1
|
Alan-Albayrak E, Pinilla E, Comerma-Steffensen S, Erac Y, Yetik-Anacak G, Simonsen U, Sevin G. Osthole improves erectile function by increasing endogenous H 2S production. Eur J Pharmacol 2025; 997:177619. [PMID: 40220979 DOI: 10.1016/j.ejphar.2025.177619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/27/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Phosphodiesterase type-5 inhibitors, first-line treatments for erectile dysfunction (ED), are insufficient in 30-40 % of patients, highlighting an unmet therapeutic need. Hydrogen sulfide (H2S) compensates for NO deficiency and improves erectile function. We hypothesized that H2S contributes to the smooth muscle relaxation in penile arteries and erectile tissue induced by osthole. METHODS We investigated the effects of osthole on H2S-producing enzyme expression and H2S production in murine erectile tissues by Western blot and H2S microsensor experiments. To evaluate the role of H2S in osthole-induced relaxations, myography was conducted on mouse corpus cavernosum (MCC) and rat pudendal artery (RPA). While monitoring vascular responses, endogenous H2S production was simultaneously measured by an H2S microsensor inserted in the RPA lumen. Intracavernosal pressure was measured in anesthetized rats to evaluate the effect of osthole on erectile function. RESULTS Osthole induced relaxation by increasing H2S synthesis and enhancing the expression of H2S-producing enzymes, as well as promoting H2S formation in murine erectile tissues. Osthole relaxed RPA while simultaneously increasing H2S levels in the arterial lumen. Osthole also amplified L-cysteine- and Na2S-induced relaxations and increased luminal H2S levels. Additionally, osthole increased endothelium-dependent and independent relaxations by inducing H2S synthesis. Osthole improved erection by facilitating erectile responses in rats. CONCLUSION Our novel approach, based on simultaneous measurements of endogenous H2S production in the arterial lumen and vascular contractility, suggests that H2S contributes to osthole-induced relaxation of penile tissue, proposing that osthole may be a promising drug candidate for treating ED, particularly when caused by endothelial dysfunction.
Collapse
Affiliation(s)
- Elif Alan-Albayrak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Türkiye; Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.
| | - Estéfano Pinilla
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.
| | - Simon Comerma-Steffensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark; Department of Biomedical Sciences/Animal Physiology, Central University of Venezuela, Venezuela.
| | - Yasemin Erac
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Türkiye.
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye.
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.
| | - Gulnur Sevin
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Türkiye.
| |
Collapse
|
2
|
Lee HG, Nagahawatta D, Liyanage N, Choe YR, Oh JY, Jung WK, Park SH, Jeon YJ, Kim HS. Potential blood pressure regulatory effect of low molecular weight α-chymotrypsin extract and its peptides from Stichopus japonicus: Peptide-ACE interaction study via in silico molecular docking. J Funct Foods 2024; 123:106551. [DOI: 10.1016/j.jff.2024.106551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
3
|
Pilsova A, Pilsova Z, Klusackova B, Zelenkova N, Chmelikova E, Postlerova P, Sedmikova M. Hydrogen sulfide and its role in female reproduction. Front Vet Sci 2024; 11:1378435. [PMID: 38933705 PMCID: PMC11202402 DOI: 10.3389/fvets.2024.1378435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule produced in the body by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). H2S is crucial in various physiological processes associated with female mammalian reproduction. These include estrus cycle, oocyte maturation, oocyte aging, ovulation, embryo transport and early embryo development, the development of the placenta and fetal membranes, pregnancy, and the initiation of labor. Despite the confirmed presence of H2S-producing enzymes in all female reproductive tissues, as described in this review, the exact mechanisms of H2S action in these tissues remain in most cases unclear. Therefore, this review aims to summarize the knowledge about the presence and effects of H2S in these tissues and outline possible signaling pathways that mediate these effects. Understanding these pathways may lead to the development of new therapeutic strategies in the field of women's health and perinatal medicine.
Collapse
Affiliation(s)
- Aneta Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | | | | | | | | | | | | |
Collapse
|
4
|
Song Y, Mao C, Zhong Q, Zhang R, Jiang D, Sun X. Role of hydrogen sulfide in the male reproductive system. Front Endocrinol (Lausanne) 2024; 15:1377090. [PMID: 38883604 PMCID: PMC11177757 DOI: 10.3389/fendo.2024.1377090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
As an important gas signaling molecule, hydrogen sulfide (H2S) affects multiple organ systems, including the nervous, cardiovascular, digestive, and genitourinary, reproductive systems. In particular, H2S not only regulates female reproductive function but also holds great promise in the treatment of male reproductive diseases and disorders, such as erectile dysfunction, prostate cancer, varicocele, and infertility. In this review, we summarize the relationship between H2S and male reproductive organs, including the penis, testis, prostate, vas deferens, and epididymis. As lower urinary tract symptoms have a significant impact on penile erection disorders, we also address the potential ameliorative effects of H2S in erectile dysfunction resulting from bladder disease. Additionally, we discuss the regulatory role of H2S in cavernous smooth muscle relaxation, which involves the NO/cGMP pathway, the RhoA/Rho-kinase pathway, and K+ channel activation. Recently, various compounds that can alleviate erectile dysfunction have been reported to be at least partly dependent on H2S. Therefore, understanding the role of H2S in the male reproductive system may help develop novel strategies for the clinical treatment of male reproductive system diseases.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Deyou Jiang
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xutao Sun
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Sun X, Mao C, Xie Y, Zhong Q, Zhang R, Jiang D, Song Y. Therapeutic Potential of Hydrogen Sulfide in Reproductive System Disorders. Biomolecules 2024; 14:540. [PMID: 38785947 PMCID: PMC11117696 DOI: 10.3390/biom14050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Hydrogen sulfide (H2S), previously regarded as a toxic exhaust and atmospheric pollutant, has emerged as the third gaseous signaling molecule following nitric oxide (NO) and carbon monoxide (CO). Recent research has revealed significant biological effects of H2S in a variety of systems, such as the nervous, cardiovascular, and digestive systems. Additionally, H2S has been found to impact reproductive system function and may have therapeutic implications for reproductive disorders. This paper explores the relationship between H2S and male reproductive disorders, specifically erectile dysfunction, prostate cancer, male infertility, and testicular damage. Additionally, it examines the impact of H2S regulation on the pathophysiology of the female reproductive system, including improvements in preterm birth, endometriosis, pre-eclampsia, fetal growth restriction, unexplained recurrent spontaneous abortion, placental oxidative damage, embryo implantation, recovery of myometrium post-delivery, and ovulation. The study delves into the regulatory functions of H2S within the reproductive systems of both genders, including its impact on the NO/cGMP pathway, the activation of K+ channels, and the relaxation mechanism of the spongy smooth muscle through the ROCK pathway, aiming to broaden the scope of potential therapeutic strategies for treating reproductive system disorders in clinical settings.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Ying Xie
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Qing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Deyou Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| |
Collapse
|
6
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
7
|
Chen H, Li K, Qin Y, Zhou J, Li T, Qian L, Yang C, Ji X, Wu D. Recent advances in the role of endogenous hydrogen sulphide in cancer cells. Cell Prolif 2023; 56:e13449. [PMID: 36929586 PMCID: PMC10472536 DOI: 10.1111/cpr.13449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Hydrogen sulphide (H2 S) is a gaseous neurotransmitter that can be self-synthesized by living organisms. With the deepening of research, the pathophysiological mechanisms of endogenous H2 S in cancer have been increasingly elucidated: (1) promote angiogenesis, (2) stimulate cell bioenergetics, (3) promote migration and proliferation thereby invasion, (4) inhibit apoptosis and (5) activate abnormal cell cycle. However, the increasing H2 S levels via exogenous sources show the opposite trend. This phenomenon can be explained by the bell-shaped pharmacological model of H2 S, that is, the production of endogenous (low concentration) H2 S promotes tumour growth while the exogenous (high concentration) H2 S inhibits tumour growth. Here, we review the impact of endogenous H2 S synthesis and metabolism on tumour progression, summarize the mechanism of action of H2 S in tumour growth, and discuss the possibility of H2 S as a potential target for tumour treatment.
Collapse
Affiliation(s)
- Hao‐Jie Chen
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Ke Li
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Yang‐Zhe Qin
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Jing‐Jing Zhou
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Tao Li
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Lei Qian
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Chang‐Yong Yang
- School of Nursing and HealthHenan UniversityKaifengHenan475004China
| | - Xin‐Ying Ji
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
| | - Dong‐Dong Wu
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
- School of StomatologyHenan UniversityKaifengHenan475004China
| |
Collapse
|
8
|
Kei CY, Singh K, Dautov RF, Nguyen TH, Chirkov YY, Horowitz JD. Coronary "Microvascular Dysfunction": Evolving Understanding of Pathophysiology, Clinical Implications, and Potential Therapeutics. Int J Mol Sci 2023; 24:11287. [PMID: 37511046 PMCID: PMC10379859 DOI: 10.3390/ijms241411287] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Until recently, it has been generally held that stable angina pectoris (SAP) primarily reflects the presence of epicardial coronary artery stenoses due to atheromatous plaque(s), while acute myocardial infarction (AMI) results from thrombus formation on ruptured plaques. This concept is now challenged, especially by results of the ORBITA and ISCHEMIA trials, which showed that angioplasty/stenting does not substantially relieve SAP symptoms or prevent AMI or death in such patients. These disappointing outcomes serve to redirect attention towards anomalies of small coronary physiology. Recent studies suggest that coronary microvasculature is often both structurally and physiologically abnormal irrespective of the presence or absence of large coronary artery stenoses. Structural remodelling of the coronary microvasculature appears to be induced primarily by inflammation initiated by mast cell, platelet, and neutrophil activation, leading to erosion of the endothelial glycocalyx. This leads to the disruption of laminar flow and the facilitation of endothelial platelet interaction. Glycocalyx shedding has been implicated in the pathophysiology of coronary artery spasm, cardiovascular ageing, AMI, and viral vasculitis. Physiological dysfunction is closely linked to structural remodelling and occurs in most patients with myocardial ischemia, irrespective of the presence or absence of large-vessel stenoses. Dysfunction includes the impairment of platelet and vascular responsiveness to autocidal coronary vasodilators, such as nitric oxide, prostacyclin, and hydrogen sulphide, and predisposes both to coronary vasoconstriction and to a propensity for microthrombus formation. These findings emphasise the need for new directions in medical therapeutics for patients with SAP, as well as a wide range of other cardiovascular disorders.
Collapse
Affiliation(s)
- Chun Yeung Kei
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia; (C.Y.K.); (T.H.N.); (Y.Y.C.)
| | - Kuljit Singh
- Department of Medicine, Griffith University, Southport 4111, Australia;
- Gold Coast University Hospital, Gold Coast 4215, Australia
| | - Rustem F. Dautov
- Department of Medicine, University of Queensland, Woolloongabba 4102, Australia;
- Prince Charles Hospital, Brisbane 4032, Australia
| | - Thanh H. Nguyen
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia; (C.Y.K.); (T.H.N.); (Y.Y.C.)
- Northern Adelaide Local Health Network, Adelaide 5000, Australia
| | - Yuliy Y. Chirkov
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia; (C.Y.K.); (T.H.N.); (Y.Y.C.)
- Basil Hetzel Institute for Translational Research, Adelaide 5011, Australia
| | - John D. Horowitz
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia; (C.Y.K.); (T.H.N.); (Y.Y.C.)
- Basil Hetzel Institute for Translational Research, Adelaide 5011, Australia
| |
Collapse
|
9
|
Alan E, Albayrak G, Sevin G, Yetik-Anacak G, Baykan S. Relaxation mechanisms of chloroform root extracts of Prangos heyniae and Prangos uechtritzii on mouse corpus cavernosum. Andrologia 2022; 54:e14604. [PMID: 36163644 DOI: 10.1111/and.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Erectile dysfunction (ED) is the inability to achieve/maintain an erection. Because of the side effects, interactions, or ineffectiveness of currently used drugs, novel drug discovery studies are ongoing. The roots of Turkish endemic plants Prangos uechtritzii and Prangos heyniae are traditionally used as aphrodisiacs in Anatolia and contain coumarin-like relaxant compounds. This study aims to reveal the relaxant effect mechanisms of chloroform root extracts of P. heyniae (Ph-CE) and P. uechtritzii (Pu-CE). Isolated organ bath experiments were performed on Swiss albino mouse corpus cavernosum by DMT strip myograph. Relaxant responses to extract (10-7 -10-4 g/ml) were obtained in the presence/absence of NO and H2 S synthesis inhibitors nitro-l-arginine methyl ester (l-NAME, 100 μM) and aminooxyacetic acid (AOAA, 10 mM) respectively. Sodium nitroprusside (SNP, 10-9 to 10-4 M) and Na2 S (10-6 to 3 × 10-3 M)-induced relaxations and CaCl2 (10-6 to 10-4 M), KCl (10-2.1 to 10-0.9 M) and phenylephrine (3 × 10-8 to 3 × 10-5 M)-induced contractions were taken in the presence/absence of the extracts (10-4 g/ml). Relaxations induced by Ph-CE but not by Pu-CE were inhibited in the presence of l-NAME and AOAA. Ph-CE increased Na2 S- and SNP-induced relaxations. Ph-CE and Pu-CE decreased the contractions of KCl, phenylephrine, and CaCl2 . It was concluded that NO and H2 S synthesis/downstream mechanisms play roles in relaxations of Ph-CE but not in Pu-CE-induced relaxations. Inhibition of calcium influx appears to be involved in the relaxant effect of Ph-CE and Pu-CE. Since the extracts act directly by relaxing smooth muscle or through H2 S as well as NO, they may be a potential therapeutic agent in diseases such as ED where the bioavailability of NO is impaired.
Collapse
Affiliation(s)
- Elif Alan
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Türkiye
| | - Gokay Albayrak
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ege University, Izmir, Türkiye
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Izmir Katip Çelebi University, Izmir, Türkiye
| | - Gulnur Sevin
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Türkiye
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Türkiye
| | - Sura Baykan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ege University, Izmir, Türkiye
| |
Collapse
|
10
|
Mitidieri E, Turnaturi C, Vanacore D, Sorrentino R, d'Emmanuele di Villa Bianca R. The Role of Perivascular Adipose Tissue-Derived Hydrogen Sulfide in the Control of Vascular Homeostasis. Antioxid Redox Signal 2022; 37:84-97. [PMID: 35442088 DOI: 10.1089/ars.2021.0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: Emerging evidence suggests that perivascular adipose tissue (PVAT) has a relevant role in the control of vascular tone in physiology and pathology. Healthy PVAT has anticontractile, anti-inflammatory, and antioxidative actions. Accumulating data from both human and experimental animal models indicate that PVAT dysfunction is conceivably coupled to cardiovascular diseases, and it is associated with vascular inflammation, oxidative stress, and arterial remodeling. Therefore, "healthy" PVAT may constitute a novel therapeutic target for the prevention and treatment of cardiovascular diseases. Recent Advances: Hydrogen sulfide (H2S) has been recognized as a vascular anti-contractile factor released from PVAT. The enzymes deputed to H2S biosynthesis are variously expressed in PVAT and strictly dependent on the vascular bed and species. Metabolic and cardiovascular diseases can alter the morphological and secretory characteristics of PVAT, influencing also the H2S signaling. Here, we discuss the role of PVAT-derived H2S in healthy conditions and its relevance in alterations occurring in vascular disorders. Critical Issues: We discuss how a better understanding may help in the prevention of vascular dysfunction related to alteration in PVAT-released H2S as well as the importance of the interplay between PVAT and H2S. Future Directions: We propose future directions to evaluate the contribution of each enzyme involved in H2S biosynthesis and their alteration/switch occurring in vascular disorders and the remaining challenges in investigating the role of H2S. Antioxid. Redox Signal. 37, 84-97.
Collapse
Affiliation(s)
- Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carlotta Turnaturi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Domenico Vanacore
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
11
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
12
|
Sun C, Yu W, lv B, Zhang Y, Du S, Zhang H, Du J, Jin H, Sun Y, Huang Y. Role of hydrogen sulfide in sulfur dioxide production and vascular regulation. PLoS One 2022; 17:e0264891. [PMID: 35298485 PMCID: PMC8929647 DOI: 10.1371/journal.pone.0264891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/19/2022] [Indexed: 12/03/2022] Open
Abstract
Both hydrogen sulfide (H2S) and sulfur dioxide (SO2) are produced endogenously from the mammalian metabolic pathway of sulfur-containing amino acids and play important roles in several vascular diseases. However, their interaction during the control of vascular function has not been fully clear. Here, we investigated the potential role of H2S in SO2 production and vascular regulation in vivo and in vitro. Wistar rats were divided into the vehicle, SO2, DL-propargylglycine (PPG) + SO2, β-cyano-L-alanine (BCA) + SO2 and sodium hydrosulfide (NaHS) + SO2 groups. SO2 donor was administered with or without pre-administration of PPG, BCA or NaHS for 30 min after blood pressure was stabilized for 1 h, and then, the change in blood pressure was detected by catheterization via the common carotid artery. Rat plasma SO2 and H2S concentrations were measured by high performance liquid chromatography and sensitive sulfur electrode, respectively. The isolated aortic rings were prepared for the measurement of changes in vasorelaxation stimulated by SO2 after PPG, BCA or NaHS pre-incubation. Results showed that the intravenous injection of SO2 donors caused transient hypotension in rats compared with vehicle group. After PPG or BCA pretreatment, the plasma H2S content decreased but the SO2 content increased markedly, and the hypotensive effect of SO2 was significantly enhanced. Conversely, NaHS pretreatment upregulated the plasma H2S content but reduced SO2 content, and attenuated the hypotensive effect of SO2. After PPG or BCA pre-incubation, the vasorelaxation response to SO2 was enhanced significantly. While NaHS pre-administration weakened the SO2-induced relaxation in aortic rings. In conclusion, our in vivo and in vitro data indicate that H2S negatively controls the plasma content of SO2 and the vasorelaxant effect under physiological conditions.
Collapse
Affiliation(s)
- Chufan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wen Yu
- Department of Cardiology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Boyang lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Shuxu Du
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- * E-mail: (YH); (YS)
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- * E-mail: (YH); (YS)
| |
Collapse
|
13
|
da Costa Marques LA, Teixeira SA, de Jesus FN, Wood ME, Torregrossa R, Whiteman M, Costa SKP, Muscará MN. Vasorelaxant Activity of AP39, a Mitochondria-Targeted H 2S Donor, on Mouse Mesenteric Artery Rings In Vitro. Biomolecules 2022; 12:280. [PMID: 35204781 PMCID: PMC8961640 DOI: 10.3390/biom12020280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria-targeted hydrogen sulfide (H2S) donor compounds, such as compound AP39, supply H2S into the mitochondrial environment and have shown several beneficial in vitro and in vivo effects in cardiovascular conditions such as diabetes and hypertension. However, the study of their direct vascular effects has not been addressed to date. Thus, the objective of the present study was to analyze the effects and describe the mechanisms of action of AP39 on the in vitro vascular reactivity of mouse mesenteric artery. Protein and gene expressions of the H2S-producing enzymes (CBS, CSE, and 3MPST) were respectively analyzed by Western blot and qualitative RT-PCR, as well the in vitro production of H2S by mesenteric artery homogenates. Gene expression of CSE and 3MPST in the vessels has been evidenced by RT-PCR experiments, whereas the protein expression of all the three enzymes was demonstrated by Western blotting experiments. Nonselective inhibition of H2S-producing enzymes by AOAA abolished H2S production, whereas it was partially inhibited by PAG (a CSE selective inhibitor). Vasorelaxation promoted by AP39 and its H2S-releasing moiety (ADT-OH) were significantly reduced after endothelium removal, specifically dependent on NO-cGMP signaling and SKCa channel opening. Endogenous H2S seems to participate in the mechanism of action of AP39, and glibenclamide-induced KATP blockade did not affect the vasorelaxant response. Considering the results of the present study and the previously demonstrated antioxidant and bioenergetic effects of AP39, we conclude that mitochondria-targeted H2S donors may offer a new promising perspective in cardiovascular disease therapeutics.
Collapse
Affiliation(s)
- Leonardo A. da Costa Marques
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
| | - Simone A. Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
| | - Flávia N. de Jesus
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
| | - Mark E. Wood
- Medical School, University of Exeter, Exeter EX1 2LU, UK; (M.E.W.); (R.T.); (M.W.)
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Roberta Torregrossa
- Medical School, University of Exeter, Exeter EX1 2LU, UK; (M.E.W.); (R.T.); (M.W.)
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Matthew Whiteman
- Medical School, University of Exeter, Exeter EX1 2LU, UK; (M.E.W.); (R.T.); (M.W.)
| | - Soraia K. P. Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
| | - Marcelo N. Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
14
|
Danger perception and stress response through an olfactory sensor for the bacterial metabolite hydrogen sulfide. Neuron 2021; 109:2469-2484.e7. [PMID: 34186026 DOI: 10.1016/j.neuron.2021.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
The olfactory system serves a critical function as a danger detection system to trigger defense responses essential for survival. The cellular and molecular mechanisms that drive such defenses in mammals are incompletely understood. Here, we have discovered an ultrasensitive olfactory sensor for the highly poisonous bacterial metabolite hydrogen sulfide (H2S) in mice. An atypical class of sensory neurons in the main olfactory epithelium, the type B cells, is activated by both H2S and low O2. These two stimuli trigger, respectively, Cnga2- and Trpc2-signaling pathways, which operate in separate subcellular compartments, the cilia and the dendritic knob. This activation drives essential defensive responses: elevation of the stress hormone ACTH, stress-related self-grooming behavior, and conditioned place avoidance. Our findings identify a previously unknown signaling paradigm in mammalian olfaction and define type B cells as chemosensory neurons that integrate distinct danger inputs from the external environment with appropriate defense outputs.
Collapse
|
15
|
Lv B, Chen S, Tang C, Jin H, Du J, Huang Y. Hydrogen sulfide and vascular regulation - An update. J Adv Res 2021; 27:85-97. [PMID: 33318869 PMCID: PMC7728588 DOI: 10.1016/j.jare.2020.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is considered to be the third gasotransmitter after carbon monoxide (CO) and nitric oxide (NO). It plays an important role in the regulation of vascular homeostasis. Vascular remodeling have has proved to be related to the impaired H2S generation. AIM OF REVIEW This study aimed to summarize and discuss current data about the function of H2S in vascular physiology and pathophysiology as well as the underlying mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW Endogenous hydrogen sulfide (H2S) as a third gasotransmitter is primarily generated by the enzymatic pathways and regulated by several metabolic pathways. H2S as a physiologic vascular regulator, inhibits proliferation, regulates its apoptosis and autophagy of vascular cells and controls the vascular tone. Accumulating evidence shows that the downregulation of H2S pathway is involved in the pathogenesis of a variety of vascular diseases, such as hypertension, atherosclerosis and pulmonary hypertension. Alternatively, H2S supplementation may greatly help to prevent the progression of the vascular diseases by regulating vascular tone, inhibiting vascular inflammation, protecting against oxidative stress and proliferation, and modulating vascular cell apoptosis, which has been verified in animal and cell experiments and even in the clinical investigation. Besides, H2S system and angiotensin-converting enzyme (ACE) inhibitors play a vital role in alleviating ischemic heart disease and left ventricular dysfunction. Notably, sulfhydryl-containing ACEI inhibitor zofenopril is superior to other ACE inhibitors due to its capability of H2S releasing, in addition to ACE inhibition. The design and application of novel H2S donors have significant clinical implications in the treatment of vascular-related diseases. However, further research regarding the role of H2S in vascular physiology and pathophysiology is required.
Collapse
Affiliation(s)
- Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Selena Chen
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| |
Collapse
|
16
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
17
|
Lobov GI. The Role of Hydrogen Sulfide in the Dilatation of Mesenteric Lymphatic Vessels in Bulls. Bull Exp Biol Med 2020; 169:302-305. [PMID: 32748133 DOI: 10.1007/s10517-020-04874-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 12/22/2022]
Abstract
We studied the effects and mechanisms of action of NaHS, an H2S donor, on bovine isolated mesenteric efferent lymphatic vessels pre-contracted with phenylephrine. NaHS induced concentration-dependent relaxation of lymphatic vessels. Removal of the endothelium reduced, but did not completely abolish the relaxing effect of NaHS. Application of NO synthase inhibitor L-NAME, soluble guanylyl cyclase inhibitor ODQ, blocker ATP-sensitive K+ channels glibenclamide, and a combination of blockers of Ca-activated K+ channels of small and intermediate conductance charybdotoxin and apamin attenuated relaxation of lymphatic vessels. Thus, H2S produces a pleiotropic effect on lymphatic vessels; vasorelaxant effect is achieved by several parallel mechanisms. H2S induces relaxation of lymphatic vessels and modulates the rate of lymph transport, thereby affecting the development of immune processes in the body.
Collapse
Affiliation(s)
- G I Lobov
- Laboratory of Physiology of Cardiovascular and Lymphatic Systems, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
18
|
Peleli M, Bibli SI, Li Z, Chatzianastasiou A, Varela A, Katsouda A, Zukunft S, Bucci M, Vellecco V, Davos CH, Nagahara N, Cirino G, Fleming I, Lefer DJ, Papapetropoulos A. Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase. Biochem Pharmacol 2020; 176:113833. [PMID: 32027885 DOI: 10.1016/j.bcp.2020.113833] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Hydrogen sulfide (H2S) is a physiological mediator that regulates cardiovascular homeostasis. Three major enzymes contribute to the generation of endogenously produced H2S, namely cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). Although the biological roles of CSE and CBS have been extensively investigated in the cardiovascular system, very little is known about that of 3-MST. In the present study we determined the importance of 3-MST in the heart and blood vessels, using a genetic model with a global 3-MST deletion. RESULTS 3-MST is the most abundant transcript in the mouse heart, compared to CSE and CBS. 3-MST was mainly localized in smooth muscle cells and cardiomyocytes, where it was present in both the mitochondria and the cytosol. Levels of serum and cardiac H2S species were not altered in adult young (2-3 months old) 3-MST-/- mice compared to WT animals. No significant changes in the expression of CSE and CBS were observed. Additionally, 3-MST-/- mice had normal left ventricular structure and function, blood pressure and vascular reactivity. Interestingly, genetic ablation of 3-MST protected mice against myocardial ischemia reperfusion injury, and abolished the protection offered by ischemic pre- and post-conditioning. 3-MST-/- mice showed lower expression levels of thiosulfate sulfurtransferase, lower levels of cellular antioxidants and elevated basal levels of cardiac reactive oxygen species. In parallel, 3-MST-/- mice showed no significant alterations in endothelial NO synthase or downstream targets. Finally, in a separate cohort of older 3-MST-/- mice (18 months old), a hypertensive phenotype associated with cardiac hypertrophy and NO insufficiency was observed. CONCLUSIONS Overall, genetic ablation of 3-MST impacts on the mouse cardiovascular system in an age-dependent manner. Loss of 3-MST exerts a cardioprotective role in young adult mice, while with aging it predisposes them to hypertension and cardiac hypertrophy.
Collapse
Affiliation(s)
- Maria Peleli
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Athanasia Chatzianastasiou
- "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia Varela
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Antonia Katsouda
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Constantinos H Davos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| | | | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
19
|
Youness RA, Assal RA, Abdel Motaal A, Gad MZ. A novel role of sONE/NOS3/NO signaling cascade in mediating hydrogen sulphide bilateral effects on triple negative breast cancer progression. Nitric Oxide 2018; 80:12-23. [PMID: 30081213 DOI: 10.1016/j.niox.2018.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
Hydrogen sulphide (H2S) gas has been recognized as an intracellular mediator influencing an array of signaling pathways. Yet, the role of H2S in cancer progression has been controversial. This study aims to unravel the role of exogenous H2S in triple negative breast cancer (TNBC) and to further investigate any possible association of H2S mediated actions with the endogenous production of nitric oxide (NO) gas. A wide concentration range of NaHS (20-2000 μM) and a variable reaction time (2-72 h) were probed. A bell-shaped impact of H2S on TNBC cellular viability, proliferation, migration, invasion and colony forming ability was repeatedly observed in the aggressive TNBC cell lines, MDA-MB-231 but not in hormone receptor positive, MCF-7 cells. This bell-shaped effect was found to be shifted towards the left upon increasing the reaction time within the range of 2-24 h. However, this was totally opposed in case of continuous exposure (72 h) to exogenous H2S. An inverted bell-shaped effect of H2S on TNBC cellular growth, migration, proliferation and colony forming ability was shown. Moreover, this study provided the first evidence of a possible involvement of NO in mediating H2S actions in TNBC. Such intricate cross-talk was found to be orchestrated by the novel lncRNA, sONE and its down-stream target NOS3 building up a novel axis, sONE/NOS3/NO, that was shown to play a pivotal role in plotting the bilateral effect of H2S on TNBC progression. Finally, this study showed that low and continuous exposure of H2S serves as a novel, selective and effective strategy in harnessing TNBC oncogenic profile through cGMP dependent and independent pathways where alterations of cell cycle regulatory proteins such as TP53 and c-Myc was observed. Moreover, NaHS could repress TNBC migration and invasion capacities through repressing the intracellular adhesion molecule, ICAM-1. In conclusion, this study provides an insight about the role of exogenous H2S in TNBC cell lines highlighting a novel crosstalk between H2S and NO orchestrated by sONE/NOS3 axis.
Collapse
Affiliation(s)
- Rana Ahmed Youness
- Department of Pharmaceutical Biology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al-Khames, 11835, Cairo, Egypt
| | - Reem Amr Assal
- Department of Pharmacology and Toxicology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al-Khames, 11835, Cairo, Egypt
| | - Amira Abdel Motaal
- Pharmacognosy Department, College of Pharmacy, King Khalid University, Abha, 61441, Saudi Arabia; Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mohamed Zakaria Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al-Khames, 11835, Cairo, Egypt.
| |
Collapse
|
20
|
Role of Nitric Oxide in the Cardiovascular and Renal Systems. Int J Mol Sci 2018; 19:ijms19092605. [PMID: 30177600 PMCID: PMC6164974 DOI: 10.3390/ijms19092605] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
The gasotransmitters are a family of gaseous signaling molecules which are produced endogenously and act at specific receptors to play imperative roles in physiologic and pathophysiologic processes. As a well-known gasotransmitter along with hydrogen sulfide and carbon monoxide, nitric oxide (NO) has earned repute as a potent vasodilator also known as endothelium-derived vasorelaxant factor (EDRF). NO has been studied in greater detail, from its synthesis and mechanism of action to its physiologic, pathologic, and pharmacologic roles in different disease states. Different animal models have been applied to investigate the beneficial effects of NO as an antihypertensive, renoprotective, and antihypertrophic agent. NO and its interaction with different systems like the renin–angiotensin system, sympathetic nervous system, and other gaseous transmitters like hydrogen sulfide are also well studied. However, links that appear to exist between the endocannabinoid (EC) and NO systems remain to be fully explored. Experimental approaches using modulators of its synthesis including substrate, donors, and inhibitors of the synthesis of NO will be useful for establishing the relationship between the NO and EC systems in the cardiovascular and renal systems. Being a potent vasodilator, NO may be unique among therapeutic options for management of hypertension and resulting renal disease and left ventricular hypertrophy. Inclusion of NO modulators in clinical practice may be useful not only as curatives for particular diseases but also for arresting disease prognoses through its interactions with other systems.
Collapse
|
21
|
Sun Y, Huang Y, Yu W, Chen S, Yao Q, Zhang C, Bu D, Tang C, Du J, Jin H. Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide. Oncotarget 2018; 8:31888-31900. [PMID: 28404873 PMCID: PMC5458256 DOI: 10.18632/oncotarget.16649] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 03/16/2017] [Indexed: 12/23/2022] Open
Abstract
The study was designed to examine if the vasorelaxant effect of hydrogen sulfide was mediated by sulfhydration-associated phosphodiesterase (PDE) 5A dimerization. The thoracic aorta of rat was separated and the vasorelaxant effects were examined with in vitro vascular perfusion experiments. The dimerization and sulfhydration of PDE 5A and soluble guanylatecyclase (sGC) were measured. PDE 5A and protein kinase G (PKG) activities were tested. Intracellular cGMP content was detected by enzyme-linked immunosorbent assay (ELISA). The results showed that NaHS relaxed isolated rat vessel rings at an EC50 of (1.79 ± 0.31)×10-5mol/L, associated with significantly increased PKG activity and cGMP content in vascular tissues. Sulfhydration of sGC β1 was increased, while the levels of sGC αβ1 dimers were apparently decreased after incubation with NaHS in vascular tissues. Moreover, PDE 5A homodimers were markedly decreased, and accordingly the PDE 5A activity demonstrated by the content of 5'-GMP was significantly decreased after incubation with NaHS or GYY4137. Mechanistically, both NaHS and GYY4137 significantly enhanced the PDE 5A sulfhydration in vascular tissues. DTT partially abolished the effects of NaHS on PDE 5A activity, cGMP content and vasorelaxation. Therefore, the present study for the first time suggested that H2S exerted vasorelaxant effect probably via sulfhydration-associated PDE 5A dimerization.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Wen Yu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Siyao Chen
- Department of Cardiac Surgery, Guangdong General Hospital, Guangzhou, 510000, China
| | - Qiuyu Yao
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Chunyu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Dingfang Bu
- Centre Laboratory of Peking University First Hospital, Beijing, 100034, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100034, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Cardiovascular Sciences, Ministry of Education, Beijing, 100034, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
22
|
Bibli SI, Szabo C, Chatzianastasiou A, Luck B, Zukunft S, Fleming I, Papapetropoulos A. Hydrogen Sulfide Preserves Endothelial Nitric Oxide Synthase Function by Inhibiting Proline-Rich Kinase 2: Implications for Cardiomyocyte Survival and Cardioprotection. Mol Pharmacol 2017; 92:718-730. [PMID: 29030392 DOI: 10.1124/mol.117.109645] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Hydrogen sulfide (H2S) exhibits beneficial effects in the cardiovascular system, many of which depend on nitric oxide (NO). Proline-rich tyrosine kinase 2 (PYK2), a redox-sensitive tyrosine kinase, directly phosphorylates and inhibits endothelial NO synthase (eNOS). We investigated the ability of H2S to relieve PYK2-mediated eNOS inhibition and evaluated the importance of the H2S/PYK2/eNOS axis on cardiomyocyte injury in vitro and in vivo. Exposure of H9c2 cardiomyocytes to H2O2 or pharmacologic inhibition of H2S production increased PYK2 (Y402) and eNOS (Y656) phosphorylation. These effects were blocked by treatment with Na2S or by overexpression of cystathionine γ-lyase (CSE). In addition, PYK2 overexpression reduced eNOS activity in a H2S-reversible manner. The viability of cardiomyocytes exposed to Η2Ο2 was reduced and declined further after the inhibition of H2S production. PYK2 downregulation, l-cysteine supplementation, or CSE overexpression alleviated the effects of H2O2 on H9c2 cardiomyocyte survival. Moreover, H2S promoted PYK2 sulfhydration and inhibited its activity. In vivo, H2S administration reduced reactive oxygen species levels, as well as PYK2 (Y402) and eNOS (Y656) phosphorylation. Pharmacologic blockade of PYK2 or inhibition of PYK2 activation by Na2S reduced myocardial infarct size in mice. Coadministration of a PYK2 inhibitor and Na2S did not result in additive effects on infarct size. We conclude that H2S relieves the inhibitory effect of PYK2 on eNOS, allowing the latter to produce greater amounts of NO, thereby affording cardioprotection. Our results unravel the existence of a novel H2S-NO interaction and identify PYK2 as a crucial target for the protective effects of H2S under conditions of oxidative stress.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (S.-I.B., A.P.); Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.-I.B., B.L., S.Z., I.F.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Csaba Szabo
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (S.-I.B., A.P.); Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.-I.B., B.L., S.Z., I.F.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Athanasia Chatzianastasiou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (S.-I.B., A.P.); Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.-I.B., B.L., S.Z., I.F.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Bert Luck
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (S.-I.B., A.P.); Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.-I.B., B.L., S.Z., I.F.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Sven Zukunft
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (S.-I.B., A.P.); Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.-I.B., B.L., S.Z., I.F.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Ingrid Fleming
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (S.-I.B., A.P.); Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.-I.B., B.L., S.Z., I.F.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (S.-I.B., A.P.); Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.-I.B., B.L., S.Z., I.F.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
23
|
Cao X, Wu Z, Xiong S, Cao L, Sethi G, Bian JS. The role of hydrogen sulfide in cyclic nucleotide signaling. Biochem Pharmacol 2017; 149:20-28. [PMID: 29158149 DOI: 10.1016/j.bcp.2017.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 01/07/2023]
Abstract
Hydrogen sulfide (H2S) is recognized as an endogenous gaseous transmitter alongside nitric oxide (NO) and carbon monoxide (CO). By integrating into multiple signaling pathways, H2S elicits biological functions in various mammalian systems. Among these pathways, cyclic nucleotide signaling has gradually gained attention in the past decade. Based on current evidence, it seems that H2S may differentially affect the activity of resting adenylyl cyclases (ACs) and activated ACs, therefore playing a dual role in the regulation of cyclic adenosine monophosphate (cAMP) mediated signaling. However, how H2S achieves the differential regulation on ACs remains unknown at molecular level. In the context of cyclic guanosine monophosphate (cGMP) regulation, H2S augments its downstream signaling at least through three different mechanisms: (1) H2S potentiates the response of soluble guanylyl cyclases (sGCs) to NO; (2) H2S inhibits activity of phosphodiesterases (PDEs); and (3) H2S enhances the production of NO. By regulating cyclic nucleotide signaling, H2S possesses therapeutic potentials particularly for hypertension and cardiac injury which have also been discussed in the current review. Nevertheless, a detailed portrayal of H2S mediated interaction with target proteins is still required for a better understanding of the role of this important gaseous mediator in regulating cyclic nucleotide signaling.
Collapse
Affiliation(s)
- Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Zhiyuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Life Science Institute, National University of Singapore, Singapore
| | - Siping Xiong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jin-Song Bian
- Life Science Institute, National University of Singapore, Singapore.
| |
Collapse
|
24
|
The mechanism of action and role of hydrogen sulfide in the control of vascular tone. Nitric Oxide 2017; 81:75-87. [PMID: 29097155 DOI: 10.1016/j.niox.2017.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/21/2017] [Accepted: 10/28/2017] [Indexed: 12/11/2022]
Abstract
Our knowledge about hydrogen sulfide (H2S) significantly changed over the last two decades. Today it is considered as not only a toxic gas but also as a gasotransmitter with diverse roles in different physiological and pathophysiological processes. H2S has pleiotropic effects and its possible mechanisms of action involve (1) a reversible protein sulfhydration which can alter the function of the modified proteins similar to nitrosylation or phosphorylation; (2) direct antioxidant effects and (3) interaction with metalloproteins. Its effects on the human cardiovascular system are especially important due to the high prevalence of hypertension and myocardial infarction. The exact molecular targets that affect the vascular tone include the KATP channel, the endothelial nitric oxide synthase, the phosphodiesterase of the vascular smooth muscle cell and the cytochrome c oxidase among others and the combination of all these effects lead to the final result on the vascular tone. The relative role of each effect depends immensely on the used concentration and also on the used donor molecules but several other factors and experimental conditions could alter the final effect. The aim of the current review is to give a comprehensive summary of the current understanding on the mechanism of action and role of H2S in the regulation of vascular tone and to outline the obstacles that hinder the better understanding of its effects.
Collapse
|
25
|
Katsouda A, Szabo C, Papapetropoulos A. Reduced adipose tissue H 2S in obesity. Pharmacol Res 2017; 128:190-199. [PMID: 28982640 DOI: 10.1016/j.phrs.2017.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule synthesized by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). Given that H2S exerts significant effects on bioenergetics and metabolism, the goal of the current study was to determine the expression of H2S-producing enzymes in adipose tissues in models of obesity and metabolic disruption. Mice fed a western diet expressed lower mRNA levels of all three enzymes in epididymal fat (EWAT), while only CSE and 3-MST were reduced in brown adipose tissue (BAT). At the protein level 3-MST was reduced in all fat depots studied. Using db/db mice, a genetic model of obesity, we found that CSE, CBS and 3-MST mRNA were reduced in white fat, while only CSE was reduced in BAT. CBS and CSE protein levels were suppressed in all three fat depots. In a model of age-related weight gain, no reduction in the mRNA of any of the enzymes was noted. Smaller amounts of 3-MST protein were found in EWAT, while both CSE and 3-MST were reduced in BAT. Tissue levels of H2S were lower in WAT in HFD mice; both WAT and BAT contained lower H2S amounts in db/db animals. Taken together, our data suggest that obesity is associated with a decreased expression of H2S-synthesizing enzymes and reduced H2S levels in adipose tissues of mice. We propose that the reduction in H2S may contribute to the metabolic response associated with obesity. Further work is needed to determine whether restoring H2S levels may have a beneficial effect on obesity-associated metabolic alterations.
Collapse
Affiliation(s)
- Antonia Katsouda
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece.
| |
Collapse
|
26
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
27
|
Yuan S, Shen X, Kevil CG. Beyond a Gasotransmitter: Hydrogen Sulfide and Polysulfide in Cardiovascular Health and Immune Response. Antioxid Redox Signal 2017; 27:634-653. [PMID: 28398086 PMCID: PMC5576200 DOI: 10.1089/ars.2017.7096] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE Hydrogen sulfide (H2S) metabolism leads to the formation of oxidized sulfide species, including polysulfide, persulfide, and others. Evidence is emerging that many biological effects of H2S may indeed be due to polysulfide and persulfide activation of signaling pathways and reactivity with discrete small molecules. Recent Advances: Exogenous oxidized sulfide species, including polysulfides, are more reactive than H2S with a wide range of molecules. Importantly, endogenous polysulfide and persulfide formation has been reported to occur via transsulfuration enzymes, cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS). CRITICAL ISSUES In light of the recent understanding of oxidized sulfide metabolite formation and reactivity, comparatively few studies have been reported comparing cellular biological and in vivo effects of H2S donors versus polysulfide and persulfide donors. Likewise, it is equally unclear when, how, and to what extent persulfide and polysulfide formation occurs in vivo under pathophysiological conditions. FUTURE DIRECTIONS Additional studies regarding persulfide and polysulfide formation and molecular reactions are needed in nearly all aspects of biology to better understand how sulfide metabolites contribute to key chemical biology reactions involved in cardiovascular health and immune responses. Antioxid. Redox Signal. 27, 634-653.
Collapse
Affiliation(s)
- Shuai Yuan
- 1 Department of Cell Biology and Anatomy, LSU Health Sciences Center Shreveport , Shreveport, Louisiana
| | - Xinggui Shen
- 2 Department of Pathology and Translational Pathobiology, LSU Health Sciences Center Shreveport , Shreveport, Louisiana
| | - Christopher G Kevil
- 2 Department of Pathology and Translational Pathobiology, LSU Health Sciences Center Shreveport , Shreveport, Louisiana
| |
Collapse
|
28
|
Ertuna E, Loot AE, Fleming I, Yetik-Anacak G. The role of eNOS on the compensatory regulation of vascular tonus by H 2 S in mouse carotid arteries. Nitric Oxide 2017; 69:45-50. [DOI: 10.1016/j.niox.2017.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/06/2017] [Accepted: 04/12/2017] [Indexed: 11/30/2022]
|
29
|
Abstract
OBJECTIVES There is increasing interest in hydrogen sulfide as a marker of pathologic conditions or predictors of outcome. We speculate that as hydrogen sulfide is a diffusible molecule, if there is an increase in plasma hydrogen sulfide in sepsis, it may accumulate in the alveolar space and be detected in exhaled gas. We wished to determine whether we could detect hydrogen sulfide in exhaled gases of ventilated children and neonates and if the levels changed in sepsis. DESIGN Prospective, observational study. SETTING The study was conducted across three intensive care units, pediatric, neonatal and cardiac in a large tertiary children's hospital. PATIENTS We studied ventilated children and neonates with sepsis, defined by having two or more systemic inflammatory response syndrome criteria and one organ failure or suspected infection. A control group of ventilated non-septic patients was also included. INTERVENTION A portable gas chromatograph (OralChroma; Envin Scientific, Chester, United Kingdom) was used to measure H2S in parts per billion. MEASUREMENTS AND MAIN RESULTS A 1-2 mL sample of expired gas was taken from the endotracheal tube and analyzed. A repeat sample was taken after 30 minutes and a further single daily sample up to a maximum of 5 days or until the patient was extubated. WBC and C-reactive protein were measured around the time of gas sampling. Each group contained 20 subjects. Levels of H2S were significantly higher in septic patients (Mann Whitney U-test; p < 0.0001) and trended to control levels over five days. C- reactive protein levels were also significantly raised (p < 0.001) and mirrored the decrease in H2S levels. CONCLUSION Hydrogen sulfide can be detected in expired pulmonary gases in very low concentrations of parts per billion. Significantly higher levels are seen in septic patients compared with controls. The pattern of response was similar to that of C-reactive protein.
Collapse
|
30
|
Kanagy NL, Szabo C, Papapetropoulos A. Vascular biology of hydrogen sulfide. Am J Physiol Cell Physiol 2017; 312:C537-C549. [PMID: 28148499 PMCID: PMC5451519 DOI: 10.1152/ajpcell.00329.2016] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is a ubiquitous signaling molecule with important functions in many mammalian organs and systems. Observations in the 1990s ascribed physiological actions to H2S in the nervous system, proposing that this gasotransmitter acts as a neuromodulator. Soon after that, the vasodilating properties of H2S were demonstrated. In the past decade, H2S was shown to exert a multitude of physiological effects in the vessel wall. H2S is produced by vascular cells and exhibits antioxidant, antiapoptotic, anti-inflammatory, and vasoactive properties. In this concise review, we have focused on the impact of H2S on vascular structure and function with an emphasis on angiogenesis, vascular tone, vascular permeability and atherosclerosis. H2S reduces arterial blood pressure, limits atheromatous plaque formation, and promotes vascularization of ischemic tissues. Although the beneficial properties of H2S are well established, mechanistic insights into the molecular pathways implicated in disease prevention and treatment remain largely unexplored. Unraveling the targets and downstream effectors of H2S in the vessel wall in the context of disease will aid in translation of preclinical observations. In addition, acute regulation of H2S production is still poorly understood and additional work delineating the pathways regulating the enzymes that produce H2S will allow pharmacological manipulation of this pathway. As the field continues to grow, we expect that H2S-related compounds will find their way into clinical trials for diseases affecting the blood vessels.
Collapse
Affiliation(s)
- Nancy L Kanagy
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece; and
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
31
|
Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol 2016; 312:C3-C15. [PMID: 27784679 DOI: 10.1152/ajpcell.00282.2016] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) vascular signaling has long been considered an independent, self-sufficient pathway. However, recent data indicate that the novel gaseous mediator, hydrogen sulfide (H2S), serves as an essential enhancer of vascular NO signaling. The current article overviews the multiple levels at which this enhancement takes place. The first level of interaction relates to the formation of biologically active hybrid S/N species and the H2S-induced stimulation of NO release from its various stable "pools" (e.g., nitrite). The next interactions occur on the level of endothelial calcium mobilization and PI3K/Akt signaling, increasing the specific activity of endothelial NO synthase (eNOS). The next level of interaction occurs on eNOS itself; H2S directly interacts with the enzyme: sulfhydration of critical cysteines stabilizes it in its physiological, dimeric state, thereby optimizing eNOS-derived NO production and minimizing superoxide formation. Yet another level of interaction, further downstream, occurs at the level of soluble guanylate cyclase (sGC): H2S stabilizes sGC in its NO-responsive, physiological, reduced form. Further downstream, H2S inhibits the vascular cGMP phosphodiesterase (PDE5), thereby prolonging the biological half-life of cGMP. Finally, H2S-derived polysulfides directly activate cGMP-dependent protein kinase (PKG). Taken together, H2S emerges an essential endogenous enhancer of vascular NO signaling, contributing to vasorelaxation and angiogenesis. The functional importance of the H2S/NO cooperative interactions is highlighted by the fact that H2S loses many of its beneficial cardiovascular effects when eNOS is inactive.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
32
|
Zhou Z, Martin E, Sharina I, Esposito I, Szabo C, Bucci M, Cirino G, Papapetropoulos A. Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide. Pharmacol Res 2016; 111:556-562. [PMID: 27378567 DOI: 10.1016/j.phrs.2016.06.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/07/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Soluble guanylate cyclase (sGC) is a receptor for nitric oxide (NO). Binding of NO to ferrous (Fe(2+)) heme increases its catalytic activity, leading to the production of cGMP from GTP. Hydrogen sulfide (H2S) is a signaling molecule that exerts both direct and indirect anti-oxidant effects. In the present, study we aimed to determine whether H2S could regulate sGC redox state and affect its responsiveness to NO-releasing agents and sGC activators. Using cultured rat aortic smooth muscle cells, we observed that treatment with H2S augmented the response to the NO donor DEA/NO, while attenuating the response to the heme-independent activator BAY58-2667 that targets oxidized sGC. Similarly, overexpression of H2S-synthesizing enzyme cystathionine-γ lyase reduced the ability of BAY58-2667 to promote cGMP accumulation. In experiments with phenylephrine-constricted mouse aortic rings, treatment with rotenone (a compound that increases ROS production), caused a rightward shift of the DEA/NO concentration-response curve, an effect partially restored by H2S. When rings were pre-treated with H2S, the concentration-response curve to BAY 58-2667 shifted to the right. Using purified recombinant human sGC, we observed that treatment with H2S converted ferric to ferrous sGC enhancing NO-donor-stimulated sGC activity and reducing BAY 58-2667-triggered cGMP formation. The present study identified an additional mechanism of cross-talk between the NO and H2S pathways at the level of redox regulation of sGC. Our results provide evidence that H2S reduces sGC heme Fe, thus, facilitating NO-mediated cellular signaling events.
Collapse
Affiliation(s)
- Zongmin Zhou
- 1st Department of Critical Care and Pulmonary Services, Faculty of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Greece
| | - Emil Martin
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School at Houston, TX, USA
| | - Iraida Sharina
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School at Houston, TX, USA
| | - Iolanda Esposito
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of NaplesFederico II, Italy
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mariarosaria Bucci
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of NaplesFederico II, Italy
| | - Giuseppe Cirino
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of NaplesFederico II, Italy
| | - Andreas Papapetropoulos
- 1st Department of Critical Care and Pulmonary Services, Faculty of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece.
| |
Collapse
|
33
|
Gur S, Kadowitz PJ, Sikka SC, Peak TC, Hellstrom WJ. Overview of potential molecular targets for hydrogen sulfide: A new strategy for treating erectile dysfunction. Nitric Oxide 2015; 50:65-78. [DOI: 10.1016/j.niox.2015.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/05/2015] [Accepted: 08/22/2015] [Indexed: 01/04/2023]
|
34
|
Li S, Yang G. Hydrogen Sulfide Maintains Mitochondrial DNA Replication via Demethylation of TFAM. Antioxid Redox Signal 2015; 23:630-42. [PMID: 25758951 PMCID: PMC4554549 DOI: 10.1089/ars.2014.6186] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Hydrogen sulfide (H2S) exerts a wide range of actions in the body, especially in the modulation of mitochondrial functions. The normal replication of mitochondrial DNA (mtDNA) is critical for cellular energy metabolism and mitochondrial biogenesis. The aim of this study was to investigate whether H2S affects mtDNA replication and the underlying mechanisms. We hypothesize that H2S maintains mtDNA copy number via inhibition of Dnmt3a transcription and TFAM promoter methylation. RESULTS Here, we demonstrated that deficiency of cystathionine gamma-lyase (CSE), a major H2S-producing enzyme, reduces mtDNA copy number and mitochondrial contents, and it inhibits the expressions of mitochondrial transcription factor A (TFAM) and mitochondrial marker genes in both smooth muscle cells and aorta tissues from mice. Supply of exogenous H2S stimulated mtDNA copy number and strengthened the expressions of TFAM and mitochondrial marker genes. TFAM knockdown diminished H2S-enhanced mtDNA copy number. In addition, CSE deficiency induced the expression of DNA methyltransferase 3a (Dnmt3a) and TFAM promoter DNA methylation, and H2S repressed Dnmt3a expression, resulting in TFAM promoter demethylation. We further found that H2S S-sulfhydrates transcription repressor interferon regulatory factor 1 (IRF-1) and enhances the binding of IRF-1 with Dnmt3a promoter after reduced Dnmt3a transcription. H2S had little effects on the expression of Dnmt1 and Dnmt3b as well as on ten-eleven translocation methylcytosine dioxygenase 1, 2, and 3. INNOVATION A sufficient level of H2S is able to inhibit TFAM promoter methylation and maintain mtDNA copy number. CONCLUSION CSE/H2S system contributes to mtDNA replication and cellular bioenergetics and provides a novel therapeutic avenue for cardiovascular diseases.
Collapse
Affiliation(s)
- Shuangshuang Li
- 1 Cardiovascular and Metabolic Research Unit, Lakehead University , Thunder Bay, Ontario, Canada .,2 The School of Kinesiology, Lakehead University , Thunder Bay, Ontario, Canada
| | - Guangdong Yang
- 1 Cardiovascular and Metabolic Research Unit, Lakehead University , Thunder Bay, Ontario, Canada .,2 The School of Kinesiology, Lakehead University , Thunder Bay, Ontario, Canada
| |
Collapse
|
35
|
Jupiter RC, Yoo D, Pankey EA, Reddy VVG, Edward JA, Polhemus DJ, Peak TC, Katakam P, Kadowitz PJ. Analysis of erectile responses to H2S donors in the anesthetized rat. Am J Physiol Heart Circ Physiol 2015; 309:H835-43. [PMID: 26116713 DOI: 10.1152/ajpheart.00293.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/23/2015] [Indexed: 01/04/2023]
Abstract
Hydrogen sulfide (H2S) is a biologically active endogenous gasotransmitter formed in penile tissue that has been shown to relax isolated cavernosal smooth muscle. In the present study, erectile responses to the H2S donors sodium sulfide (Na2S) and sodium hydrosulfide (NaHS) were investigated in the anesthetized rat. Intracavernosal injections of Na2S in doses of 0.03-1 mg/kg increased intracavernosal pressure and transiently decreased mean arterial pressure in a dose-dependent manner. Blood pressure responses to Na2S were rapid in onset and short in duration. Responses to Na2S and NaHS were similar at doses up to 0.3 mg/kg, after which a plateau in the erectile response to NaHS was reached. Increases in intracavernosal pressure in response to Na2S were attenuated by tetraethylammonium (K(+) channel inhibitor) and iberiotoxin (large-conductance Ca(2+)-activated K(+) channel inhibitor), whereas glybenclamide [ATP-sensitive K(+) (KATP) channel inhibitor] and inhibitors of nitric oxide (NO) synthase, cyclooxygenase, and cytochrome P-450 epoxygenase had no effect. These data indicate that erectile responses to Na2S are mediated by a tetraethylammonium- and iberiotoxin-sensitive mechanism and that KATP channels, NO, or arachidonic acid metabolites are not involved. Na2S did not alter erectile responses to sodium nitroprusside (NO donor) or cavernosal nerve stimulation, indicating that neither NO nor cGMP metabolism are altered. Thus, Na2S has erectile activity mediated by large-conductance Ca(2+)-activated K(+) channels. It is suggested that strategies that increase H2S formation in penile tissue may be useful in the treatment of erectile dysfunction when NO bioavailability, KATP channel function, or poor responses to PGE1 are present.
Collapse
Affiliation(s)
- Ryan C Jupiter
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Daniel Yoo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Edward A Pankey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Vishwaradh V G Reddy
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Justin A Edward
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - David J Polhemus
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Taylor C Peak
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Prasad Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Philip J Kadowitz
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana; and
| |
Collapse
|
36
|
Inhibition of endogenous hydrogen sulfide production in clear-cell renal cell carcinoma cell lines and xenografts restricts their growth, survival and angiogenic potential. Nitric Oxide 2015; 49:26-39. [PMID: 26068241 DOI: 10.1016/j.niox.2015.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 05/20/2015] [Accepted: 06/01/2015] [Indexed: 11/21/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by Von Hippel-Lindau (VHL)-deficiency, resulting in pseudohypoxic, angiogenic and glycolytic tumours. Hydrogen sulfide (H2S) is an endogenously-produced gasotransmitter that accumulates under hypoxia and has been shown to be pro-angiogenic and cytoprotective in cancer. It was hypothesized that H2S levels are elevated in VHL-deficient ccRCC, contributing to survival, metabolism and angiogenesis. Using the H2S-specific probe MeRhoAz, it was found that H2S levels were higher in VHL-deficient ccRCC cell lines compared to cells with wild-type VHL. Inhibition of H2S-producing enzymes could reduce the proliferation, metabolism and survival of ccRCC cell lines, as determined by live-cell imaging, XTT/ATP assay, and flow cytometry respectively. Using the chorioallantoic membrane angiogenesis model, it was found that systemic inhibition of endogenous H2S production was able to decrease vascularization of VHL-deficient ccRCC xenografts. Endogenous H2S production is an attractive new target in ccRCC due to its involvement in multiple aspects of disease.
Collapse
|
37
|
Vieira RP, Thompson JR, Beraldo H, Storr T. Partial conversion of thioamide into nitrile in a copper(II) complex of 2,6-diacetylpyridine bis(thiosemicarbazone), a drug prototype for Alzheimer's disease. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2015; 71:430-4. [PMID: 26044321 DOI: 10.1107/s205322961500813x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/23/2015] [Indexed: 03/17/2023]
Abstract
This work reports the crystal structure of [(Z)-2-((E)-1-{6-[1-({[amino(sulfanidyl-κS)methylidene]amino}imino-κN)ethyl]pyridin-2-yl-κN}ethylidene)-1-cyanohydrazinido-κN(1)]copper(II), [Cu(C11H11N7S)], the first description of a copper(II) complex of 2,6-diacetylpyridine bis(thiosemicarbazone) showing partial conversion of a thioamide group to a nitrile group. The asymmetric ligand coordinates to the metal centre in an N,N',N'',S-tetradentate manner via the pyridine N atom, an imine N atom, the hydrazinide N atom and the sulfanidyl S atom, displaying a square-planar geometry. Ligand coordination results in two five-membered chelate rings and one six-membered chelate ring, and in crystal packing based on N-H···N hydrogen bonds of the cyanohydrazinide and hydrazinecarbothioamidate arms of the ligand. The correlation between the partial conversion upon metal complexation, H2S release and possible effects on the activity of bis(thiosemicarbazone)s as drug prototypes for Alzheimer's disease is also discussed.
Collapse
Affiliation(s)
- Rafael P Vieira
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - John R Thompson
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Heloisa Beraldo
- Departamento de Quimica, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
38
|
Hydrogen sulfide mediates the cardioprotective effects of gene therapy with PKG-Iα. Basic Res Cardiol 2015; 110:42. [PMID: 26036467 DOI: 10.1007/s00395-015-0500-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/12/2015] [Accepted: 05/28/2015] [Indexed: 01/09/2023]
Abstract
Cyclic GMP-dependent protein kinase (PKG) is a serine-threonine kinase that mediates the cardioprotective effect of ischemic and pharmacologic preconditioning. Since hydrogen sulfide (H2S) has been implicated in mediating the cardioprotective effects of the cGMP modulators tadalafil and cinaciguat, we tested the hypothesis that myocardial gene therapy with PKG exerts cardioprotection against ischemia/reperfusion (I/R) injury through a mechanism involving H2S. Adult rat cardiomyocytes were infected with adenoviral vector encoding PKGIα or inactive mutant PKGIαK390A (K390A) for 24 h. Necrosis and apoptosis (n = 6/group) were determined after 90 min of simulated ischemia and 1 or 18 h of reoxygenation, respectively. To study the effect of PKGIα in vivo, mice received intramyocardial injections of adenoviral PKGIα or K390A. Four days later, the hearts were subjected to 30 min of ischemia followed by reperfusion for 24 h. The inhibitor of H2S-producing enzyme, cystathionine-γ-lyase (CSE), dl-propargylglycine (PAG, 50 mg/kg, ip) was given 30 min before ischemia. PKGIα overexpression induced CSE expression, whereas cystathionine-β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase expression was not changed. PKGIα overexpression increased H2S in the heart and cardiomyocytes in relation to control and PKGIαK390A. Moreover, PAG abolished protection with PKGIα in vitro by increasing necrosis (35.2 ± 1.7%, P < 0.05) and apoptosis (23.5 ± 1.8 %, P < 0.05) as compared to PKGIα-overexpressing cells (necrosis: 17.2 ± 0.9% and apoptosis: 13.2 ± 0.8%). In vivo, PKGIα overexpression reduced infarct size and preserved left ventricular fractional shortening as compared with K390A (P < 0.05) and PAG abolished the cardioprotective effect of PKGIα. The protective effect of myocardial gene therapy with PKGIα against I/R injury is mediated through a mechanism involving H2S signaling.
Collapse
|
39
|
Magierowski M, Magierowska K, Kwiecien S, Brzozowski T. Gaseous mediators nitric oxide and hydrogen sulfide in the mechanism of gastrointestinal integrity, protection and ulcer healing. Molecules 2015; 20:9099-123. [PMID: 25996214 PMCID: PMC6272495 DOI: 10.3390/molecules20059099] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/29/2015] [Accepted: 05/13/2015] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are known as biological messengers; they play an important role in human organism and contribute to many physiological and pathophysiological processes. NO is produced from l-arginine by constitutive NO synthase (NOS) and inducible NOS enzymatic pathways. This gaseous mediator inhibits platelet aggregation, leukocyte adhesion and contributes to the vessel homeostasis. NO is known as a vasodilatory molecule involved in control of the gastric blood flow (GBF) and the maintenance of gastric mucosal barrier integrity in either healthy gastric mucosa or that damaged by strong irritants. Biosynthesis of H2S in mammals depends upon two enzymes cystathionine-β-synthase and cystathionine γ-lyase. This gaseous mediator, similarly to NO and carbon monoxide, is involved in neuromodulation, vascular contractility and anti-inflammatory activities. For decades, H2S has been known to inhibit cytochrome c oxidase and reduce cell energy production. Nowadays it is generally considered to act through vascular smooth muscle ATP-dependent K+ channels, interacting with intracellular transcription factors and promote sulfhydration of protein cysteine moieties within the cell, but the mechanism of potential gastroprotective and ulcer healing properties of H2S has not been fully explained. The aim of this review is to compare current results of the studies concerning the role of H2S and NO in gastric mucosa protection and outline areas that may pose new opportunities for further development of novel therapeutic targets.
Collapse
Affiliation(s)
- Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland.
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland.
| | - Slawomir Kwiecien
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland.
| |
Collapse
|
40
|
Testai L, D'Antongiovanni V, Piano I, Martelli A, Citi V, Duranti E, Virdis A, Blandizzi C, Gargini C, Breschi MC, Calderone V. Different patterns of H2S/NO activity and cross-talk in the control of the coronary vascular bed under normotensive or hypertensive conditions. Nitric Oxide 2015; 47:25-33. [PMID: 25795591 DOI: 10.1016/j.niox.2015.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 03/02/2015] [Accepted: 03/15/2015] [Indexed: 01/17/2023]
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) play pivotal roles in the cardiovascular system. Conflicting results have been reported about their cross-talk. This study investigated their interplays in coronary bed of normotensive (NTRs) and spontaneously hypertensive rats (SHRs). The effects of H2S- (NaHS) and NO-donors (sodium nitroprusside, SNP) on coronary flow (CF) were measured in Langendorff-perfused hearts of NTRs and SHRs, in the absence or in the presence of propargylglycine (PAG, inhibitor of H2S biosynthesis), L-NAME (inhibitor of NO biosynthesis), ODQ (inhibitor of guanylate cyclase), L-Cysteine (substrate for H2S biosynthesis) or L-Arginine (substrate for NO biosynthesis). In NTRs, NaHS and SNP increased CF; their effects were particularly evident in Angiotensin II (AngII)-contracted coronary arteries. The dilatory effects of NaHS were abolished by L-NAME and ODQ; conversely, PAG abolished the effects of SNP. In SHRs, high levels of myocardial ROS production were observed. NaHS and SNP did not reduce the oxidative stress, but produced clear increases of the basal CF. In contrast, in AngII-contracted coronary arteries of SHRs, significant hyporeactivity to NaHS and SNP was observed. In SHRs, the vasodilatory effects of NaHS were only modestly affected by L-NAME and ODQ; PAG poorly influenced the effects of SNP. Then, in NTRs, the vascular actions of H2S required NO and vice versa. By contrast, in SHRs, the H2S-induced actions scarcely depend on NO release; as well, the NO effects are largely H2S-independent. These results represent the first step for understanding pathophysiological mechanisms of NO/H2S interplays under both normotensive and hypertensive conditions.
Collapse
Affiliation(s)
- L Testai
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy
| | - V D'Antongiovanni
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy
| | - I Piano
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy
| | - A Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy
| | - V Citi
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy
| | - E Duranti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 55. I-56126 Pisa, Italy
| | - A Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 55. I-56126 Pisa, Italy
| | - C Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 55. I-56126 Pisa, Italy
| | - C Gargini
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy
| | - M C Breschi
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy
| | - V Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno, 6. I-56126 Pisa, Italy.
| |
Collapse
|
41
|
Peng B, Zhang C, Marutani E, Pacheco A, Chen W, Ichinose F, Xian M. Trapping hydrogen sulfide (H₂S) with diselenides: the application in the design of fluorescent probes. Org Lett 2015; 17:1541-4. [PMID: 25723840 PMCID: PMC4372083 DOI: 10.1021/acs.orglett.5b00431] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Here
we report a unique reaction between phenyl diselenide-ester
substrates and H2S to form 1,2-benzothiaselenol-3-one.
This reaction proceeded rapidly under mild conditions. Thiols could
also react with the diselenide substrates. However, the resulted S–Se
intermediate retained high reactivity toward H2S and eventually
led to the same cyclized product 1,2-benzothiaselenol-3-one. Based
on this reaction two fluorescent probes were developed and showed
high selectivity and sensitivity for H2S. The presence
of thiols was found not to interfere with the detection process.
Collapse
Affiliation(s)
- Bo Peng
- †Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Caihong Zhang
- †Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,‡School of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan, China
| | - Eizo Marutani
- §Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Armando Pacheco
- †Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Wei Chen
- †Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Fumito Ichinose
- §Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ming Xian
- †Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|