruit and vegetable consumption has been consistently shown to reduce CVD risk, the exact protective constituents of these foods are yet to be clearly identified. A recent and biologically plausible hypothesis supporting the cardioprotective effects of vegetables has been linked to their inorganic nitrate content. Approximately 60–80 % inorganic nitrate exposure in the human diet is contributed by vegetable consumption. Although inorganic nitrate is a relatively stable molecule, under specific conditions it can be metabolised in the body to produce NO via the newly discovered nitrate–nitrite–NO pathway. NO is a major signalling molecule in the human body, and has a key role in maintaining vascular tone, smooth muscle cell proliferation, platelet activity and inflammation. Currently, there is accumulating evidence demonstrating that inorganic nitrate can lead to lower blood pressure and improved vascular compliance in humans. The aim of this review is to present an informative, balanced and critical review of the current evidence investigating the role of inorganic nitrate and nitrite in the development, prevention and/or treatment of CVD. Although there is evidence supporting short-term inorganic nitrate intakes for reduced blood pressure, there is a severe lack of research examining the role of long-term nitrate intakes in the treatment and/or prevention of hard CVD outcomes, such as myocardial infarction and cardiovascular mortality. Epidemiological evidence is needed in this field to justify continued research efforts.
Collapse
|
46
|
Zhuge Z, Paulo LL, Jahandideh A, Brandão MCR, Athayde-Filho PF, Lundberg JO, Braga VA, Carlström M, Montenegro MF. Synthesis and characterization of a novel organic nitrate NDHP: Role of xanthine oxidoreductase-mediated nitric oxide formation. Redox Biol 2017; 13:163-169. [PMID: 28578274 PMCID: PMC5458096 DOI: 10.1016/j.redox.2017.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/15/2017] [Accepted: 05/23/2017] [Indexed: 12/25/2022] Open
Abstract
In this report, we describe the synthesis and characterization of 1,3-bis(hexyloxy)propan-2-yl nitrate (NDHP), a novel organic mono nitrate. Using purified xanthine oxidoreductase (XOR), chemiluminescence and electron paramagnetic resonance (EPR) spectroscopy, we found that XOR catalyzes nitric oxide (NO) generation from NDHP under anaerobic conditions, and that thiols are not involved or required in this process. Further mechanistic studies revealed that NDHP could be reduced to NO at both the FAD and the molybdenum sites of XOR, but that the FAD site required an unoccupied molybdenum site. Conversely, the molybdenum site was able to reduce NDHP independently of an active FAD site. Moreover, using isolated vessels in a myograph, we demonstrate that NDHP dilates pre-constricted mesenteric arteries from rats and mice. These effects were diminished when XOR was blocked using the selective inhibitor febuxostat. Finally, we demonstrate that NDHP, in contrast to glyceryl trinitrate (GTN), is not subject to development of tolerance in isolated mesenteric arteries.
Collapse
Affiliation(s)
- Zhengbing Zhuge
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Luciano L Paulo
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Arghavan Jahandideh
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria C R Brandão
- Department of Chemistry, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Jon O Lundberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Valdir A Braga
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Mattias Carlström
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
47
|
Chirinos JA, Londono-Hoyos F, Zamani P, Beraun M, Haines P, Vasim I, Varakantam S, Phan TS, Cappola TP, Margulies KB, Townsend RR, Segers P. Effects of organic and inorganic nitrate on aortic and carotid haemodynamics in heart failure with preserved ejection fraction. Eur J Heart Fail 2017; 19:1507-1515. [PMID: 28547861 DOI: 10.1002/ejhf.885] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 01/23/2023] Open
Abstract
AIMS To assess the haemodynamic effects of organic vs. inorganic nitrate administration among patients with heart failure with preserved ejection fraction (HFpEF). METHODS AND RESULTS We assessed carotid and aortic pressure-flow relations non-invasively before and after the administration of 0.4 mg of sublingual nitroglycerin (n = 26), and in a separate sub-study, in response to 12.9 mmoL of inorganic nitrate (n = 16). Nitroglycerin did not consistently reduce wave reflections arriving at the proximal aorta (change in real part of reflection coefficient, 1st harmonic: -0.09; P = 0.01; 2nd harmonic: -0.045, P = 0.16; 3rd harmonic: +0.087; P = 0.05), but produced profound vasodilatation in the carotid territory, with a significant reduction in systolic blood pressure (133.6 vs. 120.5 mmHg; P = 0.011) and a marked reduction in carotid bed vascular resistance (19 580 vs. 13 078 dynes · s/cm5 ; P = 0.001) and carotid characteristic impedance (3440 vs. 1923 dynes · s/cm5 ; P = 0.002). Inorganic nitrate, in contrast, consistently reduced wave reflections across the first three harmonics (change in real part of reflection coefficient, 1st harmonic: -0.12; P = 0.03; 2nd harmonic: -0.11, P = 0.01; 3rd harmonic: -0.087; P = 0.09) and did not reduce blood pressure, carotid bed vascular resistance, or carotid characteristic impedance (P = NS). CONCLUSIONS Nitroglycerin produces marked vasodilatation in the carotid circulation, with a pronounced reduction in blood pressure and inconsistent effects on central wave reflections. Inorganic nitrate, in contrast, produces consistent reductions in wave reflections, and unlike nitroglycerin, it does so without significant hypotension or cerebrovascular dilatation. These haemodynamic differences may underlie the different effects on exercise capacity and side effect profile of inorganic vs. organic nitrate in HFpEF.
Collapse
Affiliation(s)
- Julio A Chirinos
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Francisco Londono-Hoyos
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Institute of Biomedical Technology, Ghent University, Ghent, Belgium
| | - Payman Zamani
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Melissa Beraun
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Haines
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Izzah Vasim
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Swapna Varakantam
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Timothy S Phan
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas P Cappola
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Raymond R Townsend
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Segers
- Institute of Biomedical Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
48
|
Conley MN, Roberts C, Sharpton TJ, Iwaniec UT, Hord NG. Increasing dietary nitrate has no effect on cancellous bone loss or fecal microbiome in ovariectomized rats. Mol Nutr Food Res 2017; 61:1600372. [PMID: 28087899 PMCID: PMC5434898 DOI: 10.1002/mnfr.201600372] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 01/05/2023]
Abstract
SCOPE Studies suggest diets rich in fruit and vegetables reduce bone loss, although the specific compounds responsible are unknown. Substrates for endogenous nitric oxide (NO) production, including organic nitrates and dietary nitrate, may support NO production in age-related conditions, including osteoporosis. We investigated the capability of dietary nitrate to improve NO bioavailability, reduce bone turnover and loss. METHODS AND RESULTS Six-month-old Sprague Dawley rats [30 ovariectomized (OVX) and 10 sham-operated (sham)] were randomized into three groups: (i) vehicle (water) control, (ii) low-dose nitrate (LDN, 0.1 mmol nitrate/kg bw/day), or (iii) high-dose nitrate (HDN, 1.0 mmol nitrate/kg bw/day) for three weeks. The sham received vehicle. Serum bone turnover markers; bone mass, mineral density, and quality; histomorphometric parameters; and fecal microbiome were examined. Three weeks of LDN or HDN improved NO bioavailability in a dose-dependent manner. OVX resulted in cancellous bone loss, increased bone turnover, and fecal microbiome changes. OVX increased relative abundances of Firmicutes and decreased Bacteroideceae and Alcaligenaceae. Nitrate did not affect the skeleton or fecal microbiome. CONCLUSION These data indicate that OVX affects the fecal microbiome and that the gut microbiome is associated with bone mass. Three weeks of nitrate supplementation does not slow bone loss or alter the fecal microbiome in OVX.
Collapse
Affiliation(s)
- Melissa N. Conley
- School of Biological and Population Health SciencesCollege of Public Health and Human SciencesOregon State UniversityCorvallisORUSA
- Center for Healthy Aging ResearchOregon State UniversityCorvallisORUSA
| | - Cooper Roberts
- School of Biological and Population Health SciencesCollege of Public Health and Human SciencesOregon State UniversityCorvallisORUSA
| | - Thomas J. Sharpton
- Center for Healthy Aging ResearchOregon State UniversityCorvallisORUSA
- Departments of Microbiology and StatisticsCollege of ScienceOregon State UniversityCorvallisORUSA
| | - Urszula T. Iwaniec
- Center for Healthy Aging ResearchOregon State UniversityCorvallisORUSA
- Skeletal Biology LaboratorySchool of Biological and Population Health SciencesOregon State UniversityCorvallisORUSA
| | - Norman G. Hord
- School of Biological and Population Health SciencesCollege of Public Health and Human SciencesOregon State UniversityCorvallisORUSA
- Center for Healthy Aging ResearchOregon State UniversityCorvallisORUSA
| |
Collapse
|
49
|
Nair A, Khan S, Omar S, Pei XQ, McNeill K, Chowienczyk P, Webb AJ. Remote ischaemic preconditioning suppresses endogenous plasma nitrite during ischaemia-reperfusion: a randomized controlled crossover pilot study. Br J Clin Pharmacol 2017; 83:1416-1423. [PMID: 28074482 DOI: 10.1111/bcp.13231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/23/2016] [Accepted: 12/18/2016] [Indexed: 01/16/2023] Open
Abstract
AIM The aim of this article is to test the hypothesis that remote ischaemic preconditioning (RIPC) increases circulating endogenous local and systemic plasma (nitrite) during RIPC and ischaemia-reperfusion (IR) as a potential protective mechanism against ischaemia-reperfusion injury (IRI). METHODS Six healthy male volunteers (mean age 29.5 ± 7.6 years) were randomized in a crossover study to initially receive either RIPC (4 × 5 min cycles) to the left arm, or no RIPC (control), both followed by an ischaemia-reperfusion (IR) sequence (20 min cuff inflation to 200 mmHg, 20 min reperfusion) to the right arm. The volunteers returned at least 7 days later for the alternate intervention. The primary outcome was the effect of RIPC vs. control on local and systemic plasma (nitrite). RESULTS RIPC did not significantly change plasma (nitrite) in either the left or the right arm during the RIPC sequence. However, compared to control, RIPC decreased plasma (nitrite) during the subsequent IR sequence by ~26% (from 118 ± 9 to 87 ± 5 nmol l-1 ) locally in the left arm (P = 0.008) overall, with an independent effect of -58.70 nmol l-1 (95% confidence intervals -116.1 to -1.33) at 15 min reperfusion, and by ~24% (from 109 ± 9 to 83 ± 7 nmol l-1 ) systemically in the right arm (P = 0.03). CONCLUSIONS RIPC had no effect on plasma (nitrite) during the RIPC sequence, but instead decreased plasma (nitrite) by ~25% during IR. This would likely counteract the protective mechanisms of RIPC, and contribute to RIPC's lack of efficacy, as observed in recent clinical trials. A combined approach of RIPC with nitrite administration may be required.
Collapse
Affiliation(s)
- Ashok Nair
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust, London, UK.,Department of Anaesthetics, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Sitara Khan
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Sami Omar
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Xiao-Qing Pei
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust, London, UK.,Ultrasound Department, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China
| | - Karen McNeill
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Phil Chowienczyk
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Andrew James Webb
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
50
|
Gassara F, Kouassi AP, Brar SK, Belkacemi K. Green Alternatives to Nitrates and Nitrites in Meat-based Products-A Review. Crit Rev Food Sci Nutr 2017; 56:2133-48. [PMID: 25750989 DOI: 10.1080/10408398.2013.812610] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several food additives are added in food for their preservation to maintain the freshness of food (antioxidants) or to slow down or stop the growth of microorganisms (preservative agents). Nitrites and nitrates are used as preservative agents in meat. Nitrites give a smoked taste, a pinkish color in the meat and protect the consumers against the risk of bacterial deterioration. Their addition is however very limited as, in high dose, it can have risks on human health and the environment. Nitrites may also combine with secondary or tertiary amines to form N-nitroso derivatives. Certain N-nitroso compounds have been shown to produce cancers in a wide range of laboratory animals. Thus, alternatives of nitrates and nitrites are the object of numerous research studies. Alternatives, such as the addition of vitamins, fruits, chemicals products, natural products containing nitrite or spices, which have similar properties of nitrites, are in evaluation. In fact, spices are considered to have several organoleptic and anti-microbial properties which would be interesting to study. Several spices and combinations of spices are being progressively evaluated. This review discusses the sources of nitrites and nitrates, their use as additives in food products, their physicochemical properties, their negatives effects and the use of alternatives of nitrites and nitrates in preserving meat products.
Collapse
Affiliation(s)
- Fatma Gassara
- a Institut National de la Recherche Scientifique Centre Eau, Terre & Environnement Centre for Water, Earth and Environmen , Quebec , Quebec , Canada
| | - Anne Patricia Kouassi
- b Département des sols et de Génie Agroalimentaire , Pavillon Paul-Comtois, Université Laval , Quebec , Quebec , Canada
| | - Satinder Kaur Brar
- a Institut National de la Recherche Scientifique Centre Eau, Terre & Environnement Centre for Water, Earth and Environmen , Quebec , Quebec , Canada
| | - Khaled Belkacemi
- c Faculté des Sciences de L'agriculture et de L'alimentation Sces Agriculture et Alimentation, Dép. sols et Génie Agroalimentaire , Quebec , Quebec , Canada
| |
Collapse
|