1
|
Almeida LEF, Smith ML, Kamimura S, Vogel S, Quezado ZMN. Calcium flux alterations in erythrocytes from sickle cell mice: The relevance of mean corpuscular volume. Blood Cells Mol Dis 2024; 104:102800. [PMID: 37951090 PMCID: PMC10842784 DOI: 10.1016/j.bcmd.2023.102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
Red blood cells (RBC) from patients with sickle cell disease (SCD) have elevated calcium levels at baseline, which are further elevated upon deoxygenation. Here we examined baseline calcium levels and calcium flux in RBCs from a mouse model of SCD mice. We found that akin to humans with SCD, sickle (HbSS) Townes mice, have higher baseline levels and increased calcium flux in RBCs compared to control (HbAA) animals. As HbSS mice, unlike humans with SCD, have high mean corpuscular volume compared with HbAA, we highlight the importance of adjusting biochemical results to number of RBCs rather than hematocrit during the analysis and interpretation of the results. Our findings add to the face validity of humanized sickle cell mice and support its use for studies of RBC calcium flux in SCD.
Collapse
Affiliation(s)
- Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Kamimura S, Smith M, Vogel S, Almeida LEF, Thein SL, Quezado ZMN. Mouse models of sickle cell disease: Imperfect and yet very informative. Blood Cells Mol Dis 2024; 104:102776. [PMID: 37391346 PMCID: PMC10725515 DOI: 10.1016/j.bcmd.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
The root cause of sickle cell disease (SCD) has been known for nearly a century, however, few therapies to treat the disease are available. Over several decades of work, with advances in gene editing technology and after several iterations of mice with differing genotype/phenotype relationships, researchers have developed humanized SCD mouse models. However, while a large body of preclinical studies has led to huge gains in basic science knowledge about SCD in mice, this knowledge has not led to the development of effective therapies to treat SCD-related complications in humans, thus leading to frustration with the paucity of translational progress in the SCD field. The use of mouse models to study human diseases is based on the genetic and phenotypic similarities between mouse and humans (face validity). The Berkeley and Townes SCD mice express only human globin chains and no mouse hemoglobin. With this genetic composition, these models present many phenotypic similarities, but also significant discrepancies that should be considered when interpreting preclinical studies results. Reviewing genetic and phenotypic similarities and discrepancies and examining studies that have translated to humans and those that have not, offer a better perspective of construct, face, and predictive validities of humanized SCD mouse models.
Collapse
Affiliation(s)
- Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Almeida LEF, Smith ML, Kamimura S, Vogel S, de Souza Batista CM, Quezado ZMN. Nitrite decreases sickle hemoglobin polymerization in vitro independently of methemoglobin formation. Toxicol Appl Pharmacol 2023; 473:116606. [PMID: 37336294 PMCID: PMC10387360 DOI: 10.1016/j.taap.2023.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
The root cause of sickle cell disease (SCD) is the polymerization of sickle hemoglobin (HbS) leading to sickling of red blood cells (RBC). Earlier studies showed that in patients with SCD, high-dose nitrite inhibited sickling, an effect originally attributed to HbS oxidation to methemoglobin-S even though the anti-sickling effect did not correlate with methemoglobin-S levels. Here, we examined the effects of nitrite on HbS polymerization and on methemoglobin formation in a SCD mouse model. In vitro, at concentrations higher than physiologic (>1 μM), nitrite increased the delay time for polymerization of deoxygenated HbS independently of methemoglobin-S formation, which only occurred at much higher concentrations (>300 μM). In vitro, higher nitrite concentrations oxidized 100% of normal hemoglobin A (HbA), but only 70% of HbS. Dimethyl adipimidate, an anti-polymerization agent, increased the fraction of HbS oxidized by nitrite to 82%, suggesting that polymerized HbS partially contributed to the oxidation-resistant fraction of HbS. At low concentrations (10 μM-1 mM), nitrite did not increase the formation of reactive oxygen species but at high concentrations (10 mM) it decreased sickle RBC viability. In SCD mice, 4-week administration of nitrite yielded no significant changes in methemoglobin or nitrite levels in plasma and RBC, however, it further increased leukocytosis. Overall, these data suggest that nitrite at supra-physiologic concentrations has anti-polymerization properties in vitro and that leukocytosis is a potential nitrite toxicity in vivo. Therefore, to determine whether the anti-polymerization effect of nitrite observed in vitro underlies the decreases in sickling observed in patients with SCD, administration of higher nitrite doses is required.
Collapse
Affiliation(s)
- Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Celia M de Souza Batista
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Elbostany EA, Elghoroury EA, Thabet EH, Rashad AA, Rasheed EA, El-Saeed GSM, Abdelhalim DA, Abdelfattah SN, Salama II, Salama N. Oxidative stress and hepcidin expression in pediatric sickle cell anemia with iron overload. Hematol Oncol Stem Cell Ther 2023; 16:238-244. [PMID: 34883086 DOI: 10.1016/j.hemonc.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/10/2021] [Accepted: 11/14/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Blood transfusion (BT) is essential in treating sickle cell disease (SCD); however, it leads to iron overload (IO) and oxidative stress. We studied the relationship between oxidative stress, iron status parameters, hepcidin mRNA gene expression, and IO in SCD patients. METHODS We classified all SCD patients (n = 90) into two groups: Group I, 45 children (s.ferritin ≥ 938 ng/mL) and Group II, 45 children (s.ferritin < 938 ng/mL). A total of 55 children, age and sex matched, participated as a control group. Malondialdehyde (MDA), nitrite, s.iron, s.total iron-binding capacity (sTIBC), transferrin saturation %, s.ferritin, s.hepcidin, and hepcidin mRNA gene expression were assessed. RESULTS Among SCD BT-dependent patients (>3 times/year), 63% were from Group I and 37% from Group II, p < .01. The two patient groups had significantly lower s.hepcidin and hepcidin gene expression than controls ( p < .001). TIBC, s.iron, s.ferritin, transferrin saturation %, ferritin/hepcidin ratio, and MDA levels were higher among SCD patients than controls ( p < .001). Group I had higher mean level of ferritin/hepcidin ratio and MDA than Group II ( p < .01). The higher level of MDA and increased frequency of BT were the significant predicting risk factors for IO ( p < .05). A receiver-operating characteristic curve indicates that MDA is the outstanding significant biomarker for high level of s.ferritin with subsequent IO progression. CONCLUSION MDA may serve as a biomarker of oxidative stress and IO in SCD patients. This result paid attention for urgent initiation of antioxidant and chelation therapy on detecting increased MDA level.
Collapse
Affiliation(s)
- Eman A Elbostany
- Department of Pediatrics, National Research Centre, Cairo, Egypt
| | - Eman A Elghoroury
- Department of Clinical and Chemical Pathology, National Research Centre, Cairo, Egypt
| | - Eman H Thabet
- Department of Clinical and Chemical Pathology, National Research Centre, Cairo, Egypt
| | - Alaa A Rashad
- Department of Pediatrics, National Research Centre, Cairo, Egypt
| | - Enas A Rasheed
- Department of Clinical and Chemical Pathology, National Research Centre, Cairo, Egypt
| | | | - Dalia A Abdelhalim
- Department of Clinical and Chemical Pathology, National Research Centre, Cairo, Egypt
| | - Safa N Abdelfattah
- Department of Clinical and Chemical Pathology, National Research Centre, Cairo, Egypt
| | - Iman I Salama
- Department of Community Medicine Research, National Research Centre, Cairo, Egypt
| | - Niveen Salama
- Department of pediatrics, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
5
|
Pathophysiological characterization of the Townes mouse model for sickle cell disease. Transl Res 2023; 254:77-91. [PMID: 36323381 DOI: 10.1016/j.trsl.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
Abstract
A deeper pathophysiologic understanding of available mouse models of sickle cell disease (SCD), such as the Townes model, will help improve preclinical studies. We evaluated groups of Townes mice expressing either normal adult human hemoglobin (HbA), sickle cell trait (HbAS), or SCD (HbS), comparing younger versus older adults, and females versus males. We obtained hematologic parameters in steady-state and hypoxic conditions and evaluated metabolic markers and cytokines from serum. Kidney function was evaluated by measuring the urine protein/creatinine ratio and urine osmolality. In vivo studies included von Frey assay, non-invasive plethysmography, and echocardiography. Histopathological evaluations were performed in lung, liver, spleen, and kidney tissues. HbS mice displayed elevated hemolysis markers and white blood cell counts, with some increases more pronounced in older adults. After extended in vivo hypoxia, hemoglobin, platelet counts, and white blood cell counts decreased significantly in HbS mice, whereas they remained stable in HbA mice. Cytokine analyses showed increased TNF-alpha in HbS mice. Kidney function assays revealed worsened kidney function in HbS mice. The von Frey assay showed a lower threshold to response in the HbS mice than controls, with more noticeable differences in males. Echocardiography in HbS mice suggested left ventricular hypertrophy and dilatation. Plethysmography suggested obstructive lung disease and inflammatory changes in HbS mice. Histopathological studies showed vascular congestion, increased iron deposition, and disruption of normal tissue architecture in HbS mice. These data correlate with clinical manifestations in SCD patients and highlight analyses and groups to be included in preclinical therapeutic studies.
Collapse
|
6
|
Increasing nitric oxide bioavailability fails to improve collateral vessel formation in humanized sickle cell mice. J Transl Med 2022; 102:805-813. [PMID: 35354915 PMCID: PMC9329194 DOI: 10.1038/s41374-022-00780-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Sickle cell disease (SCD) is associated with repeated bouts of vascular insufficiency leading to organ dysfunction. Deficits in revascularization following vascular injury are evident in SCD patients and animal models. We aimed to elucidate whether enhancing nitric oxide bioavailability in SCD mice improves outcomes in a model of vascular insufficiency. Townes AA (wild type) and SS (sickle cell) mice were treated with either L-Arginine (5% in drinking water), L-NAME (N(ω)-nitro-L-arginine methyl ester; 1 g/L in drinking water) or NO-generating hydrogel (PA-YK-NO), then subjected to hindlimb ischemia via femoral artery ligation and excision. Perfusion recovery was monitored over 28 days via LASER Doppler perfusion imaging. Consistent with previous findings, perfusion was impaired in SS mice (63 ± 4% of non-ischemic limb perfusion in AA vs 33 ± 3% in SS; day 28; P < 0.001; n = 5-7) and associated with increased necrosis. L-Arginine treatment had no significant effect on perfusion recovery or necrosis (n = 5-7). PA-YK-NO treatment led to worsened perfusion recovery (19 ± 3 vs. 32 ± 3 in vehicle-treated mice; day 7; P < 0.05; n = 4-5), increased necrosis score (P < 0.05, n = 4-5) and a 46% increase in hindlimb peroxynitrite (P = 0.055, n = 4-5). Interestingly, L-NAME worsened outcomes in SS mice with decreased in vivo lectin staining following ischemia (7 ± 2% area in untreated vs 4 ± 2% in treated mice, P < 0.05, n = 5). Our findings demonstrate that L-arginine and direct NO delivery both fail to improve postischemic neovascularization in SCD. Addition of NO to the inflammatory, oxidative environment in SCD may result in further oxidative stress and limit recovery.
Collapse
|
7
|
Li X, Yang X, Cui M, Liu Y, Wang J, Zhang L, Zhan G. A novel electrochemical sensor based on nitrite-oxidizing bacteria for highly specific and sensitive detection of nitrites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154178. [PMID: 35240169 DOI: 10.1016/j.scitotenv.2022.154178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Real-time nitrite control in water is necessary for environmental safety and human health, and has triggered the research and development of novel detection methods. Previous studies have made great progress on enzyme-free and enzyme electrochemical sensors. However, enzyme-free sensors have low selectivity and a complex preparation process, and enzyme sensors have short lifetimes, and these issues need to be addressed. In this work, we proposed for the first time a highly specific and sensitive biofilm sensor based on nitrite-oxidizing bacteria (NOB) for the bio-electrochemical detection of nitrite in water. The mechanism of nitrite detection was attributed to the competition of oxygen between aerobic respiration of the NOB and the cathode oxygen reduction on the carbon felt electrode, resulting in a decrease in current. This decrease in current (ΔI) had a linear relationship with the nitrite concentration in the range of 0.1 to 1 mg L-1 and 1 to 10 mg L-1, which was corresponding to the sensitivities of 48.62 and 2.24 μA mM-1 cm-2, respectively. And the limit of detection (LOD) was calculated to be 0.033 mg L-1 (2.39 μM) with a signal-to-noise ratio of 3. Moreover, several common interfering ions had no effect on the nitrite detection owing to the functional microbial species (NOB) and weakly electrochemical behavior of electrode at the low potential of -0.1 V, showing high specificity for nitrite detection of biofilm sensor. Therefore, the actual nitrified wastewater was well detected by the biofilm sensor. In addition, allylthiourea (ATU) took good effect on the resistance of the influence of ammonia oxidizing bacteria (AOB) in the biofilm sensor, maintaining the high selectivity of biofilm sensor in case the biofilm sensor was fouled with AOB. The biofilm sensor in our work showed good selectivity, sensitivity and stability in long-term detection.
Collapse
Affiliation(s)
- Xiaoyun Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xu Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyao Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
8
|
Chow PH, Cox CD, Pei JV, Anabaraonye N, Nourmohammadi S, Henderson SW, Martinac B, Abdulmalik O, Yool AJ. Inhibition of the Aquaporin-1 Cation Conductance by Selected Furan Compounds Reduces Red Blood Cell Sickling. Front Pharmacol 2022; 12:794791. [PMID: 35111062 PMCID: PMC8801817 DOI: 10.3389/fphar.2021.794791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
In sickle cell disease (SCD), the pathological shift of red blood cells (RBCs) into distorted morphologies under hypoxic conditions follows activation of a cationic leak current (Psickle) and cell dehydration. Prior work showed sickling was reduced by 5-hydroxylmethyl-2-furfural (5-HMF), which stabilized mutant hemoglobin and also blocked the Psickle current in RBCs, though the molecular basis of this 5-HMF-sensitive cation current remained a mystery. Work here is the first to test the hypothesis that Aquaporin-1 (AQP1) cation channels contribute to the monovalent component of Psickle. Human AQP1 channels expressed in Xenopus oocytes were evaluated for sensitivity to 5-HMF and four derivatives known to have differential efficacies in preventing RBC sickling. Ion conductances were measured by two-electrode voltage clamp, and osmotic water permeability by optical swelling assays. Compounds tested were: 5-HMF; 5-PMFC (5-(phenoxymethyl)furan-2-carbaldehyde); 5-CMFC (5-(4-chlorophenoxymethyl)furan-2-carbaldehyde); 5-NMFC (5-(2-nitrophenoxymethyl)-furan-2-carbaldehyde); and VZHE006 (tert-butyl (5-formylfuran-2-yl)methyl carbonate). The most effective anti-sickling agent, 5-PMFC, was the most potent inhibitor of the AQP1 ion conductance (98% block at 100 µM). The order of sensitivity of the AQP1 conductance to inhibition was 5-PMFC > VZHE006 > 5-CMFC ≥ 5-NMFC, which corresponded with effectiveness in protecting RBCs from sickling. None of the compounds altered AQP1 water channel activity. Combined application of a selective AQP1 ion channel blocker AqB011 (80 µM) with a selective hemoglobin modifying agent 5-NMFC (2.5 mM) increased anti-sickling effectiveness in red blood cells from human SCD patients. Another non-selective cation channel known to be expressed in RBCs, Piezo1, was unaffected by 2 mM 5-HMF. Results suggest that inhibition of AQP1 ion channels and capacity to modify hemoglobin are combined features of the most effective anti-sickling agents. Future therapeutics aimed at both targets could hold promise for improved treatments for SCD.
Collapse
Affiliation(s)
- Pak Hin Chow
- Aquaporin Physiology and Drug Discovery Program, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Jinxin V Pei
- Research School of Biology, College of Science, Australian National University, Canberra, ACT, Australia
| | - Nancy Anabaraonye
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Saeed Nourmohammadi
- Aquaporin Physiology and Drug Discovery Program, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Sam W Henderson
- Aquaporin Physiology and Drug Discovery Program, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Osheiza Abdulmalik
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Andrea J Yool
- Aquaporin Physiology and Drug Discovery Program, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
9
|
Subotički T, Mitrović Ajtić O, Djikić D, Kovačić M, Santibanez JF, Tošić M, Čokić VP. Nitric Oxide Mediation in Hydroxyurea and Nitric Oxide Metabolites' Inhibition of Erythroid Progenitor Growth. Biomolecules 2021; 11:1562. [PMID: 34827560 PMCID: PMC8616001 DOI: 10.3390/biom11111562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
In several systems, hydroxyurea has been shown to trigger nitric oxide (NO) release or activation of NO synthase (NOS). To elucidate this duality in its pharmacological effects, during myelosuppression, we individually examined hydroxyurea's (NO releasing agent) and NO metabolites' (stable NO degradation products) effects on erythroid colony growth and NOS/NO levels in mice using NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). Hydroxyurea and nitrite/nitrate decreased the bone marrow cellularity that was blocked by PTIO only for the NO metabolites. Hydroxyurea inhibition of colony-forming unit-erythroid (CFU-E) formation and reticulocytes was reversed by PTIO. Moreover, hydroxyurea, through a negative feedback mechanism, reduced inducible NOS (iNOS) expressing cells in CFU-E, also prevented by PTIO. Nitrate inhibition of burst-forming units-erythroid (BFU-E) colony growth was blocked by PTIO, but not in mature CFU-E. The presented results reveal that NO release and/or production mediates the hydroxyurea inhibition of mature erythroid colony growth and the frequency of iNOS immunoreactive CFU-E.
Collapse
Affiliation(s)
- Tijana Subotički
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (T.S.); (O.M.A.); (D.D.); (M.K.); (J.F.S.); (M.T.)
| | - Olivera Mitrović Ajtić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (T.S.); (O.M.A.); (D.D.); (M.K.); (J.F.S.); (M.T.)
| | - Dragoslava Djikić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (T.S.); (O.M.A.); (D.D.); (M.K.); (J.F.S.); (M.T.)
| | - Marijana Kovačić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (T.S.); (O.M.A.); (D.D.); (M.K.); (J.F.S.); (M.T.)
| | - Juan F. Santibanez
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (T.S.); (O.M.A.); (D.D.); (M.K.); (J.F.S.); (M.T.)
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Milica Tošić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (T.S.); (O.M.A.); (D.D.); (M.K.); (J.F.S.); (M.T.)
| | - Vladan P. Čokić
- Department of Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (T.S.); (O.M.A.); (D.D.); (M.K.); (J.F.S.); (M.T.)
| |
Collapse
|
10
|
Taylor CM, Kasztan M, Sedaka R, Molina PA, Dunaway LS, Pollock JS, Pollock DM. Hydroxyurea improves nitric oxide bioavailability in humanized sickle cell mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R630-R640. [PMID: 33624556 PMCID: PMC8163606 DOI: 10.1152/ajpregu.00205.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Despite advancements in disease management, sickle cell nephropathy, a major contributor to mortality and morbidity in patients, has limited therapeutic options. Previous studies indicate hydroxyurea, a commonly prescribed therapy for sickle cell disease (SCD), can reduce renal injury in SCD but the mechanisms are uncertain. Because SCD is associated with reduced nitric oxide (NO) bioavailability, we hypothesized that hydroxyurea treatment would improve NO bioavailability in the humanized sickle cell mouse. Humanized male 12-wk-old sickle (HbSS) and genetic control (HbAA) mice were treated with hydroxyurea or regular tap water for 2 wk before renal and systemic NO bioavailability as well as renal injury were assessed. Untreated HbSS mice exhibited increased proteinuria, elevated plasma endothelin-1 (ET-1), and reduced urine concentrating ability compared with HbAA mice. Hydroxyurea reduced proteinuria and plasma ET-1 levels in HbSS mice. Untreated HbSS mice had reduced plasma nitrite and elevated plasma arginase concentrations compared with HbAA mice. Hydroxyurea treatment augmented plasma nitrite and attenuated plasma arginase in HbSS mice. Renal vessels isolated from HbSS mice also had elevated nitric oxide synthase 3 (NOS3) and arginase 2 expression compared with untreated HbAA mice. Hydroxyurea treatment did not alter renal vascular NOS3, however, renal vascular arginase 2 expression was significantly reduced. These data support the hypothesis that hydroxyurea treatment augments renal and systemic NO bioavailability by reducing arginase activity as a potential mechanism for the improvement on renal injury seen in SCD mice.
Collapse
Affiliation(s)
- Crystal M Taylor
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata Kasztan
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Randee Sedaka
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Patrick A Molina
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Luke S Dunaway
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
11
|
Armenis I, Kalotychou V, Tzanetea R, Konstantopoulos K, Rombos I. The effect of endothelial Nitric Oxide Synthase G894T and T786C polymorphisms on Hypoxia-Inducible Factor-1 alpha expression in Sickle Cell Disease. Nitric Oxide 2021; 111-112:31-36. [PMID: 33812003 DOI: 10.1016/j.niox.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/01/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Hypoxia-Inducible Factor-1α (HIF-1α) expression is upregulated in Sickle Cell Disease (SCD) and correlates with various laboratory markers of disease severity. Nitric Oxide plays a pivotal role in SCD pathophysiology and endothelial Nitric Oxide Synthase (NOS3) polymorphisms affect prognosis and laboratory parameters. This study questions the effect of NOS3 G894T and T786C polymorphisms on HIF-1α expression in SCD. We show that G894T polymorphism is a significant predictor of HIF-1α expression. Its effect is exerted independently of hemolysis/hemoglobin fragment concentrations, as shown in multiple regression analysis. Our results establish a novel modulator of HIF-1α expression on the mRNA level and indirectly support the role of nitric oxide in the pathophysiology of SCD.
Collapse
Affiliation(s)
- Iakovos Armenis
- 1(st) Department of Internal Medicine, Laiko General Hospital, NKUA, Medical School, Agiou Thoma 17 Street, 11527, Athens, Greece; Department of Cardiology, Onassis Cardiac Surgery Center, Syggrou 356 Avenue, 17674, Kallithea, Greece.
| | - Vassiliki Kalotychou
- 1(st) Department of Internal Medicine, Laiko General Hospital, NKUA, Medical School, Agiou Thoma 17 Street, 11527, Athens, Greece
| | - Revekka Tzanetea
- 1(st) Department of Internal Medicine, Laiko General Hospital, NKUA, Medical School, Agiou Thoma 17 Street, 11527, Athens, Greece
| | - Kostas Konstantopoulos
- Department of Hematology, Laiko General Hospital, NKUA, Medical School, Agiou Thoma 17 Street, 11527, Athens, Greece
| | - Ioannis Rombos
- Department of Hematology, Metropolitan Hospital, Ethnarchou Makariou 9 Street, Piraeus, Greece
| |
Collapse
|
12
|
Figueiredo CVB, Santiago RP, da Guarda CC, Oliveira RM, Fiuza LM, Yahouédéhou SCMA, Carvalho SP, Neres JSDS, Oliveira AMDJ, Fonseca CA, Nascimento VML, Lyra IM, Aleluia MM, Goncalves MS. Priapism in sickle cell disease: Associations between NOS3 and EDN1 genetic polymorphisms and laboratory biomarkers. PLoS One 2021; 16:e0246067. [PMID: 33539452 PMCID: PMC7861393 DOI: 10.1371/journal.pone.0246067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
Priapism is a urologic emergency characterized by an uncontrolled, persistent and painful erection in the absence of sexual stimulation, which can lead to penile fibrosis and impotence. It is highly frequent in sickle cell disease (SCD) associated with hemolytic episodes. Our aim was to investigate molecules that may participate in the regulation of vascular tone. Eighty eight individuals with SCD were included, of whom thirty-seven reported a history of priapism. Priapism was found to be associated with alterations in laboratory biomarkers, as well as lower levels of HbF. Patients with sickle cell anemia using hydroxyurea and those who received blood products seemed to be less affected by priapism. Multivariate analysis suggested that low HbF and NOm were independently associated with priapism. The frequency of polymorphisms in genes NOS3 and EDN1 was not statistically significant between the studied groups, and the presence of the variant allele was not associated with alterations in NOm and ET-1 levels in patients with SCD. The presence of the variant allele in the polymorphisms investigated did not reveal any influence on the occurrence priapism. Future studies involving larger samples, as well as investigations including patients in priapism crisis, could contribute to an enhanced understanding of the development of priapism in SCD.
Collapse
Affiliation(s)
- Camylla Vilas Boas Figueiredo
- Instituto Gonçalo Moniz/Fundação Oswaldo Cruz, Salvador, Bahia, Brasil
- Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | - Rayra Pereira Santiago
- Instituto Gonçalo Moniz/Fundação Oswaldo Cruz, Salvador, Bahia, Brasil
- Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | - Caroline Conceição da Guarda
- Instituto Gonçalo Moniz/Fundação Oswaldo Cruz, Salvador, Bahia, Brasil
- Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | - Rodrigo Mota Oliveira
- Instituto Gonçalo Moniz/Fundação Oswaldo Cruz, Salvador, Bahia, Brasil
- Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | - Luciana Magalhães Fiuza
- Instituto Gonçalo Moniz/Fundação Oswaldo Cruz, Salvador, Bahia, Brasil
- Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | | | - Suéllen Pinheiro Carvalho
- Instituto Gonçalo Moniz/Fundação Oswaldo Cruz, Salvador, Bahia, Brasil
- Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | - Joelma Santana dos Santos Neres
- Instituto Gonçalo Moniz/Fundação Oswaldo Cruz, Salvador, Bahia, Brasil
- Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | | | | | | | - Isa Menezes Lyra
- Complexo Hospitalar Universitário Professor Edgard Santos, Salvador, Bahia, Brasil
| | | | - Marilda Souza Goncalves
- Instituto Gonçalo Moniz/Fundação Oswaldo Cruz, Salvador, Bahia, Brasil
- Universidade Federal da Bahia, Salvador, Bahia, Brasil
- * E-mail:
| |
Collapse
|
13
|
Hallmark L, Almeida LE, Kamimura S, Smith M, Quezado ZM. Nitric oxide and sickle cell disease-Is there a painful connection? Exp Biol Med (Maywood) 2020; 246:332-341. [PMID: 33517776 DOI: 10.1177/1535370220976397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sickle cell disease is the most common hemoglobinopathy and affects millions worldwide. The disease is associated with severe organ dysfunction, acute and chronic pain, and significantly decreased life expectancy. The large body of work demonstrating that hemolysis results in rapid consumption of the endogenous vasodilator nitric oxide, decreased nitric oxide production, and promotion of vaso-occlusion provides the basis for the hypothesis that nitric oxide bioavailability is reduced in sickle cell disease and that this deficit plays a role in sickle cell disease pain. Despite initial promising results, large clinical trials using strategies to increase nitric oxide bioavailability in sickle cell disease patients yielded no significant change in duration or frequency of acute pain crises. Further, recent investigations showed that sickle cell disease patients and mouse models have elevated baseline levels of blood nitrite, a reservoir for nitric oxide formation and a product of nitric oxide metabolism, regardless of pain phenotype. These conflicting results challenge the hypotheses that nitric oxide bioavailability is decreased and that it plays a significant role in the pathogenesis in sickle cell disease acute pain crises. Conversely, a large body of work demonstrates that nitric oxide, as a neurotransmitter, has a complex role in pain neurobiology, contributes to the development of central sensitization, and can mediate hyperalgesia in inflammatory and neuropathic pain. These results support an alternative hypothesis: one proposing that altered nitric oxide signaling may contribute to the development of neuropathic and/or inflammatory pain in sickle cell disease through its role as a neurotransmitter.
Collapse
Affiliation(s)
- Lillian Hallmark
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis Ef Almeida
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann Smith
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zenaide Mn Quezado
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|