1
|
Zharova NV, Osadchiy AS, Lobanova AK, Isakova TA, Zharov NA, Zharikov YO, Pontes-Silva A, Zharikova TS. Functional Anatomy of the Structures of the Limbic System Involved in the Development of Neuropsychiatric Disorders: A Review. Curr Behav Neurosci Rep 2025; 12:1. [DOI: 10.1007/s40473-024-00291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 05/03/2025]
|
2
|
Pan Y, Cai Z, Wang Y, Zhang J, Sheng H, Shao D, Cui D, Guo X, Zheng P, Lai B. Formation of chronic morphine withdrawal memories requires C1QL3-mediated regulation of PSD95 in the mouse basolateral amygdala. Biochem Biophys Res Commun 2024; 720:150076. [PMID: 38772224 DOI: 10.1016/j.bbrc.2024.150076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
Chronic morphine withdrawal memory formation is a complex process influenced by various molecular mechanisms. In this study, we aimed to investigate the contributions of the basolateral amygdala (BLA) and complement component 1, q subcomponent-like 3 (C1QL3), a secreted and presynaptically targeted protein, to the formation of chronic morphine (repeat dosing of morphine) withdrawal memory using conditioned place aversion (CPA) and chemogenetic methods. We conducted experiments involving the inhibition of the BLA during naloxone-induced withdrawal to assess its impact on CPA scores, providing insights into the significance of the BLA in the chronic morphine memory formation process. We also examined changes in C1ql3/C1QL3 expression within the BLA following conditioning. Immunofluorescence analysis revealed the colocalization of C1QL3 and the G protein-coupled receptor, brain-specific angiogenesis inhibitor 3 (BAI3) in the BLA, supporting their involvement in synaptic development. Moreover, we downregulated C1QL3 expression in the BLA to investigate its role in chronic morphine withdrawal memory formation. Our findings revealed that BLA inhibition during naloxone-induced withdrawal led to a significant reduction in CPA scores, confirming the critical role of the BLA in this memory process. Additionally, the upregulation of C1ql3 expression within the BLA postconditioning suggested its participation in withdrawal memory formation. The colocalization of C1QL3 and BAI3 in the BLA further supported their involvement in synaptic development. Furthermore, downregulation of C1QL3 in the BLA effectively hindered chronic morphine withdrawal memory formation, emphasizing its pivotal role in this process. Notably, we identified postsynaptic density protein 95 (PSD95) as a potential downstream effector of C1QL3 during chronic morphine withdrawal memory formation. Blocking PSD95 led to a significant reduction in the CPA score, and it appeared that C1QL3 modulated the ubiquitination-mediated degradation of PSD95, resulting in decreased PSD95 protein levels. This study underscores the importance of the BLA, C1QL3 and PSD95 in chronic morphine withdrawal memory formation. It provides valuable insights into the underlying molecular mechanisms, emphasizing their significance in this intricate process.
Collapse
Affiliation(s)
- Yan Pan
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| | - Zhangyin Cai
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yingqi Wang
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Junfang Zhang
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Huan Sheng
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Da Shao
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Dongyang Cui
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xinli Guo
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Ping Zheng
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Bin Lai
- MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Stoliker D, Novelli L, Vollenweider FX, Egan GF, Preller KH, Razi A. Neural Mechanisms of Resting-State Networks and the Amygdala Underlying the Cognitive and Emotional Effects of Psilocybin. Biol Psychiatry 2024; 96:57-66. [PMID: 38185235 DOI: 10.1016/j.biopsych.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Serotonergic psychedelics, such as psilocybin, alter perceptual and cognitive systems that are functionally integrated with the amygdala. These changes can alter cognition and emotions that are hypothesized to contribute to their therapeutic utility. However, the neural mechanisms of cognitive and subcortical systems altered by psychedelics are not well understood. METHODS We used resting-state functional magnetic resonance images collected during a randomized, double-blind, placebo-controlled clinical trial of 24 healthy adults under 0.2 mg/kg psilocybin to estimate the directed (i.e., effective) changes between the amygdala and 3 large-scale resting-state networks involved in cognition. These networks are the default mode network, the salience network, and the central executive network. RESULTS We found a pattern of decreased top-down effective connectivity from these resting-state networks to the amygdala. Effective connectivity decreased within the default mode network and salience network but increased within the central executive network. These changes in effective connectivity were statistically associated with behavioral measures of altered cognition and emotion under the influence of psilocybin. CONCLUSIONS Our findings suggest that temporary amygdala signal attenuation is associated with mechanistic changes to resting-state network connectivity. These changes are significant for altered cognition and perception and suggest targets for research investigating the efficacy of psychedelic therapy for internalizing psychiatric disorders. More broadly, our study suggests the value of quantifying the brain's hierarchical organization using effective connectivity to identify important mechanisms for basic cognitive function and how they are integrated to give rise to subjective experiences.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Leonardo Novelli
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Franz X Vollenweider
- Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Gary F Egan
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Katrin H Preller
- Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Yang H, Zhang X, Zhang M, Lu Y, Xie B, Sun S, Yu H, Cong B, Luo Y, Ma C, Wen D. Roles of lncLingo2 and its derived miR-876-5p in the acquisition of opioid reinforcement. Addict Biol 2024; 29:e13375. [PMID: 38380802 PMCID: PMC10898844 DOI: 10.1111/adb.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Recent studies found that non-coding RNAs (ncRNAs) played crucial roles in drug addiction through epigenetic regulation of gene expression and underlying drug-induced neuroadaptations. In this study, we characterized lncRNA transcriptome profiles in the nucleus accumbens (NAc) of mice exhibiting morphine-conditioned place preference (CPP) and explored the prospective roles of novel differentially expressed lncRNA, lncLingo2 and its derived miR-876-5p in the acquisition of opioids-associated behaviours. We found that the lncLingo2 was downregulated within the NAc core (NAcC) but not in the NAc shell (NAcS). This downregulation was found to be associated with the development of morphine CPP and heroin intravenous self-administration (IVSA). As Mfold software revealed that the secondary structures of lncLingo2 contained the sequence of pre-miR-876, transfection of LV-lncLingo2 into HEK293 cells significantly upregulated miR-876 expression and the changes of mature miR-876 are positively correlated with lncLingo2 expression in NAcC of morphine CPP trained mice. Delivering miR-876-5p mimics into NAcC also inhibited the acquisition of morphine CPP. Furthermore, bioinformatics analysis and dual-luciferase assay confirmed that miR-876-5p binds to its target gene, Kcnn3, selectively and regulates morphine CPP training-induced alteration of Kcnn3 expression. Lastly, the electrophysiological analysis indicated that the currents of small conductance calcium-activated potassium (SK) channel was increased, which led to low neuronal excitability in NAcC after CPP training, and these changes were reversed by lncLingo2 overexpression. Collectively, lncLingo2 may function as a precursor of miR-876-5p in NAcC, hence modulating the development of opioid-associated behaviours in mice, which may serve as an underlying biomarker and therapeutic target of opioid addiction.
Collapse
Affiliation(s)
- Hongyu Yang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Xiuning Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Minglong Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Department of GeneticsQiqihar Medical UniversityQiqiharHeilongjiang ProvinceChina
| | - Yun Lu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei ProvinceHebei Medical UniversityShijiazhuangChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| | - Hailei Yu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Yixiao Luo
- Hunan Province People's HospitalThe First‐Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| |
Collapse
|
5
|
Liu X, Wang F, Le Q, Ma L. Cellular and molecular basis of drug addiction: The role of neuronal ensembles in addiction. Curr Opin Neurobiol 2023; 83:102813. [PMID: 37972536 DOI: 10.1016/j.conb.2023.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Addiction has been conceptualized as a disease of learning and memory. Learned associations between environmental cues and unconditioned rewards induced by drug administration, which play a critical role in addiction, have been shown to be encoded in sparsely distributed populations of neurons called neuronal ensembles. This review aims to highlight how synaptic remodeling and alterations in signaling pathways that occur specifically in neuronal ensembles contribute to the pathogenesis of addiction. Furthermore, a causal link between transcriptional and epigenetic modifications in neuronal ensembles and the development of the addictive state is proposed. Translational studies of molecular and cellular changes in neuronal ensembles that contribute to drug-seeking behavior, will allow the identification of molecular and circuit targets and interventions for substance use disorders.
Collapse
Affiliation(s)
- Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China.
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| |
Collapse
|
6
|
Xie Y, Zhang Y, Hu T, Zhao Z, Liu Q, Li H. Inhibition of Glycogen Synthase Kinase 3β Activity in the Basolateral Amygdala Disrupts Reconsolidation and Attenuates Heroin Relapse. Front Mol Neurosci 2022; 15:932939. [PMID: 35832395 PMCID: PMC9271698 DOI: 10.3389/fnmol.2022.932939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Exposure to a heroin-associated conditioned stimulus can reactivate drug reward memory, trigger drug cravings, and induce relapse in heroin addicts. The amygdala, a brain region related to emotions and motivation, is involved in processing rewarding stimulus. Recent evidence demonstrated that disrupting the reconsolidation of the heroin drug memories attenuated heroin seeking which was associated with the basolateral amygdala (BLA). Meanwhile, neural functions associated with learning and memory, like synaptic plasticity, are regulated by glycogen synthase kinase 3 beta (GSK-3β). In addition, GSK-3β regulated memory processes, like retrieval and reconsolidation of cocaine-induced memory. Here, we used a heroin intravenous self-administration (SA) paradigm to illustrate the potential role of GSK-3β in the reconsolidation of drug memory. Therefore, we used SB216763 as a selective inhibitor of GSK-3β. We found that injecting the selective inhibitor SB216763 into the BLA, but not the central amygdala (CeA), immediately after heroin-induced memory retrieval disrupted reconsolidation of heroin drug memory and significantly attenuated heroin-seeking behavior in subsequent drug-primed reinstatement, suggesting that GSK-3β is critical for reconsolidation of heroin drug memories and inhibiting the activity of GSK-3β in BLA disrupted heroin drug memory and reduced relapse. However, no retrieval or 6 h after retrieval, administration of SB216763 into the BLA did not alter heroin-seeking behavior in subsequent heroin-primed reinstatement, suggesting that GSK-3β activity is retrieval-dependent and time-specific. More importantly, a long-term effect of SB216763 treatment was observed in a detectable decrease in heroin-seeking behavior, which lasted at least 28 days. All in all, this present study demonstrates that the activity of GSK-3β in BLA is required for reconsolidation of heroin drug memory, and inhibiting GSK-3β activity of BLA disrupts reconsolidation and attenuates heroin relapse.
Collapse
Affiliation(s)
- Yuanyang Xie
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Yingfan Zhang
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- *Correspondence: Haoyu Li,
| |
Collapse
|
7
|
Effects of heroin self-administration and forced withdrawal on the expression of genes related to the mTOR network in the basolateral complex of the amygdala of male Lewis rats. Psychopharmacology (Berl) 2022; 239:2559-2571. [PMID: 35467104 PMCID: PMC9293846 DOI: 10.1007/s00213-022-06144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/11/2022] [Indexed: 10/26/2022]
Abstract
RATIONALE The development of substance use disorders involves long-lasting adaptations in specific brain areas that result in an elevated risk of relapse. Some of these adaptations are regulated by the mTOR network, a signalling system that integrates extracellular and intracellular stimuli and modulates several processes related to plasticity. While the role of the mTOR network in cocaine- and alcohol-related disorders is well established, little is known about its participation in opiate use disorders. OBJECTIVES To use a heroin self-administration and a withdrawal protocol that induce incubation of heroin-seeking in male rats and study the associated effects on the expression of several genes related to the mTOR system and, in the specific case of Rictor, its respective translated protein and phosphorylation. RESULTS We found that heroin self-administration elicited an increase in the expression of the genes Igf1r, Igf2r, Akt2 and Gsk3a in the basolateral complex of the amygdala, which was not as evident at 30 days of withdrawal. We also found an increase in the expression of Rictor (a protein of the mTOR complex 2) after heroin self-administration compared to the saline group, which was occluded at the 30-day withdrawal period. The activation levels of Rictor, measured by the phosphorylation rate, were also reduced after heroin self-administration, an effect that seemed more apparent in the protracted withdrawal group. CONCLUSIONS These results suggest that heroin self-administration under extended access conditions modifies the expression profile of activators and components of the mTOR complexes and show a putative irresponsive mTOR complex 2 after withdrawal from heroin use.
Collapse
|
8
|
Mostafavi H, Dadashi M, Armani Kia A, Ahmadi D, Pirzeh R, Eskandari Z. The effect of bilateral tDCS over dorsolateral prefrontal cortex on the cognitive abilities of men with opioid use disorder under methadone therapy: A sham-controlled clinical trial. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background/aim
Opioid use disorder (OUD) can have negative impact on cognitive functions. This study aims to evaluate the effect of bilateral transcranial direct-current stimulation (tDCS) over the right/left dorsolateral prefrontal cortex (DLPFC) on the cognitive abilities of OUD men.
Methods
This study is a double-blind sham-controlled randomized clinical trial with a pretest/posttest design. Participants were 31 men with OUD living in Zanjan, Iran, assigned to three groups of left anode/right cathode tDCS, right anode/left cathode tDCS, and sham tDCS. The two active groups received tDCS (2 mA) at 10 sessions each for 10–20 min. The Cognitive Abilities Questionnaire (CAQ) in Persian was used to measure their cognitive abilities before and after intervention. Collected data were analyzed in SPSS v.22 software.
Results
Bilateral DLPFC stimulation resulted in a significant improvement in cognitive flexibility, planning, decision making, inhibitory control/selective attention, and memory of patients in the two active tDCS groups, while the sham tDCS had no significant effect on their cognitive abilities.
Conclusion
Bilateral tDCS over DLPFC, as an effective and complementary treatment, can improve the cognitive abilities of men with OUD.
Trial registration: This study is a double-blind sham-controlled clinical trial (Parallel, IRCT20170513033946N5. Registered 19 Jan 2019, https://en.irct.ir/trial/36081).
Collapse
|
9
|
Zhang F, Huang S, Bu H, Zhou Y, Chen L, Kang Z, Chen L, Yan H, Yang C, Yan J, Jian X, Luo Y. Disrupting Reconsolidation by Systemic Inhibition of mTOR Kinase via Rapamycin Reduces Cocaine-Seeking Behavior. Front Pharmacol 2021; 12:652865. [PMID: 33897438 PMCID: PMC8064688 DOI: 10.3389/fphar.2021.652865] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
Drug addiction is considered maladaptive learning, and drug-related memories aroused by the presence of drug related stimuli (drug context or drug-associated cues) promote recurring craving and reinstatement of drug seeking. The mammalian target of rapamycin signaling pathway is involved in reconsolidation of drug memories in conditioned place preference and alcohol self-administration (SA) paradigms. Here, we explored the effect of mTOR inhibition on reconsolidation of addiction memory using cocaine self-administration paradigm. Rats received intravenous cocaine self-administration training for 10 consecutive days, during which a light/tone conditioned stimulus was paired with each cocaine infusion. After acquisition of the stable cocaine self-administration behaviors, rats were subjected to nosepoke extinction (11 days) to extinguish their behaviors, and then received a 15 min retrieval trial with or without the cocaine-paired tone/light cue delivery or without. Immediately or 6 h after the retrieval trial, rapamycin (10 mg/kg) was administered intraperitoneally. Finally, cue-induced reinstatement, cocaine-priming-induced reinstatement and spontaneous recovery of cocaine-seeking behaviors were assessed in rapamycin previously treated animals, respectively. We found that rapamycin treatment immediately after a retrieval trial decreased subsequent reinstatement of cocaine seeking induced by cues or cocaine itself, and these effects lasted at least for 28 days. In contrast, delayed intraperitoneal injection of rapamycin 6 h after retrieval or rapamycin injection without retrieval had no effects on cocaine-seeking behaviors. These findings indicated that mTOR inhibition within the reconsolidation time-window impairs the reconsolidation of cocaine associated memory, reduces cocaine-seeking behavior and prevents relapse, and these effects are retrieval-dependent and temporal-specific.
Collapse
Affiliation(s)
- Fushen Zhang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Haiyan Bu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yu Zhou
- Yiyang Medical College, Yiyang, China
| | - Lixiang Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Ziliu Kang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | | | - He Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Chang Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiaohong Jian
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
10
|
Yuan K, Cao L, Xue Y, Luo Y, Liu X, Kong F, Tabarak S, Liao F, Meng S, Han Y, Wu P, Bao Y, Zhang W, Lu L, Shi J. Basolateral amygdala is required for reconsolidation updating of heroin-associated memory after prolonged withdrawal. Addict Biol 2020; 25:e12793. [PMID: 31339209 DOI: 10.1111/adb.12793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/06/2019] [Accepted: 05/23/2019] [Indexed: 11/27/2022]
Abstract
Postretrieval extinction procedures are effective nonpharmacological interventions for disrupting drug-associated memories. Nonetheless, the conditioned stimulus (CS) memory retrieval-extinction procedure is ineffective in inhibiting drug craving and relapse after prolonged withdrawal, which significantly undermines its therapeutic potential. In the present study, we showed that, unlike the CS memory retrieval-extinction procedure, noncontingent heroin injections (unconditioned stimulus [UCS]) 1 hour before the extinction sessions decreased the heroin-priming-induced reinstatement, renewal, and spontaneous recovery of heroin seeking after 28 days of withdrawal (ie, remote heroin-associated memories) in rats. The UCS retrieval manipulation induced reactivation of the basolateral amygdala (BLA) after prolonged withdrawal, and this reactivation was absent with the CS retrieval manipulation. Chemogenetic inactivation of the BLA abolished the inhibitory effect of the UCS memory retrieval-extinction procedure on heroin-priming-induced reinstatement after prolonged withdrawal. Furthermore, the combination of chemogenetic reactivation of BLA and CS retrieval-extinction procedure resembled the inhibitory effect of UCS retrieval-extinction procedure on heroin seeking after prolonged withdrawal. We also observed that the inhibitory effect of the UCS retrieval-extinction procedure is mediated by regulation of AMPA receptor endocytosis in the BLA. Our results demonstrate critical engagement of the BLA in reconsolidation updating of heroin-associated memory after prolonged withdrawal, extending our knowledge of the boundary conditions of the reconsolidation of drug-associated memories.
Collapse
Affiliation(s)
- Kai Yuan
- Peking University Sixth Hospital/Peking University Institute of Mental Health Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences and PKU‐IDG/McGovern Institute for Brain Research Peking University Beijing China
| | - Lu Cao
- Peking University Sixth Hospital/Peking University Institute of Mental Health Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences and PKU‐IDG/McGovern Institute for Brain Research Peking University Beijing China
| | - Yan‐Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| | - Yi‐Xiao Luo
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| | - Xiao‐Xing Liu
- Peking University Sixth Hospital/Peking University Institute of Mental Health Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences and PKU‐IDG/McGovern Institute for Brain Research Peking University Beijing China
| | - Fan‐Ni Kong
- Peking University Sixth Hospital/Peking University Institute of Mental Health Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences and PKU‐IDG/McGovern Institute for Brain Research Peking University Beijing China
| | - Serik Tabarak
- Peking University Sixth Hospital/Peking University Institute of Mental Health Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences and PKU‐IDG/McGovern Institute for Brain Research Peking University Beijing China
| | - Fan Liao
- Peking University Sixth Hospital/Peking University Institute of Mental Health Peking University Beijing China
| | - Shi‐Qiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| | - Ping Wu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| | - Yan‐Ping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| | - Lin Lu
- Peking University Sixth Hospital/Peking University Institute of Mental Health Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences and PKU‐IDG/McGovern Institute for Brain Research Peking University Beijing China
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) Peking University Beijing China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| |
Collapse
|
11
|
Jones PW, Thornton AE, Jones AA, Knerich VM, Lang DJ, Woodward ML, Panenka WJ, Su W, Barr AM, Buchanan T, Honer WG, Gicas KM. Amygdala Nuclei Volumes Are Selectively Associated With Social Network Size in Homeless and Precariously Housed Persons. Front Behav Neurosci 2020; 14:97. [PMID: 32612516 PMCID: PMC7309349 DOI: 10.3389/fnbeh.2020.00097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: The amygdala is a brain region comprised of a group of functionally distinct nuclei that play a central role in social behavior. In homeless and precariously housed individuals, high rates of multimorbidity, and structural aspects of the environment may dysregulate social functioning. This study examined the neurobiological substrates of social connection in homeless and precariously housed persons by examining associations between amygdala nuclei volumes and social network size. Methods: Sixty participants (mean age 43.6 years; 73.3% male) were enrolled from an ongoing study of homeless and precariously housed adults in Vancouver, Canada. Social network size was assessed using the Arizona Social Support Interview Schedule. Amygdala nuclei volumes were extracted from anatomic T1-weighted MRI data. The central and basolateral amygdala nuclei were selected as they are implicated in anxiety-related and social behaviors. The hippocampus was included as a control brain region. Multivariable regression analysis investigated the relationship between amygdala nuclei volumes and social network size. Results: After controlling for age, sex, and total brain volume, individuals with the larger amygdala and central nucleus volumes had a larger network size. This association was not observed for the basolateral amygdala complex, though subsequent analysis found the basal and accessory basal nuclei of the basolateral amygdala were significantly associated with social network size. No association was found for the lateral amygdala nucleus or hippocampus. Conclusions: These findings suggest that select amygdala nuclei may be differentially involved in the social connections of persons with multimorbid illness and social marginalization.
Collapse
Affiliation(s)
- Paul W. Jones
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | - Allen E. Thornton
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | - Andrea A. Jones
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Verena M. Knerich
- Department of Computer Science, Ludwig Maximilians University, Munich, Germany
| | - Donna J. Lang
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Melissa L. Woodward
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - William J. Panenka
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Wayne Su
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Alasdair M. Barr
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Tari Buchanan
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - William G. Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Kristina M. Gicas
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
12
|
Chen YY, Zhang LB, Li Y, Meng SQ, Gong YM, Lu L, Xue YX, Shi J. Post-retrieval Extinction Prevents Reconsolidation of Methamphetamine Memory Traces and Subsequent Reinstatement of Methamphetamine Seeking. Front Mol Neurosci 2019; 12:157. [PMID: 31312119 PMCID: PMC6614190 DOI: 10.3389/fnmol.2019.00157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022] Open
Abstract
Methamphetamine abuse has become a serious public health problem. However, effective treatment for methamphetamine addiction remains elusive, especially considering its high rate of relapse after treatment. A conditioned stimulus (CS) memory retrieval–extinction procedure has been demonstrated to decrease reinstatement of cocaine, heroin, and alcohol seeking in rats, and to reduce cue-induced cravings in heroin and nicotine addicts. The goal of the present study is to explore the effect of the CS memory retrieval–extinction procedure on methamphetamine seeking in rats and the underlying mechanisms. We found that daily retrieval of methamphetamine-associated memories 1 h before extinction sessions decreased subsequent drug priming-induced reinstatement, spontaneous recovery, and renewal of methamphetamine seeking. We also found that retrieval of methamphetamine-associated memories induced neuronal activation in the basolateral amygdala (BLA), while presenting extinction within the time window of reconsolidation abolished the neuronal activation in BLA. These results indicate that the CS memory retrieval–extinction procedure could prevent reconsolidation of methamphetamine memory traces in BLA and subsequent methamphetamine craving and relapse.
Collapse
Affiliation(s)
- Ya-Yun Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Beijing Key Laboratory of Drug Dependence, National Institute on Drug Dependence, Peking University, Beijing, China
| | - Li-Bo Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Beijing Key Laboratory of Drug Dependence, National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yue Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Beijing Key Laboratory of Drug Dependence, National Institute on Drug Dependence, Peking University, Beijing, China
| | - Shi-Qiu Meng
- Beijing Key Laboratory of Drug Dependence, National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yi-Miao Gong
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Lin Lu
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Peking University Sixth Hospital/Peking University Institute of Mental Health, Peking University, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yan-Xue Xue
- Beijing Key Laboratory of Drug Dependence, National Institute on Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- Beijing Key Laboratory of Drug Dependence, National Institute on Drug Dependence, Peking University, Beijing, China
| |
Collapse
|
13
|
Ucha M, Coria SM, Núñez AE, Santos-Toscano R, Roura-Martínez D, Fernández-Ruiz J, Higuera-Matas A, Ambrosio E. Morphine self-administration alters the expression of translational machinery genes in the amygdala of male Lewis rats. J Psychopharmacol 2019; 33:882-893. [PMID: 30887859 DOI: 10.1177/0269881119836206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Addiction is a chronic disorder with a high risk of relapse. The neural mechanisms mediating addictions require protein synthesis, which could be relevant for the development of more effective treatments. The mTOR signaling pathway regulates protein synthesis processes that have recently been linked to the development of drug addiction. AIMS To assess the effects of morphine self-administration and its subsequent extinction on the expression of several genes that act in this pathway, and on the levels of specific phosphoproteins (Akt, Gsk3α/β, mTOR, PDK1 and p70 S6 kinase) in the amygdala, nucleus accumbens, and the prefrontal cortex. METHODS Male Lewis rats underwent morphine self-administration (1 mg/kg) for 19 days. They subsequently were submitted to extinction training for 15 days. Rats were killed either after self-administration or extinction, their brains extracted, and gene expression or phosphoprotein levels were assessed. RESULTS We found an increase in Raptor and Eif4ebp2 expression in the amygdala of rats that self-administered morphine, even after extinction. The expression of Insr in the amygdala of control animals decreased over time while the opposite effect was seen in the rats that self-administered morphine. CONCLUSIONS Our results suggest that morphine self-administration affects the gene expression of some elements of the translational machinery in the amygdala.
Collapse
Affiliation(s)
- Marcos Ucha
- 1 Department of Psychobiology, School of Psychology, UNED, Madrid, Spain
| | - Santiago M Coria
- 1 Department of Psychobiology, School of Psychology, UNED, Madrid, Spain
| | - Adrián E Núñez
- 2 Laboratorio de Neuropsicología de las Adicciones, Universidad de Guadalajara, Zapopan, México
| | - Raquel Santos-Toscano
- 1 Department of Psychobiology, School of Psychology, UNED, Madrid, Spain
- 3 School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | | | - Javier Fernández-Ruiz
- 4 Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- 5 CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Emilio Ambrosio
- 1 Department of Psychobiology, School of Psychology, UNED, Madrid, Spain
| |
Collapse
|
14
|
Opposing roles for amygdala and vmPFC in the return of appetitive conditioned responses in humans. Transl Psychiatry 2019; 9:148. [PMID: 31113931 PMCID: PMC6529434 DOI: 10.1038/s41398-019-0482-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Learning accounts of addiction and obesity emphasize the persistent power of Pavlovian reward cues to trigger craving and increase relapse risk. While extinction can reduce conditioned responding, Pavlovian relapse phenomena-the return of conditioned responding following successful extinction-challenge the long-term success of extinction-based treatments. Translational laboratory models of Pavlovian relapse could therefore represent a valuable tool to investigate the mechanisms mediating relapse, although so far human research has mostly focused on return of fear phenomena. To this end we developed an appetitive conditioning paradigm with liquid food rewards in combination with a 3-day design to investigate the return of appetitive Pavlovian responses and the involved neural structures in healthy subjects. Pavlovian conditioning (day 1) was assessed in 62 participants, and a subsample (n = 33) further completed extinction (day 2) and a reinstatement test (day 3). Conditioned responding was assessed on explicit (pleasantness ratings) and implicit measures (reaction time, skin conductance, heart rate, startle response) and reinstatement effects were further evaluated using fMRI. We observed a return of conditioned responding during the reinstatement test, evident by enhanced skin conductance responses, accompanied by enhanced BOLD responses in the amygdala. On an individual level, psychophysiological reinstatement intensity was significantly anticorrelated with ventromedial prefrontal cortex (vmPFC) activation, and marginally anticorrelated with enhanced amygdala-vmPFC connectivity during late reinstatement. Our results extend evidence from return of fear phenomena to the appetitive domain, and highlight the role of the vmPFC and its functional connection with the amygdala in regulating appetitive Pavlovian relapse.
Collapse
|
15
|
Tirgar F, Rezayof A, Alijanpour S, Yazdanbakhsh N. Interactive effects of morphine and nicotine on memory function depend on the central amygdala cannabinoid CB1 receptor function in rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:62-68. [PMID: 29203303 DOI: 10.1016/j.pnpbp.2017.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/23/2017] [Accepted: 11/30/2017] [Indexed: 11/25/2022]
Abstract
The present study investigated the possible involvement of the central amygdala (CeA) cannabinoid receptors type-1 (CB1Rs) in the interactive effects of morphine and nicotine on memory formation in a passive avoidance learning task. Our results showed that systemic administration of morphine (3 and 6mg/kg, s.c.) immediately after training phase impaired memory consolidation and induced amnesia. Administration of nicotine (0.3 and 0.6mg/kg, s.c.) before testing phase significantly restored morphine-induced amnesia, suggesting a cross state-dependent learning between morphine and nicotine. The results showed that while the administration of the lower dose of nicotine (0.1mg/kg, s.c.) per se did not induce a significant effect on morphine-induced amnesia, intra-CeA injection of arachidonylcyclopropylamide (ACPA), a cannabinoid CB1 receptor agonist (3 and 4ng/rat), significantly potentiated the nicotine response. Furthermore, the blockade of the CeA cannabinoid CB1 receptors by the injection of AM251 (0.75 and 1ng/rat) reversed the potentiative effect of nicotine (0.6mg/kg, s.c.) on morphine-induced amnesia. It should be considered that bilateral injection of the same doses of ACPA or AM251 (0.5-1ng/rat) into the CeA by itself had no effect on morphine response in a passive avoidance learning task. Confirmed by the cubic interpolation planes, the dose-response data revealed a cross-state-dependent learning between morphine and nicotine which may be mediated by the CeA endocannabinoid system via CB1 receptors.
Collapse
Affiliation(s)
- Fatemeh Tirgar
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Nima Yazdanbakhsh
- School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
16
|
NCS-Rapgef2, the Protein Product of the Neuronal Rapgef2 Gene, Is a Specific Activator of D1 Dopamine Receptor-Dependent ERK Phosphorylation in Mouse Brain. eNeuro 2017; 4:eN-NWR-0248-17. [PMID: 28948210 PMCID: PMC5611689 DOI: 10.1523/eneuro.0248-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 01/11/2023] Open
Abstract
The neuritogenic cAMP sensor (NCS), encoded by the Rapgef2 gene, links cAMP elevation to activation of extracellular signal-regulated kinase (ERK) in neurons and neuroendocrine cells. Transducing human embryonic kidney (HEK)293 cells, which do not express Rapgef2 protein or respond to cAMP with ERK phosphorylation, with a vector encoding a Rapgef2 cDNA reconstituted cAMP-dependent ERK activation. Mutation of a single residue in the cyclic nucleotide-binding domain (CNBD) conserved across cAMP-binding proteins abrogated cAMP-ERK coupling, while deletion of the CNBD altogether resulted in constitutive ERK activation. Two types of mRNA are transcribed from Rapgef2 in vivo. Rapgef2 protein expression was limited to tissues, i.e., neuronal and endocrine, expressing the second type of mRNA, initiated exclusively from an alternative first exon called here exon 1’, and an alternative 5’ protein sequence leader fused to a common remaining open reading frame, which is termed here NCS-Rapgef2. In the male mouse brain, NCS-Rapgef2 is prominently expressed in corticolimbic excitatory neurons, and striatal medium spiny neurons (MSNs). Rapgef2-dependent ERK activation by the dopamine D1 agonist SKF81297 occurred in neuroendocrine neuroscreen-1 (NS-1) cells expressing the human D1 receptor and was abolished by deletion of Rapgef2. Corticolimbic [e.g., dentate gyrus (DG), basolateral amygdala (BLA)] ERK phosphorylation induced by SKF81297 was significantly attenuated in CamK2α-Cre+/−; Rapgef2cko/cko male mice. ERK phosphorylation in nucleus accumbens (NAc) MSNs induced by treatment with SKF81297, or the psychostimulants cocaine or amphetamine, was abolished in male Rapgef2cko/cko mice with NAc NCS-Rapgef2-depleting AAV-Synapsin-Cre injections. We conclude that D1-dependent ERK phosphorylation in mouse brain requires NCS-Rapgef2 expression.
Collapse
|
17
|
Ebrahimi C, Koch SP, Friedel E, Crespo I, Fydrich T, Ströhle A, Heinz A, Schlagenhauf F. Combining D-cycloserine with appetitive extinction learning modulates amygdala activity during recall. Neurobiol Learn Mem 2017; 142:209-217. [PMID: 28512009 DOI: 10.1016/j.nlm.2017.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/07/2017] [Accepted: 05/12/2017] [Indexed: 01/23/2023]
Abstract
Appetitive Pavlovian conditioning plays a crucial role in the pathogenesis of drug addiction and conditioned reward cues can trigger craving and relapse even after long phases of abstinence. Promising preclinical work showed that the NMDA-receptor partial agonist D-cycloserine (DCS) facilitates Pavlovian extinction learning of fear and drug cues. Furthermore, DCS-augmented exposure therapy seems to be beneficial in various anxiety disorders, while the supposed working mechanism of DCS during human appetitive or aversive extinction learning is still not confirmed. To test the hypothesis that DCS administration before extinction training improves extinction learning, healthy adults (n=32) underwent conditioning, extinction, and extinction recall on three successive days in a randomized, double-blind, placebo-controlled fMRI design. Monetary wins and losses served as unconditioned stimuli during conditioning to probe appetitive and aversive learning. An oral dose of 50mg of DCS or placebo was administered 1h before extinction training and DCS effects during extinction recall were evaluated on a behavioral and neuronal level. We found attenuated amygdala activation in the DCS compared to the placebo group during recall of the extinguished appetitive cue, along with evidence for enhanced functional amygdala-vmPFC coupling in the DCS group. While the absence of additional physiological measures of conditioned responses during recall in this study prevent the evaluation of a behavioral DCS effect, our neuronal findings are in accordance with recent theories linking successful extinction recall in humans to modulatory top-down influences from the vmPFC that inhibit amygdala activation. Our results should encourage further translational studies concerning the usefulness of DCS to target maladaptive Pavlovian reward associations.
Collapse
Affiliation(s)
- Claudia Ebrahimi
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Stefan P Koch
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Eva Friedel
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ilsoray Crespo
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Thomas Fydrich
- Department of Psychology, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Cluster of Excellence NeuroCure, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Florian Schlagenhauf
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, 04303 Leipzig, Germany
| |
Collapse
|
18
|
Liu JF, Siemian JN, Seaman R, Zhang Y, Li JX. Role of TAAR1 within the Subregions of the Mesocorticolimbic Dopaminergic System in Cocaine-Seeking Behavior. J Neurosci 2017; 37:882-892. [PMID: 28123023 PMCID: PMC5296782 DOI: 10.1523/jneurosci.2006-16.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/29/2016] [Accepted: 12/10/2016] [Indexed: 01/02/2023] Open
Abstract
A novel G-protein coupled receptor, trace amine-associated receptor 1 (TAAR1), has been shown to be a promising target to prevent stimulant relapse. Our recent studies showed that systemic administration of TAAR1 agonists decreased abuse-related behaviors of cocaine. However, the role of TAAR1 in specific subregions of the reward system in drug addiction is unknown. Here, using a local pharmacological activation method, we assessed the role of TAAR1 within the subregions of the mesocorticolimbic system: that is, the VTA, the prelimbic cortex (PrL), and infralimbic cortex of medial prefrontal cortex, the core and shell of NAc, BLA, and CeA, on cue- and drug-induced cocaine-seeking in the rat cocaine reinstatement model. We first showed that TAAR1 mRNA was expressed throughout these brain regions. Rats underwent cocaine self-administration, followed by extinction training. RO5166017 (1.5 or 5.0 μg/side) or vehicle was microinjected into each brain region immediately before cue- and drug-induced reinstatement of cocaine-seeking. The results showed that microinjection of RO5166017 into the VTA and PrL decreased both cue- and drug priming-induced cocaine-seeking. Microinjection of RO5166017 into the NAc core and shell inhibited cue- and drug-induced cocaine-seeking, respectively. Locomotor activity or food reinforced operant responding was unaffected by microinjection of RO5166017 into these brain regions. Cocaine-seeking behaviors were not affected by RO5166017 when microinjected into the substantia nigra, infralimbic cortex, BLA, and CeA. Together, these results indicate that TAAR1 in different subregions of the mesocorticolimbic system distinctly contributes to cue- and drug-induced reinstatement of cocaine-seeking behavior. SIGNIFICANCE STATEMENT TAAR1 has been indicated as a modulator of the dopaminergic system. Previous research showed that systemic administration of TAAR1 agonists could attenuate cocaine-related behaviors, suggesting that TAAR1 may be a promising drug target for the treatment of cocaine addiction. However, the specific role of TAAR1 in subregions of the mesocorticolimbic system in drug addiction is unknown. Here, we first showed that TAAR1 mRNA is expressed throughout the subregions of the mesocorticolimbic system. Then, by using a local pharmacological activation method, we demonstrated that TAAR1 in different subregions of the mesocorticolimbic system distinctly contributes to cue- and drug-induced reinstatement of cocaine-seeking behavior.
Collapse
Affiliation(s)
- Jian-Feng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York 14214, and
| | - Justin N Siemian
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York 14214, and
| | - Robert Seaman
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York 14214, and
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina 27709
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York 14214, and
| |
Collapse
|
19
|
Region-specific effects of developmental exposure to cocaine on fibroblast growth factor-2 expression in the rat brain. Psychopharmacology (Berl) 2016; 233:2699-704. [PMID: 27129861 DOI: 10.1007/s00213-016-4315-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
RATIONALE Adolescence is a period of high vulnerability to drugs of abuse and alterations of the proper developmental trajectory via psychostimulant exposure might change the physiological brain homeostasis. OBJECTIVE By microdissection of brain areas via punching, we investigated whether repeated exposure to cocaine during adolescence (from postnatal day 28 [PND28] to PND42) has altered fibroblast growth factor-2 (FGF-2) messenger RNA (mRNA) levels in selected brain subregions critical for the action of cocaine. RESULTS We found a reduction of FGF-2 mRNA levels in ventral tegmental area (VTA), where mesocortical and mesolimbic pathways originate. The analysis of the trophic factor levels in the distal projecting regions revealed a selective reduction of FGF-2 mRNA levels in infralimbic (IL) subregion of the medial prefrontal cortex (the terminal region of the mesocortical pathway) and in the nucleus accumbens core (cNAc) (the terminal region of the mesolimbic pathway). Last, we found reduced FGF-2 mRNA levels also in brain regions which, although in a different manner, contribute to the reward system, i.e., the central nucleus of amygdala (cAmy) and the ventral portion of hippocampus (vHip). CONCLUSION The widespread and coordinated reduction of FGF-2 mRNA levels across the brain's reward neurocircuitry might represent a defensive strategy set in motion to oppose to the psychostimulant properties of cocaine. Moreover, given the role of FGF-2 in modulating mood disorders, the reduced trophic support here observed might sustain the negative emotional state set in motion by repeated exposure to cocaine.
Collapse
|
20
|
Zhang Y, Xue Y, Meng S, Luo Y, Liang J, Li J, Ai S, Sun C, Shen H, Zhu W, Wu P, Lu L, Shi J. Inhibition of Lactate Transport Erases Drug Memory and Prevents Drug Relapse. Biol Psychiatry 2016; 79:928-39. [PMID: 26293178 DOI: 10.1016/j.biopsych.2015.07.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/23/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Drug memories that associate drug-paired stimuli with the effects of abused drugs contribute to relapse. Exposure to drug-associated contexts causes consolidated drug memories to be in a labile state, during which manipulations can be given to impair drug memories. Although substantial evidence demonstrates the crucial role of neuronal signaling in addiction, little is known about the contribution of astrocyte-neuron communication. METHODS Rats were trained for cocaine-induced conditioned place preference (CPP) or self-administration and microinjected with the glycogen phosphorylation inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol into the basolateral amygdala (BLA) immediately after retrieval. The concentration of lactate was measured immediately after retrieval via microdialysis, and the CPP score and number of nosepokes were recorded 24 hours later. Furthermore, we used antisense oligodeoxynucleotides to disrupt the expression of astrocytic lactate transporters (monocarboxylate transporters 1 and 2) in the BLA after retrieval, tested the expression of CPP 1 day later, and injected L-lactate into the BLA 15 minutes before retrieval to rescue the effects of the oligodeoxynucleotides. RESULTS Injection of 1,4-dideoxy-1,4-imino-D-arabinitol into the BLA immediately after retrieval prevented the subsequent expression of cocaine-induced CPP, decreased the concentration of lactate in the BLA, and reduced the number of nosepokes for cocaine self-administration. Disrupting the expression of monocarboxylate transporters 1 and 2 in the BLA also caused subsequent deficits in the expression of cocaine-induced CPP, which was rescued by pretreatment with L-lactate. CONCLUSIONS Our results suggest that astrocyte-neuron lactate transport in the BLA is critical for the reconsolidation of cocaine memory.
Collapse
Affiliation(s)
- Yan Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Yixiao Luo
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Jie Liang
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Jiali Li
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Sizhi Ai
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Chengyu Sun
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Haowei Shen
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Weili Zhu
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Ping Wu
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China; Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China; Peking-Tsinghua Center for Life Sciences and Peking University-International Data Group/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China.
| |
Collapse
|
21
|
García-Pardo MP, Roger-Sanchez C, Rodríguez-Arias M, Miñarro J, Aguilar MA. Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates. Eur J Pharmacol 2016; 781:10-24. [DOI: 10.1016/j.ejphar.2016.03.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
|
22
|
Liu P, Zhang J, Li M, Sui N. Distinctive Roles of 5-aza-2'-deoxycytidine in Anterior Agranular Insular and Basolateral Amygdala in Reconsolidation of Aversive Memory Associated with Morphine in Rats. Front Behav Neurosci 2016; 10:50. [PMID: 27014010 PMCID: PMC4791382 DOI: 10.3389/fnbeh.2016.00050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/01/2016] [Indexed: 12/24/2022] Open
Abstract
5-aza-2'-deoxycytidine (5-aza), an inhibitor of DNA methyltransferases (DNMTs), has been implicated in aversive memory and the function of brain region involved in processing emotion. However, little is known about the role of 5-aza in the reconsolidation of opiate withdrawal memory. In the present study, using the morphine-naloxone induced conditioned place aversion (CPA) model in rats, we injected 5-aza into agranular insular (AI), granular insular (GI), basolateral amygdala (BLA) and central amygdala (CeA) immediately after the memory retrieval and tested the behavioral consequences at 24 h, 7 and 14 days after retrieval test. We found that 5-aza injection into AI disrupted the reconsolidation of morphine-associated withdrawal memory, but 5-aza injection into GI had no impact on the reconsolidation. Meanwhile, 5-aza injection into BLA but not CeA attenuated the withdrawal memory trace 14 days later. However, 5-aza administration to rats, in the absence of memory reactivation, had no effect on morphine-associated withdrawal memory. These findings suggest that 5-aza interferes with the reconsolidation of opiate withdrawal memory, and the roles of insular and amygdala in reconsolidation are distinctive.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - JianJun Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln Lincoln, NE, USA
| | - Nan Sui
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
23
|
Liu JF, Thorn DA, Zhang Y, Li JX. Effects of Trace Amine-associated Receptor 1 Agonists on the Expression, Reconsolidation, and Extinction of Cocaine Reward Memory. Int J Neuropsychopharmacol 2016; 19:pyw009. [PMID: 26822713 PMCID: PMC4966273 DOI: 10.1093/ijnp/pyw009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/25/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND As a modulator of dopaminergic system, trace amine-associated receptor 1 has been shown to play a critical role in regulating the rewarding properties of additive drugs. It has been demonstrated that activation of trace amine-associated receptor 1 decreased the abuse-related behaviors of cocaine in rats. However, the role of trace amine-associated receptor 1 in specific stages of cocaine reward memory is still unclear. METHODS Here, using a cocaine-induced conditioned place preference model, we tested the effects of a selective trace amine-associated receptor 1 agonist RO5166017 on the expression, reconsolidation, and extinction of cocaine reward memory. RESULTS We found that RO5166017 inhibited the expression but not retention of cocaine-induced conditioned place preference. RO5166017 had no effect on the reconsolidation of cocaine reward memory. Pretreatment with RO5166017 before extinction hindered the formation of extinction long-term memory. RO5166017 did not affect the movement during the conditioned place preference test, indicating the inhibitory effect of RO5166017 on the expression of cocaine-induced conditioned place preference was not caused by locomotion inhibition. Using a cocaine i.v. self-administration model, we found that the combined trace amine-associated receptor 1 partial agonist RO5263397 with extinction had no effect on the following cue- and drug-induced reinstatement of cocaine-seeking behavior. Repeated administration of the trace amine-associated receptor 1 agonist during extinction showed a continually inhibitory effect on the expression of cocaine reward memory both in cocaine-induced conditioned place preference and cocaine self-administration models. CONCLUSIONS Taken together, these results indicate that activation of trace amine-associated receptor 1 specifically inhibited the expression of cocaine reward memory. The inhibitory effect of trace amine-associated receptor 1 agonists on cocaine reward memory suggests that trace amine-associated receptor 1 agonists could be a promising agent to prevent cocaine relapse.
Collapse
Affiliation(s)
| | | | | | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY (Drs Liu, Thorn, and Li); Research Triangle Institute, Research Triangle Park, NC (Dr Zhang).
| |
Collapse
|
24
|
NMDA and dopamine D1 receptors within NAc-shell regulate IEG proteins expression in reward circuit during cocaine memory reconsolidation. Neuroscience 2015; 315:45-69. [PMID: 26674058 DOI: 10.1016/j.neuroscience.2015.11.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/03/2015] [Accepted: 11/29/2015] [Indexed: 01/11/2023]
Abstract
Reactivation of consolidated memory initiates a memory reconsolidation process, during which the reactivated memory is susceptible to strengthening, weakening or updating. Therefore, effective interference with the memory reconsolidation process is expected to be an important treatment for drug addiction. The nucleus accumbens (NAc) has been well recognized as a pathway component that can prevent drug relapse, although the mechanism underlying this function is poorly understood. We aimed to clarify the regulatory role of the NAc in the cocaine memory reconsolidation process, by examining the effect of applying different pharmacological interventions to the NAc on Zif 268 and Fos B expression in the entire reward circuit after cocaine memory reactivation. Through the cocaine-induced conditioned place preference (CPP) model, immunohistochemical and immunofluorescence staining for Zif 268 and Fos B were used to explore the functional activated brain nuclei after cocaine memory reactivation. Our results showed that the expression of Zif 268 and Fos B was commonly increased in the medial prefrontal cortex (mPFC), the infralimbic cortex (IL), the NAc-core, the NAc-shell, the hippocampus (CA1, CA2, and CA3 subregions), the amygdala, the ventral tegmental area (VTA), and the supramammillary nucleus (SuM) following memory reconsolidation, and Zif 268/Fos B co-expression was commonly observed (for Zif 268: 51-68%; for Fos B: 52-66%). Further, bilateral NAc-shell infusion of MK 801 and SCH 23390, but not raclopride or propranolol, prior to addictive memory reconsolidation, decreased Zif 268 and Fos B expression in the entire reward circuit, except for the amygdala, and effectively disturbed subsequent CPP-related behavior. In summary, N-methyl-d-aspartate (NMDA) and dopamine D1 receptors, but not dopamine D2 or β adrenergic receptors, within the NAc-shell, may regulate Zif 268 and Fos B expression in most brain nuclei of the reward circuit after cocaine memory reactivation. These findings indicated that the NAc played a key role in regulating addictive memory reconsolidation by influencing the function of the entire addictive memory network.
Collapse
|
25
|
Zhao Y, Liu P, Chu Z, Liu F, Han W, Xun X, Dang YH. Electrolytic lesions of the bilateral ventrolateral orbital cortex inhibit methamphetamine-associated contextual memory formation in rats. Brain Res 2015; 1624:214-221. [DOI: 10.1016/j.brainres.2015.07.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/19/2015] [Accepted: 07/25/2015] [Indexed: 12/29/2022]
|
26
|
Karoly HC, YorkWilliams SL, Hutchison KE. Clinical Neuroscience of Addiction: Similarities and Differences Between Alcohol and Other Drugs. Alcohol Clin Exp Res 2015; 39:2073-84. [DOI: 10.1111/acer.12884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/21/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Hollis C. Karoly
- Department of Psychology and Neuroscience University of Colorado, Boulder Boulder Colorado
| | - Sophie L. YorkWilliams
- Department of Psychology and Neuroscience University of Colorado, Boulder Boulder Colorado
| | - Kent E. Hutchison
- Department of Psychology and Neuroscience University of Colorado, Boulder Boulder Colorado
| |
Collapse
|
27
|
|
28
|
GIRK Channels: A Potential Link Between Learning and Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:239-77. [PMID: 26422987 DOI: 10.1016/bs.irn.2015.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability of drug-associated cues to reinitiate drug craving and seeking, even after long periods of abstinence, has led to the hypothesis that addiction represents a form of pathological learning, in which drugs of abuse hijack normal learning and memory processes to support long-term addictive behaviors. In this chapter, we review evidence suggesting that G protein-gated inwardly rectifying potassium (GIRK/Kir3) channels are one mechanism through which numerous drugs of abuse can modulate learning and memory processes. We will examine the role of GIRK channels in two forms of experience-dependent long-term changes in neuronal function: homeostatic plasticity and synaptic plasticity. We will also discuss how drug-induced changes in GIRK-mediated signaling can lead to changes that support the development and maintenance of addiction.
Collapse
|
29
|
Lénárd L, Kovács A, Ollmann T, Péczely L, Zagoracz O, Gálosi R, László K. Positive reinforcing effects of RFamide-related peptide-1 in the rat central nucleus of amygdala. Behav Brain Res 2014; 275:101-6. [DOI: 10.1016/j.bbr.2014.08.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 12/28/2022]
|
30
|
eIF2α dephosphorylation in basolateral amygdala mediates reconsolidation of drug memory. J Neurosci 2014; 34:10010-21. [PMID: 25057203 DOI: 10.1523/jneurosci.0934-14.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Maladaptive memories elicited by exposure to environmental stimuli associated with drugs of abuse are often responsible for relapse among addicts. Interference with the reconsolidation of drug memory can inhibit drug seeking. Previous studies have indicated that the dephosphorylation of the eukaryotic initiation factor 2 α-subunit (eIF2α) plays an important role in synaptic plasticity and long-term memory consolidation, but its role in the reconsolidation of drug memory remains unknown. The amygdala is required for the reconsolidation of a destabilized drug memory after retrieval of drug-paired stimuli. Here, we used conditioned place preference (CPP) and self-administration procedures to determine whether amygdala eIF2α dephosphorylation is required for the reconsolidation of morphine and cocaine memories in rats. We found that the levels of eIF2α phosphorylation (Ser51) and activating transcription factor 4 (ATF4) were decreased after reexposure to a previously morphine- or cocaine-paired context (i.e., a memory retrieval procedure) in the basolateral amygdala (BLA) but not in the central amygdala. Intra-BLA infusions of Sal003, a selective inhibitor of eIF2α dephosphorylation, immediately after memory retrieval disrupted the reconsolidation of morphine- or cocaine-induced CPP, leading to a long-lasting suppression of drug-paired stimulus-induced craving. Advanced knockdown of ATF4 expression in the BLA by lentivirus-mediated short-hairpin RNA blocked the disruption of the reconsolidation of morphine-induced CPP induced by Sal003 treatment. Furthermore, inhibition of eIF2α dephosphorylation in the BLA immediately after light/tone stimulus retrieval decreased subsequent cue-induced heroin-seeking behavior in the self-administration procedure. These results demonstrate that eIF2α dephosphorylation in the BLA mediates the memory reconsolidation of drug-paired stimuli.
Collapse
|
31
|
Wu P, Ding ZB, Meng SQ, Shen HW, Sun SC, Luo YX, Liu JF, Lu L, Zhu WL, Shi J. Differential role of Rac in the basolateral amygdala and cornu ammonis 1 in the reconsolidation of auditory and contextual Pavlovian fear memory in rats. Psychopharmacology (Berl) 2014; 231:2909-19. [PMID: 24553575 DOI: 10.1007/s00213-014-3462-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
Abstract
RATIONALE AND OBJECTIVES A conditioned stimulus (CS) is associated with a fearful unconditioned stimulus (US) in the traditional fear conditioning model. After fear conditioning, the CS-US association memory undergoes the consolidation process to become stable. Consolidated memory enters an unstable state after retrieval and requires the reconsolidation process to stabilize again. Evidence indicates the important role of Rac (Ras-related C3 botulinum toxin substrate) in the acquisition and extinction of fear memory. In the present study, we hypothesized that Rac in the amygdala is crucial for the reconsolidation of auditory and contextual Pavlovian fear memory. METHODS Auditory and contextual fear conditioning and microinjections of the Rac inhibitor NSC23766 were used to explore the role of Rac in the reconsolidation of auditory and contextual Pavlovian fear memory in rats. RESULTS A microinjection of NSC23766 into the basolateral amygdala (BLA) but not central amygdala (CeA) or cornu ammonis 1 (CA1) immediately after memory retrieval disrupted the reconsolidation of auditory Pavlovian fear memory. A microinjection of NSC23766 into the CA1 but not BLA or CeA after memory retrieval disrupted the reconsolidation of contextual Pavlovian fear memory. CONCLUSIONS Our experiments demonstrate that Rac in the BLA is crucial for the reconsolidation of auditory Pavlovian fear memory, whereas Rac in the CA1 is critical for the reconsolidation of contextual Pavlovian fear memory.
Collapse
Affiliation(s)
- Ping Wu
- National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Beijing, 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Inhibition of histone deacetylase in the basolateral amygdala facilitates morphine context-associated memory formation in rats. J Mol Neurosci 2014; 55:269-278. [PMID: 24829091 DOI: 10.1007/s12031-014-0317-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 04/28/2014] [Indexed: 12/20/2022]
Abstract
Histone acetylation/deacetylation is a crucial mechanism in memory formation and drug addiction. There is evidence suggesting that histone H3 acetylation may contribute to the long-term neural and behavioral responses to addictive drugs. In addition, the basolateral amygdala (BLA) is critically involved in the formation of cue-associated memories. However, the behavioral effect of histone deacetylase (HDAC) inhibition in the BLA and the underlying molecular alterations at different phases of morphine-induced conditioned place preference (CPP) has not been investigated. In this study, we measured the expression, extinction, and reinstatement of morphine-induced place preference in rats pretreated with trichostatin A (TSA), an HDAC inhibitor. Intra-BLA pretreatment with TSA significantly enhanced morphine-induced CPP acquisition and expression, facilitated extinction, and reduced reinstatement of morphine-induced CPP. These behavioral changes were associated with a general increase in histone H3 lysine14 (H3K14) acetylation in the BLA together with upregulation of the brain-derived neurophic factor (BDNF) and ΔFosB and CREB activation. Collectively, our findings imply that HDAC inhibition in the BLA promotes some aspects of the memory that develops during conditioning and extinction training. Furthermore, histone H3 acetylation may play a role in learning and memory for morphine addiction in the BLA.
Collapse
|
33
|
Moreira-Silva D, Morais-Silva G, Fernandes-Santos J, Planeta CS, Marin MT. Stress Abolishes the Effect of Previous Chronic Ethanol Consumption on Drug Place Preference and on the Mesocorticolimbic Brain Pathway. Alcohol Clin Exp Res 2014; 38:1227-36. [DOI: 10.1111/acer.12388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/10/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Daniel Moreira-Silva
- Institute of Biomedical Sciences ; Federal University of Uberlândia (UFU); Uberlândia Brazil
| | - Gessynger Morais-Silva
- Institute of Biomedical Sciences ; Federal University of Uberlândia (UFU); Uberlândia Brazil
| | | | - Cleopatra S. Planeta
- Laboratory of Pharmacology ; School of Pharmaceutical Sciences; Univ. Estadual Paulista (UNESP); Araraquara Brazil
| | - Marcelo T. Marin
- Institute of Biomedical Sciences ; Federal University of Uberlândia (UFU); Uberlândia Brazil
- Laboratory of Pharmacology ; School of Pharmaceutical Sciences; Univ. Estadual Paulista (UNESP); Araraquara Brazil
| |
Collapse
|