1
|
Mavrych V, Riyas F, Bolgova O. The Role of Basolateral Amygdala and Medial Prefrontal Cortex in Fear: A Systematic Review. Cureus 2025; 17:e78198. [PMID: 40026920 PMCID: PMC11870299 DOI: 10.7759/cureus.78198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Fear is a primary adaptive response to potential threats. It triggers a complex cascade of physiological, cognitive, and behavioral changes that prepare an organism to cope with dangerous situations. The basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) are both linked to adaptation, the generation of strong emotions, and decision-making. In this systematic review, we aimed to analyze recent studies of the connections between the BLA and mPFC in the context of their neuroanatomy, cellular composition, micro-circuitry, and involvement in fear. Utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, our search strategy involved scouring articles from PubMed (National Center for Biotechnology Information, Bethesda, Maryland), Google Scholar (Google, Mountain View, CA), and Science Direct (Elsevier, Amsterdam, Netherlands) databases covering the last decade (2014-2024). Thirty-two rigorously evaluated studies formed the essence of our review. Review findings revealed complex bidirectional connectivity between BLA and mPFC, with distinct roles for different subregions. The rostral BLA primarily projects to the prelimbic cortex, while the caudal BLA connects with the infralimbic cortex. These circuits show specialized cellular composition, with BLA containing principal excitatory neurons and GABAergic interneurons, while mPFC exhibits layer-specific synaptic connections. Fear processing involves dynamic interactions between these regions, with the prelimbic cortex promoting fear expression and the infralimbic cortex facilitating extinction. The analysis showed that astrocytic signaling and N-methyl-D-aspartate (NMDA) receptor activation are essential in the process of both fear memory formation and its extinction. There was evidence that dysregulation of specific circuits is associated with the pathophysiology of several other psychiatric disorders, such as post-traumatic stress disorder (PTSD), anxiety disorders, and schizophrenia. This review clarifies that the BLA-mPFC circuitry is critical in perceiving fear and its regulation. The results highlight the importance of the interactions between brain regions and the types of cells in each region to respond appropriately to fear and its extinction. Uncovering such type of dysregulation further helps to understand the mechanisms of fear-associated disorders and may suggest further treatment options. Future research should focus on cellular plasticity mechanisms, translational applications, and the influence of individual factors on fear processing to develop more effective treatments for psychiatric conditions involving fear dysregulation.
Collapse
Affiliation(s)
- Volodymyr Mavrych
- Anatomy and Genetics, Alfaisal University College of Medicine, Riyadh, SAU
| | - Fathima Riyas
- Anatomy and Genetics, Alfaisal University College of Medicine, Riyadh, SAU
| | - Olena Bolgova
- Anatomy and Genetics, Alfaisal University College of Medicine, Riyadh, SAU
| |
Collapse
|
2
|
Makino Y, Wang Y, McHugh TJ. Multi-regional control of amygdalar dynamics reliably reflects fear memory age. Nat Commun 2024; 15:10283. [PMID: 39653694 PMCID: PMC11628566 DOI: 10.1038/s41467-024-54273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
The basolateral amygdala (BLA) is crucial for the encoding and expression of fear memory, yet it remains unexplored how neural activity in this region is dynamically influenced by distributed circuits across the brain to facilitate expression of fear memory of different ages. Using longitudinal multisite electrophysiological recordings in male mice, we find that the recall of older contextual fear memory is accompanied by weaker, yet more rhythmic, BLA gamma activity which is distally entrained by theta oscillations in both the hippocampal CA1 and the anterior cingulate cortex. Computational modeling with Light Gradient Boosting Machine using extracted oscillatory features from these three regions, as well as with Transformer using raw local field potentials, accurately classified remote from recent memory recall primarily based on BLA gamma and CA1 theta. These results demonstrate in a non-biased manner that multi-regional control of BLA activity serves as reliable neural signatures for memory age-dependent recall mechanisms.
Collapse
Affiliation(s)
- Yuichi Makino
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- International Research Center for Neurointelligence, UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Yi Wang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
| |
Collapse
|
3
|
Hong S, Kim Y, Kwon Y, Cho SH. Antidepressant Effect of Heracleum moellendorffii Extract on Behavioral Changes in Astrocyte Ablation Mouse Model of Depression by Modulating Neuroinflammation through the Inhibition of Lipocalin-2. Nutrients 2024; 16:2049. [PMID: 38999797 PMCID: PMC11243176 DOI: 10.3390/nu16132049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Astrocyte dysfunction and inflammation play a pivotal role in depression. In this study, we evaluated the antidepressant properties of Heracleum moellendorffii root extract (HME), which is traditionally used for inflammation-related diseases, in a mouse model with astrocyte depletion that resembles the prefrontal cortex pathology of depressive patients. Mice were divided into four groups, with 10 mice per group. To induce astrocyte ablation in the mice's prefrontal cortex (PFC), we used astrocytic toxin L-alpha-aminoadipic acid (L-AAA) and administered HME orally at 200 and 500 mg/kg for 22 days. We utilized the tail suspension test (TST) to assess depression-like behaviors and the open field test (OFT) to evaluate anxiety-like activities. Additionally, astrocytic and inflammatory markers in the PFC were evaluated using immunohistochemistry and ELISA. The results showed that infusion of L-AAA significantly decreased the expression of astrocytic glial fibrillary acidic protein (GFAP), which was accompanied by increased depression and anxiety-like behaviors. However, HME significantly reversed these effects by dose-dependently enhancing GFAP expression and modulating inflammatory markers, such as TNF-α, IL-6, and particularly lipocalin-2, a master proinflammatory mediator. These results imply that HME contributes to the alleviation of depression and anxiety-like behaviors by promoting astrocyte recovery and reducing neuroinflammation, especially through lipocalin-2 inhibition.
Collapse
Affiliation(s)
- Soonsang Hong
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.H.); (Y.K.)
| | - Yunna Kim
- Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea;
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - YongJu Kwon
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.H.); (Y.K.)
| | - Seung-Hun Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.H.); (Y.K.)
- Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea;
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Sartori SB, Keil TMV, Kummer KK, Murphy CP, Gunduz-Cinar O, Kress M, Ebner K, Holmes A, Singewald N. Fear extinction rescuing effects of dopamine and L-DOPA in the ventromedial prefrontal cortex. Transl Psychiatry 2024; 14:11. [PMID: 38191458 PMCID: PMC10774374 DOI: 10.1038/s41398-023-02708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
The ventromedial prefrontal cortex (vmPFC; rodent infralimbic cortex (IL)), is posited to be an important locus of fear extinction-facilitating effects of the dopamine (DA) bio-precursor, L-DOPA, but this hypothesis remains to be formally tested. Here, in a model of impaired fear extinction (the 129S1/SvImJ inbred mouse strain; S1), we monitored extracellular DA dynamics via in vivo microdialysis in IL during fear extinction and following L-DOPA administration. Systemic L-DOPA caused sustained elevation of extracellular DA levels in IL and increased neuronal activation in a subpopulation of IL neurons. Systemic L-DOPA enabled extinction learning and promoted extinction retention at one but not ten days after training. Conversely, direct microinfusion of DA into IL produced long-term fear extinction (an effect that was insensitive to ɑ-/ß-adrenoreceptor antagonism). However, intra-IL delivery of a D1-like or D2 receptor agonist did not facilitate extinction. Using ex vivo multi-electrode array IL neuronal recordings, along with ex vivo quantification of immediate early genes and DA receptor signalling markers in mPFC, we found evidence of reduced DA-evoked mPFC network responses in S1 as compared with extinction-competent C57BL/6J mice that were partially driven by D1 receptor activation. Together, our data demonstrate that locally increasing DA in IL is sufficient to produce lasting rescue of impaired extinction. The finding that systemic L-DOPA increased IL DA levels, but had only transient effects on extinction, suggests L-DOPA failed to reach a threshold level of IL DA or produced opposing behavioural effects in other brain regions. Collectively, our findings provide further insight into the neural basis of the extinction-promoting effects of DA and L-DOPA in a clinically relevant animal model, with possible implications for therapeutically targeting the DA system in anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Simone B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Thomas M V Keil
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Conor P Murphy
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, NIH/NIAAA, Rockville, MD, USA
| | - Michaela Kress
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, NIH/NIAAA, Rockville, MD, USA
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
Heesbeen EJ, Bijlsma EY, Verdouw PM, van Lissa C, Hooijmans C, Groenink L. The effect of SSRIs on fear learning: a systematic review and meta-analysis. Psychopharmacology (Berl) 2023; 240:2335-2359. [PMID: 36847831 PMCID: PMC10593621 DOI: 10.1007/s00213-023-06333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) are considered first-line medication for anxiety-like disorders such as panic disorder, generalized anxiety disorder, and post-traumatic stress disorder. Fear learning plays an important role in the development and treatment of these disorders. Yet, the effect of SSRIs on fear learning are not well known. OBJECTIVE We aimed to systematically review the effect of six clinically effective SSRIs on acquisition, expression, and extinction of cued and contextual conditioned fear. METHODS We searched the Medline and Embase databases, which yielded 128 articles that met the inclusion criteria and reported on 9 human and 275 animal experiments. RESULTS Meta-analysis showed that SSRIs significantly reduced contextual fear expression and facilitated extinction learning to cue. Bayesian-regularized meta-regression further suggested that chronic treatment exerts a stronger anxiolytic effect on cued fear expression than acute treatment. Type of SSRI, species, disease-induction model, and type of anxiety test used did not seem to moderate the effect of SSRIs. The number of studies was relatively small, the level of heterogeneity was high, and publication bias has likely occurred which may have resulted in an overestimation of the overall effect sizes. CONCLUSIONS This review suggests that the efficacy of SSRIs may be related to their effects on contextual fear expression and extinction to cue, rather than fear acquisition. However, these effects of SSRIs may be due to a more general inhibition of fear-related emotions. Therefore, additional meta-analyses on the effects of SSRIs on unconditioned fear responses may provide further insight into the actions of SSRIs.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - P Monika Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Caspar van Lissa
- Department of Methodology, Tilburg University, Tilburg, Netherlands
| | - Carlijn Hooijmans
- Department of Anaesthesiology, Pain and Palliative Care, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
6
|
Rich MT, Worobey SJ, Mankame S, Pang ZP, Swinford-Jackson SE, Pierce RC. Sex-dependent fear memory impairment in cocaine-sired rat offspring. SCIENCE ADVANCES 2023; 9:eadf6039. [PMID: 37851809 PMCID: PMC10584337 DOI: 10.1126/sciadv.adf6039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Cocaine self-administration by male rats results in neuronal and behavioral alterations in offspring, including responses to cocaine. Given the high degree of overlap between the brain systems underlying the pathological responses to cocaine and stress, we examined whether sire cocaine taking would influence fear-associated behavioral effects in drug-naïve adult male and female progeny. Sire cocaine exposure had no effect on contextual fear conditioning or its extinction in either male or female offspring. During cued fear conditioning, freezing behavior was enhanced in female, but not male, cocaine-sired progeny. In contrast, male cocaine-sired progeny exhibited enhanced expression of cue-conditioned fear during extinction. Long-term potentiation (LTP) was robust in the basolateral amygdala (BLA), which encodes fear conditioning, of female offspring but was completely absent in male offspring of cocaine-exposed sires. Collectively, these results indicate that cued fear memory is enhanced in the male progeny of cocaine exposed sires, which also have BLA synaptic plasticity deficits.
Collapse
Affiliation(s)
- Matthew T. Rich
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ 08854 USA
| | - Samantha J. Worobey
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ 08854 USA
| | - Sharvari Mankame
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ 08854 USA
| | - Zhiping P. Pang
- Child Health Institute and Department of Neuroscience & Cell Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | | | - R. Christopher Pierce
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
7
|
Gunduz-Cinar O, Castillo LI, Xia M, Van Leer E, Brockway ET, Pollack GA, Yasmin F, Bukalo O, Limoges A, Oreizi-Esfahani S, Kondev V, Báldi R, Dong A, Harvey-White J, Cinar R, Kunos G, Li Y, Zweifel LS, Patel S, Holmes A. A cortico-amygdala neural substrate for endocannabinoid modulation of fear extinction. Neuron 2023; 111:3053-3067.e10. [PMID: 37480845 PMCID: PMC10592324 DOI: 10.1016/j.neuron.2023.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Preclinical and clinical studies implicate endocannabinoids (eCBs) in fear extinction, but the underlying neural circuit basis of these actions is unclear. Here, we employed in vivo optogenetics, eCB biosensor imaging, ex vivo electrophysiology, and CRISPR-Cas9 gene editing in mice to examine whether basolateral amygdala (BLA)-projecting medial prefrontal cortex (mPFC) neurons represent a neural substrate for the effects of eCBs on extinction. We found that photoexcitation of mPFC axons in BLA during extinction mobilizes BLA eCBs. eCB biosensor imaging showed that eCBs exhibit a dynamic stimulus-specific pattern of activity at mPFC→BLA neurons that tracks extinction learning. Furthermore, using CRISPR-Cas9-mediated gene editing, we demonstrated that extinction memory formation involves eCB activity at cannabinoid CB1 receptors expressed at vmPFC→BLA synapses. Our findings reveal the temporal characteristics and a neural circuit basis of eCBs' effects on fear extinction and inform efforts to target the eCB system as a therapeutic approach in extinction-deficient neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| | - Laura I Castillo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Maya Xia
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Elise Van Leer
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Emma T Brockway
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Gabrielle A Pollack
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Aaron Limoges
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Sarvar Oreizi-Esfahani
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Rita Báldi
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Judy Harvey-White
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Sampath D, Branyan TE, Markowsky KG, Gunda R, Samiya N, Obenaus A, Sohrabji F. Sex differences in cognitive impairment after focal ischemia in middle-aged rats and the effect of iv miR-20a-3p treatment. Neurobiol Aging 2023; 129:168-177. [PMID: 37336171 DOI: 10.1016/j.neurobiolaging.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 06/21/2023]
Abstract
Stroke is a major cause of death and disability worldwide and is also a leading cause of vascular dementia and Alzheimer's disease, with older women experiencing accelerated decline. Our previous studies show that intravenous (iv) injections of miR-20a-3p, a small noncoding RNA (miRNA) delivered after stroke improves acute stroke outcomes in middle-aged male and female rats. The present study tested whether mir-20a-3p treatment would also ameliorate stroke-induced cognitive decline in the chronic phase. Acyclic middle-aged females and age-matched male Sprague Dawley rats were subjected to middle cerebral artery occlusion using endothelin-1 or sham surgery, and treated iv with miR-20a-3p mimics or scrambled oligos at 4 hours, 24 hours, and 70 days post-stroke. Stroke resulted in a significant sensory motor deficit, while miR-20a-3p treatment reduced these deficits in both sexes. Cognitive impairment was assessed periodically for 3 months after stroke using contextual fear conditioning and the novel object recognition task. Overall, the tests of associative and episodic memory were affected by focal ischemia only in female rats, and miR-20a-3p ameliorated the rate of decline.
Collapse
Affiliation(s)
- Dayalan Sampath
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine and Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, USA
| | - Taylor E Branyan
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine and Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, USA
| | - Kylee G Markowsky
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine and Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, USA
| | - Rithvik Gunda
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine and Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, USA
| | - Nadia Samiya
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine and Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine and Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
9
|
Pan HQ, Liu XX, He Y, Zhou J, Liao CZ, You WJ, Jiang SY, Qin X, Chen WB, Fei EK, Zhang WH, Pan BX. Prefrontal GABA A(δ)R Promotes Fear Extinction through Enabling the Plastic Regulation of Neuronal Intrinsic Excitability. J Neurosci 2022; 42:5755-5770. [PMID: 35705488 PMCID: PMC9302468 DOI: 10.1523/jneurosci.0689-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023] Open
Abstract
Extinguishing the previously acquired fear is critical for the adaptation of an organism to the ever-changing environment, a process requiring the engagement of GABAA receptors (GABAARs). GABAARs consist of tens of structurally, pharmacologically, and functionally heterogeneous subtypes. However, the specific roles of these subtypes in fear extinction remain largely unexplored. Here, we observed that in the medial prefrontal cortex (mPFC), a core region for mood regulation, the extrasynaptically situated, δ-subunit-containing GABAARs [GABAA(δ)Rs], had a permissive role in tuning fear extinction in male mice, an effect sharply contrasting to the established but suppressive role by the whole GABAAR family. First, the fear extinction in individual mice was positively correlated with the level of GABAA(δ)R expression and function in their mPFC. Second, knockdown of GABAA(δ)R in mPFC, specifically in its infralimbic (IL) subregion, sufficed to impair the fear extinction in mice. Third, GABAA(δ)R-deficient mice also showed fear extinction deficits, and re-expressing GABAA(δ)Rs in the IL of these mice rescued the impaired extinction. Further mechanistic studies demonstrated that the permissive effect of GABAA(δ)R was associated with its role in enabling the extinction-evoked plastic regulation of neuronal excitability in IL projection neurons. By contrast, GABAA(δ)R had little influence on the extinction-evoked plasticity of glutamatergic transmission in these cells. Altogether, our findings revealed an unconventional and permissive role of extrasynaptic GABAA receptors in fear extinction through a route relying on nonsynaptic plasticity.SIGNIFICANCE STATEMENT The medial prefrontal cortex (mPFC) is one of the kernel brain regions engaged in fear extinction. Previous studies have repetitively shown that the GABAA receptor (GABAAR) family in this region act to suppress fear extinction. However, the roles of specific GABAAR subtypes in mPFC are largely unknown. We observed that the GABAAR-containing δ-subunit [GABAA(δ)R], a subtype of GABAARs exclusively situated in the extrasynaptic membrane and mediating the tonic neuronal inhibition, works oppositely to the whole GABAAR family and promotes (but does not suppress) fear extinction. More interestingly, in striking contrast to the synaptic GABAARs that suppress fear extinction by breaking the extinction-evoked plasticity of glutamatergic transmission, the GABAA(δ)R promotes fear extinction through enabling the plastic regulation of neuronal excitability in the infralimbic subregion of mPFC. Our findings thus reveal an unconventional role of GABAA(δ)R in promoting fear extinction through a route relying on nonsynaptic plasticity.
Collapse
Affiliation(s)
- Han-Qing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xiao-Xuan Liu
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Neurology Department, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Ye He
- Center for Medical Experiments, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jin Zhou
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Cai-Zhi Liao
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wen-Jie You
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Si-Ying Jiang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xia Qin
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangsu Provincial Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Wen-Bing Chen
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Er-Kang Fei
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
10
|
Howland JG, Ito R, Lapish CC, Villaruel FR. The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands. Neurosci Biobehav Rev 2022; 135:104569. [PMID: 35131398 PMCID: PMC9248379 DOI: 10.1016/j.neubiorev.2022.104569] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
Emerging evidence implicates rodent medial prefrontal cortex (mPFC) in tasks requiring adaptation of behavior to changing information from external and internal sources. However, the computations within mPFC and subsequent outputs that determine behavior are incompletely understood. We review the involvement of mPFC subregions, and their projections to the striatum and amygdala in two broad types of tasks in rodents: 1) appetitive and aversive Pavlovian and operant conditioning tasks that engage mPFC-striatum and mPFC-amygdala circuits, and 2) foraging-based tasks that require decision making to optimize reward. We find support for region-specific function of the mPFC, with dorsal mPFC and its projections to the dorsomedial striatum supporting action control with higher cognitive demands, and ventral mPFC engagement in translating affective signals into behavior via discrete projections to the ventral striatum and amygdala. However, we also propose that defined mPFC subdivisions operate as a functional continuum rather than segregated functional units, with crosstalk that allows distinct subregion-specific inputs (e.g., internal, affective) to influence adaptive behavior supported by other subregions.
Collapse
Affiliation(s)
- John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Rutsuko Ito
- Department of Psychology, University of Toronto-Scarborough, Toronto, ON, Canada.
| | - Christopher C Lapish
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Franz R Villaruel
- Department of Psychology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
11
|
Namkung H, Thomas KL, Hall J, Sawa A. Parsing neural circuits of fear learning and extinction across basic and clinical neuroscience: Towards better translation. Neurosci Biobehav Rev 2022; 134:104502. [PMID: 34921863 DOI: 10.1016/j.neubiorev.2021.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022]
Abstract
Over the past decades, studies of fear learning and extinction have advanced our understanding of the neurobiology of threat and safety learning. Animal studies can provide mechanistic/causal insights into human brain regions and their functional connectivity involved in fear learning and extinction. Findings in humans, conversely, may further enrich our understanding of neural circuits in animals by providing macroscopic insights at the level of brain-wide networks. Nevertheless, there is still much room for improvement in translation between basic and clinical research on fear learning and extinction. Through the lens of neural circuits, in this article, we aim to review the current knowledge of fear learning and extinction in both animals and humans, and to propose strategies to fill in the current knowledge gap for the purpose of enhancing clinical benefits.
Collapse
Affiliation(s)
- Ho Namkung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK; School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK; School of Medicine, Cardiff University, Cardiff, UK
| | - Akira Sawa
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21287, USA.
| |
Collapse
|
12
|
Meyer HC, Sangha S, Radley JJ, LaLumiere RT, Baratta MV. Environmental certainty influences the neural systems regulating responses to threat and stress. Neurosci Biobehav Rev 2021; 131:1037-1055. [PMID: 34673111 PMCID: PMC8642312 DOI: 10.1016/j.neubiorev.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Flexible calibration of threat responding in accordance with the environment is an adaptive process that allows an animal to avoid harm while also maintaining engagement of other goal-directed actions. This calibration process, referred to as threat response regulation, requires an animal to calculate the probability that a given encounter will result in a threat so they can respond accordingly. Here we review the neural correlates of two highly studied forms of threat response suppression: extinction and safety conditioning. We focus on how relative levels of certainty or uncertainty in the surrounding environment alter the acquisition and application of these processes. We also discuss evidence indicating altered threat response regulation following stress exposure, including enhanced fear conditioning, and disrupted extinction and safety conditioning. To conclude, we discuss research using an animal model of coping that examines the impact of stressor controllability on threat responding, highlighting the potential for previous experiences with control, or other forms of coping, to protect against the effects of future adversity.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA.
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jason J Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Ryan T LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA.
| |
Collapse
|
13
|
Fritz EM, Kreuzer M, Altunkaya A, Singewald N, Fenzl T. Altered sleep behavior in a genetic mouse model of impaired fear extinction. Sci Rep 2021; 11:8978. [PMID: 33903668 PMCID: PMC8076259 DOI: 10.1038/s41598-021-88475-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Sleep disturbances are a common complaint of anxiety patients and constitute a hallmark feature of post-traumatic stress disorder (PTSD). Emerging evidence suggests that poor sleep is not only a secondary symptom of anxiety- and trauma-related disorders but represents a risk factor in their development, for example by interfering with emotional memory processing. Fear extinction is a critical mechanism for the attenuation of fearful and traumatic memories and multiple studies suggest that healthy sleep is crucial for the formation of extinction memories. However, fear extinction is often impaired in anxiety- and trauma-related disorders-an endophenotype that is perfectly modelled in the 129S1/SvImJ inbred mouse strain. To investigate whether these mice exhibit altered sleep at baseline that could predispose them towards maladaptive fear processing, we compared their circadian sleep/wake patterns to those of typically extinction-competent C57BL/6 mice. We found significant differences regarding diurnal distribution of sleep and wakefulness, but also sleep architecture, spectral features and sleep spindle events. With regard to sleep disturbances reported by anxiety- and PTSD patients, our findings strengthen the 129S1/SvImJ mouse models' face validity and highlight it as a platform to investigate novel, sleep-focused diagnostic and therapeutic strategies. Whether the identified alterations causally contribute to its pathological anxiety/PTSD-like phenotype will, however, have to be addressed in future studies.
Collapse
Affiliation(s)
- Eva Maria Fritz
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Alp Altunkaya
- Department of Anesthesiology and Intensive Care, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Thomas Fenzl
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria.
- Department of Anesthesiology and Intensive Care, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.
| |
Collapse
|
14
|
Bouton ME, Maren S, McNally GP. BEHAVIORAL AND NEUROBIOLOGICAL MECHANISMS OF PAVLOVIAN AND INSTRUMENTAL EXTINCTION LEARNING. Physiol Rev 2021; 101:611-681. [PMID: 32970967 PMCID: PMC8428921 DOI: 10.1152/physrev.00016.2020] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This article reviews the behavioral neuroscience of extinction, the phenomenon in which a behavior that has been acquired through Pavlovian or instrumental (operant) learning decreases in strength when the outcome that reinforced it is removed. Behavioral research indicates that neither Pavlovian nor operant extinction depends substantially on erasure of the original learning but instead depends on new inhibitory learning that is primarily expressed in the context in which it is learned, as exemplified by the renewal effect. Although the nature of the inhibition may differ in Pavlovian and operant extinction, in either case the decline in responding may depend on both generalization decrement and the correction of prediction error. At the neural level, Pavlovian extinction requires a tripartite neural circuit involving the amygdala, prefrontal cortex, and hippocampus. Synaptic plasticity in the amygdala is essential for extinction learning, and prefrontal cortical inhibition of amygdala neurons encoding fear memories is involved in extinction retrieval. Hippocampal-prefrontal circuits mediate fear relapse phenomena, including renewal. Instrumental extinction involves distinct ensembles in corticostriatal, striatopallidal, and striatohypothalamic circuits as well as their thalamic returns for inhibitory (extinction) and excitatory (renewal and other relapse phenomena) control over operant responding. The field has made significant progress in recent decades, although a fully integrated biobehavioral understanding still awaits.
Collapse
Affiliation(s)
- Mark E Bouton
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Glover LR, McFadden KM, Bjorni M, Smith SR, Rovero NG, Oreizi-Esfahani S, Yoshida T, Postle AF, Nonaka M, Halladay LR, Holmes A. A prefrontal-bed nucleus of the stria terminalis circuit limits fear to uncertain threat. eLife 2020; 9:60812. [PMID: 33319747 PMCID: PMC7899651 DOI: 10.7554/elife.60812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
In many cases of trauma, the same environmental stimuli that become associated with aversive events are experienced on other occasions without adverse consequence. We examined neural circuits underlying partially reinforced fear (PRF), whereby mice received tone-shock pairings on half of conditioning trials. Tone-elicited freezing was lower after PRF conditioning than fully reinforced fear (FRF) conditioning, despite an equivalent number of tone-shock pairings. PRF preferentially activated medial prefrontal cortex (mPFC) and bed nucleus of the stria terminalis (BNST). Chemogenetic inhibition of BNST-projecting mPFC neurons increased PRF, not FRF, freezing. Multiplexing chemogenetics with in vivo neuronal recordings showed elevated infralimbic cortex (IL) neuronal activity during CS onset and freezing cessation; these neural correlates were abolished by chemogenetic mPFC→BNST inhibition. These data suggest that mPFC→BNST neurons limit fear to threats with a history of partial association with an aversive stimulus, with potential implications for understanding the neural basis of trauma-related disorders.
Collapse
Affiliation(s)
- Lucas R Glover
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Kerry M McFadden
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Max Bjorni
- Department of Psychology, Santa Clara University, Santa Clara, United States
| | - Sawyer R Smith
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Natalie G Rovero
- Department of Psychology, Santa Clara University, Santa Clara, United States
| | - Sarvar Oreizi-Esfahani
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Takayuki Yoshida
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Abagail F Postle
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Mio Nonaka
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Lindsay R Halladay
- Department of Psychology, Santa Clara University, Santa Clara, United States
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| |
Collapse
|
16
|
Moore SJ, Murphy GG, Cazares VA. Turning strains into strengths for understanding psychiatric disorders. Mol Psychiatry 2020; 25:3164-3177. [PMID: 32404949 PMCID: PMC7666068 DOI: 10.1038/s41380-020-0772-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
There is a paucity in the development of new mechanistic insights and therapeutic approaches for treating psychiatric disease. One of the major challenges is reflected in the growing consensus that risk for these diseases is not determined by a single gene, but rather is polygenic, arising from the action and interaction of multiple genes. Canonically, experimental models in mice have been designed to ascertain the relative contribution of a single gene to a disease by systematic manipulation (e.g., mutation or deletion) of a known candidate gene. Because these studies have been largely carried out using inbred isogenic mouse strains, in which there is no (or very little) genetic diversity among subjects, it is difficult to identify unique allelic variants, gene modifiers, and epigenetic factors that strongly affect the nature and severity of these diseases. Here, we review various methods that take advantage of existing genetic diversity or that increase genetic variance in mouse models to (1) strengthen conclusions of single-gene function; (2) model diversity among human populations; and (3) dissect complex phenotypes that arise from the actions of multiple genes.
Collapse
Affiliation(s)
- Shannon J Moore
- Michigan Neuroscience Institute & Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Geoffrey G Murphy
- Michigan Neuroscience Institute & Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| | - Victor A Cazares
- Michigan Neuroscience Institute & Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
The infralimbic cortex and mGlu5 mediate the effects of chronic intermittent ethanol exposure on fear learning and memory. Psychopharmacology (Berl) 2020; 237:3417-3433. [PMID: 32767063 PMCID: PMC7572878 DOI: 10.1007/s00213-020-05622-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/27/2020] [Indexed: 01/19/2023]
Abstract
RATIONALE AND OBJECTIVES Alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) often occur comorbidly. While the incidence of these disorders is increasing, there is little investigation into the interacting neural mechanisms between these disorders. These studies aim to identify cognitive deficits that occur as a consequence of fear and ethanol exposure, implement a novel pharmaceutical intervention, and determine relevant underlying neurocircuitry. Additionally, due to clinical sex differences in PTSD prevalence and alcohol abuse, these studies examine the nature of this relationship in rodent models. METHODS Animals were exposed to a model of PTSD+AUD using auditory fear conditioning followed by chronic intermittent ethanol exposure (CIE). Then, rats received extinction training consisting of multiple conditioned stimulus presentations in absence of the shock. Extinction recall and context-induced freezing were measured in subsequent tests. CDPPB, a metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulator, was used to treat these deficits, and region-specific effects were determined using microinjections. RESULTS These studies determined that CIE exposure led to deficits in fear extinction learning and heightened context-induced freezing while sex differences emerged in fear conditioning and extinction cue recall tests. Furthermore, using CDPPB, these studies found that enhancement of infralimbic (IfL) mGlu5 activity was able to recover CIE-induced deficits in both males and females. CONCLUSIONS These studies show that CIE induces deficits in fear-related behaviors and that enhancement of IfL glutamatergic activity can facilitate learning during extinction. Additionally, we identify novel pharmacological targets for the treatment of individuals who suffer from PTSD and AUD.
Collapse
|
18
|
Segebarth D, Griebel M, Stein N, von Collenberg CR, Martin C, Fiedler D, Comeras LB, Sah A, Schoeffler V, Lüffe T, Dürr A, Gupta R, Sasi M, Lillesaar C, Lange MD, Tasan RO, Singewald N, Pape HC, Flath CM, Blum R. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses. eLife 2020; 9:e59780. [PMID: 33074102 PMCID: PMC7710359 DOI: 10.7554/elife.59780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses.
Collapse
Affiliation(s)
- Dennis Segebarth
- Institute of Clinical Neurobiology, University Hospital WürzburgWürzburgGermany
| | - Matthias Griebel
- Department of Business and Economics, University of WürzburgWürzburgGermany
| | - Nikolai Stein
- Department of Business and Economics, University of WürzburgWürzburgGermany
| | | | - Corinna Martin
- Institute of Clinical Neurobiology, University Hospital WürzburgWürzburgGermany
| | - Dominik Fiedler
- Institute of Physiology I, Westfälische Wilhlems-UniversitätMünsterGermany
| | - Lucas B Comeras
- Department of Pharmacology, Medical University of InnsbruckInnsbruckAustria
| | - Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Victoria Schoeffler
- Department of Child and Adolescent Psychiatry, Center of Mental Health, University Hospital WürzburgWürzburgGermany
| | - Teresa Lüffe
- Department of Child and Adolescent Psychiatry, Center of Mental Health, University Hospital WürzburgWürzburgGermany
| | - Alexander Dürr
- Department of Business and Economics, University of WürzburgWürzburgGermany
| | - Rohini Gupta
- Institute of Clinical Neurobiology, University Hospital WürzburgWürzburgGermany
| | - Manju Sasi
- Institute of Clinical Neurobiology, University Hospital WürzburgWürzburgGermany
| | - Christina Lillesaar
- Department of Child and Adolescent Psychiatry, Center of Mental Health, University Hospital WürzburgWürzburgGermany
| | - Maren D Lange
- Institute of Physiology I, Westfälische Wilhlems-UniversitätMünsterGermany
| | - Ramon O Tasan
- Department of Pharmacology, Medical University of InnsbruckInnsbruckAustria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | | | - Christoph M Flath
- Department of Business and Economics, University of WürzburgWürzburgGermany
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital WürzburgWürzburgGermany
- Comprehensive Anxiety CenterWürzburgGermany
| |
Collapse
|
19
|
Rodriguez G, Moore SJ, Neff RC, Glass ED, Stevenson TK, Stinnett GS, Seasholtz AF, Murphy GG, Cazares VA. Deficits across multiple behavioral domains align with susceptibility to stress in 129S1/SvImJ mice. Neurobiol Stress 2020; 13:100262. [PMID: 33344715 PMCID: PMC7739066 DOI: 10.1016/j.ynstr.2020.100262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/07/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023] Open
Abstract
Acute physical or psychological stress can elicit adaptive behaviors that allow an organism maintain homeostasis. However, intense and/or prolonged stressors often have the opposite effect, resulting in maladaptive behaviors and curbing goal-directed action; in the extreme, this may contribute to the development of psychiatric conditions like generalized anxiety disorder, major depressive disorder, or post-traumatic stress disorder. While treatment of these disorders generally focuses on reducing reactivity to potentially threatening stimuli, there are in fact impairments across multiple domains including valence, arousal, and cognition. Here, we use the genetically stress-susceptible 129S1 mouse strain to explore the effects of stress across multiple domains. We find that 129S1 mice exhibit a potentiated neuroendocrine response across many environments and paradigms, and that this is associated with reduced exploration, neophobia, decreased novelty- and reward-seeking, and spatial learning and memory impairments. Taken together, our results suggest that the 129S1 strain may provide a useful model for elucidating mechanisms underlying myriad aspects of stress-linked psychiatric disorders as well as potential treatments that may ameliorate symptoms.
Collapse
Affiliation(s)
- G Rodriguez
- Michigan Neuroscience Institute, USA.,Neuroscience Graduate Program, USA
| | - S J Moore
- Department of Molecular and Integrative Physiology, USA.,Michigan Neuroscience Institute, USA
| | - R C Neff
- Department of Molecular and Integrative Physiology, USA
| | - E D Glass
- Department of Molecular and Integrative Physiology, USA.,Michigan Neuroscience Institute, USA
| | | | | | - A F Seasholtz
- Michigan Neuroscience Institute, USA.,Neuroscience Graduate Program, USA.,Department of Biological Chemistry University of Michigan, Ann Arbor, MI, USA
| | - G G Murphy
- Department of Molecular and Integrative Physiology, USA.,Michigan Neuroscience Institute, USA.,Neuroscience Graduate Program, USA
| | - V A Cazares
- Department of Molecular and Integrative Physiology, USA.,Michigan Neuroscience Institute, USA.,Department of Psychology, Williams College, MA, USA
| |
Collapse
|
20
|
Bergstrom HC, Lieberman AG, Graybeal C, Lipkin AM, Holmes A. Dorsolateral striatum engagement during reversal learning. ACTA ACUST UNITED AC 2020; 27:418-422. [PMID: 32934094 PMCID: PMC7497112 DOI: 10.1101/lm.051714.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/19/2020] [Indexed: 01/05/2023]
Abstract
Most experimental preparations demonstrate a role for dorsolateral striatum (DLS) in stimulus-response, but not outcome-based, learning. Here, we assessed DLS involvement in a touchscreen-based reversal task requiring mice to update choice following a change in stimulus-reward contingencies. In vivo single-unit recordings in the DLS showed reversal produced a population-level shift from excited to inhibited neuronal activity prior to choices being made. The larger the shift, the faster mice reversed. Furthermore, optogenetic photosilencing DLS neurons during choice increased early reversal errors. These findings suggest dynamic DLS engagement may facilitate reversal, possibly by signaling a change in contingencies to other striatal and cortical regions.
Collapse
Affiliation(s)
- Hadley C Bergstrom
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland 20852, USA
| | - Abby G Lieberman
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland 20852, USA
| | - Carolyn Graybeal
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland 20852, USA
| | - Anna M Lipkin
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland 20852, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland 20852, USA
| |
Collapse
|
21
|
Sex differences in auditory fear discrimination are associated with altered medial prefrontal cortex function. Sci Rep 2020; 10:6300. [PMID: 32286467 PMCID: PMC7156682 DOI: 10.1038/s41598-020-63405-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/28/2020] [Indexed: 01/05/2023] Open
Abstract
The increased prevalence of post-traumatic stress disorder (PTSD) that is observed in women may involve sex differences in learned fear inhibition and medial prefrontal cortex (mPFC) function. PTSD is characterized by fear overgeneralization involving impaired fear regulation by safety signals. We recently found that males show fear discrimination and females show fear generalization involving reduced safety signalling after extended fear discrimination training. Here we determined if these sex differences involve altered mPFC function. Male and female rats underwent three days of auditory fear discrimination training, where one tone (CS+) was paired with footshock and another tone (CS−) was presented alone. Local field potentials were recorded from prelimbic (PL) and infralimbic (IL) mPFC during retrieval. We found that males discriminated and females generalized based on cue-induced freezing at retrieval. This was accompanied by sex differences in basal theta and gamma oscillations in PL and IL. Importantly, males also showed PL/IL theta activation during safety signalling by the CS− and IL gamma activation in response to the threat-related CS+, both of which were absent in females. These results add to growing evidence indicating that sex differences in learned fear inhibition are associated with altered mPFC function.
Collapse
|
22
|
Polis AJ, Fitzgerald PJ, Hale PJ, Watson BO. Rodent ketamine depression-related research: Finding patterns in a literature of variability. Behav Brain Res 2019; 376:112153. [PMID: 31419519 PMCID: PMC6783386 DOI: 10.1016/j.bbr.2019.112153] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022]
Abstract
Discovering that the anesthetic drug ketamine has rapidly acting antidepressant effects in many individuals with major depression is one of the most important findings in clinical psychopharmacology in recent decades. The initial report of these effects in human subjects was based on a foundation of rodent preclinical studies carried out in the 1990s, and subsequent investigation has included both further studies in individuals with depression, as well as reverse translational experiments in animal models, especially rodents. While there is general agreement in the rodent literature that ketamine has rapidly-acting, and generally sustained, antidepressant-like properties, there are also points of contention across studies, including the precise mechanism of action of this drug. In this review, we briefly summarize prominent yet variable findings regarding the mechanism of action. We also discuss a combination of similarities and variances in the rodent literature in the antidepressant-like effects of ketamine as a function of dose, species and strain, test, stressor, and presumably sex of the experimenter. We then present previously unpublished mouse strain comparison data suggesting that subanesthetic ketamine does not have robust antidepressant-like properties in unstressed animals, and may actually promote depression-like behavior, in contrast to widely reported findings. We conclude that the data best support the notion of ketamine action principally via NMDA receptor antagonism, transiently boosting glutamatergic (and possibly other) signaling in diverse brain circuits. We also suggest that future studies should address in greater detail the extent to which antidepressant-like properties of this drug are stress-sensitive, in an effort to better model major depression present in humans.
Collapse
Affiliation(s)
- Andrew J Polis
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Paul J Fitzgerald
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Pho J Hale
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Brendon O Watson
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America.
| |
Collapse
|
23
|
Differential Alterations in Cortico-Amygdala Circuitry in Mice with Impaired Fear Extinction. Mol Neurobiol 2019; 57:710-721. [PMID: 31463877 DOI: 10.1007/s12035-019-01741-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/19/2019] [Indexed: 01/17/2023]
Abstract
129S1/SvImJ (S1) mice exhibit selective impairments in fear extinction, though the mechanisms underlying these impairments are not fully understood. The medial prefrontal cortex (mPFC) consists of the prelimbic cortex (PL) and infralimbic cortex (IL), which are known to be involved in fear conditioning and extinction, respectively. The PL and IL project to the basolateral amygdala (BLA) that also plays an important role in both mechanisms. In the present study, we utilized optogenetic and electrophysiological approaches to measure inhibitory/excitatory ratios (I/E ratios) in mPFC-BLA circuits of S1 and control C57BL/6 (B6) mice following fear conditioning and extinction. As suggested previously, PL inputs to the BLA became more excitatory after fear conditioning in B6 mice. S1 mice also exhibited strengthened PL-BLA circuit following fear conditioning. Interestingly, fear extinction restored PL-BLA circuit strength to levels comparable to the baseline in B6 mice. However, PL-BLA circuit strength remained abnormally high even after extinction in S1 mice. The IL-BLA circuit became more inhibitory in B6 mice after fear extinction, whereas extinction failed to change the excitability of the IL-BLA circuit in S1 mice. These data suggest that the fear extinction impairments observed in S1 mice may be due to constantly decreased I/E balance in the PL-BLA circuit and lack of changes in I/E balance in the IL-BLA circuit. This further suggests that investigation of both pathways is instrumental in developing more effective therapeutics for psychopathologies that involve impairments in fear extinction, such as chronic pain and posttraumatic stress disorder.
Collapse
|
24
|
Carpenter JK, Pinaire M, Hofmann SG. From Extinction Learning to Anxiety Treatment: Mind the Gap. Brain Sci 2019; 9:brainsci9070164. [PMID: 31336700 PMCID: PMC6680899 DOI: 10.3390/brainsci9070164] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022] Open
Abstract
Laboratory models of extinction learning in animals and humans have the potential to illuminate methods for improving clinical treatment of fear-based clinical disorders. However, such translational research often neglects important differences between threat responses in animals and fear learning in humans, particularly as it relates to the treatment of clinical disorders. Specifically, the conscious experience of fear and anxiety, along with the capacity to deliberately engage top-down cognitive processes to modulate that experience, involves distinct brain circuitry and is measured and manipulated using different methods than typically used in laboratory research. This paper will identify how translational research that investigates methods of enhancing extinction learning can more effectively model such elements of human fear learning, and how doing so will enhance the relevance of this research to the treatment of fear-based psychological disorders.
Collapse
Affiliation(s)
- Joseph K Carpenter
- Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Ave, 2nd floor, Boston, MA 02215, USA
| | - Megan Pinaire
- Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Ave, 2nd floor, Boston, MA 02215, USA
| | - Stefan G Hofmann
- Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Ave, 2nd floor, Boston, MA 02215, USA.
| |
Collapse
|
25
|
Fitzgerald PJ, Watson BO. In vivo electrophysiological recordings of the effects of antidepressant drugs. Exp Brain Res 2019; 237:1593-1614. [PMID: 31079238 PMCID: PMC6584243 DOI: 10.1007/s00221-019-05556-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Antidepressant drugs are a standard biological treatment for various neuropsychiatric disorders, yet relatively little is known about their electrophysiologic and synaptic effects on mood systems that set moment-to-moment emotional tone. In vivo electrical recording of local field potentials (LFPs) and single neuron spiking has been crucial for elucidating important details of neural processing and control in many other systems, and yet electrical approaches have not been broadly applied to the actions of antidepressants on mood-related circuits. Here we review the literature encompassing electrophysiologic effects of antidepressants in animals, including studies that examine older drugs, and extending to more recently synthesized novel compounds, as well as rapidly acting antidepressants. The existing studies on neuromodulator-based drugs have focused on recording in the brainstem nuclei, with much less known about their effects on prefrontal or sensory cortex. Studies on neuromodulatory drugs have moreover focused on single unit firing patterns with less emphasis on LFPs, whereas the rapidly acting antidepressant literature shows the opposite trend. In a synthesis of this information, we hypothesize that all classes of antidepressants could have common final effects on limbic circuitry. Whereas NMDA receptor blockade may induce a high powered gamma oscillatory state via direct and fast alteration of glutamatergic systems in mood-related circuits, neuromodulatory antidepressants may induce similar effects over slower timescales, corresponding with the timecourse of response in patients, while resetting synaptic excitatory versus inhibitory signaling to a normal level. Thus, gamma signaling may provide a biomarker (or “neural readout”) of the therapeutic effects of all classes of antidepressants.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109-5720, USA.
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109-5720, USA.
| |
Collapse
|
26
|
Stress-sensitive antidepressant-like effects of ketamine in the mouse forced swim test. PLoS One 2019; 14:e0215554. [PMID: 30986274 PMCID: PMC6464213 DOI: 10.1371/journal.pone.0215554] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/03/2019] [Indexed: 01/18/2023] Open
Abstract
Major depression is a stress-linked disease with significant morbidity and the anesthetic drug ketamine is of growing interest in the treatment of depression, since in responsive individuals a single dose has rapid (within hours) antidepressant effects that can be sustained for over a week in some instances. This combination of fast action and a therapeutic effect that lasts far beyond the drug’s half-life points to a unique mechanism of action. In this reverse translational study, we investigate the degree to which ketamine counteracts stress-related depression-like behavioral responses by determining whether it affects unstressed animals similarly to stressed mice. To test this, male C57BL/6J mice were given a single injection of vehicle (0.9% saline; i.p.), 10 mg/kg ketamine, or 30 mg/kg ketamine, and were tested in the forced swim test (FST) 24 hours and 7 days later, as well as in the open field test on the eighth day. Unstressed mice had normal group housing, environmental enrichment, and experimenter pre-handling (5 days), whereas stressed animals were subjected to chronic mild stress (single housing, reduced enrichment and minimal handling), where some mice also had daily two-week unpredictable chronic stress (UCS). We find that ketamine (24 hours post-injection) decreases immobility and increases mobile (swimming) behavior (antidepressant-like effects) in UCS animals but does the opposite in unstressed mice, similar to recent human findings. In summary, these data suggest that chronic psychological stress interacts with ketamine treatment to modulate its effects in the C57BL/6J mouse FST, which reinforces the relevance of this test, and this strain of mice, to human, stress-induced depression.
Collapse
|
27
|
Park K, Chung C. Systemic Cellular Activation Mapping of an Extinction-Impaired Animal Model. Front Cell Neurosci 2019; 13:99. [PMID: 30941016 PMCID: PMC6433791 DOI: 10.3389/fncel.2019.00099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Fear extinction diminishes conditioned fear responses and impaired fear extinction has been reported to be related to anxiety disorders such as post-traumatic stress disorder (PTSD). We and others have reported that 129S1/SvImJ (129S1) strain of mice showed selective impairments in fear extinction following successful auditory or contextual fear conditioning. To investigate brain regions involved in the impaired fear extinction of 129S1 mice, we systemically analyzed c-Fos expression patterns before and after contextual fear conditioning and extinction. After fear conditioning, 129S1 mice showed significantly increased c-Fos expression in the medial division of the central amygdala (CEm), prelimbic (PL) cortex of the medial prefrontal cortex (mPFC), and dorsal CA3 of the hippocampus, compared to that of control C57BL/6 mice. Following fear extinction, 129S1 mice exhibited significantly more c-Fos-positive cells in the CEm, PL, and paraventricular nucleus of the thalamus (PVT) than did C57BL/6 mice. These results reveal the dynamic circuitry involved in different steps of fear memory formation and extinction, thus providing candidate brain regions to study the etiology and pathophysiology underlying impaired fear extinction.
Collapse
Affiliation(s)
- Kwanghoon Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
28
|
O’Connor RM, McCafferty CP, Bravo JA, Singewald N, Holmes A, Cryan JF. Increased amygdalar metabotropic glutamate receptor 7 mRNA in a genetic mouse model of impaired fear extinction. Psychopharmacology (Berl) 2019; 236:265-272. [PMID: 30215216 PMCID: PMC6739849 DOI: 10.1007/s00213-018-5031-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022]
Abstract
RATIONALE Post-traumatic stress disorder (PTSD) is a devastating anxiety-related disorder which develops subsequent to a severe psychologically traumatic event. Only ~ 9% of people who experience such a trauma develop PTSD. It is clear that a number of factors, including genetics, influence whether an individual will develop PTSD subsequent to a trauma. The 129S1/SvImJ (S1) inbred mouse strain displays poor fear extinction and may be useful to model this specific aspect of PTSD. The metabotropic glutamate receptor 7 (mGlu7 receptor) has previously been shown to be involved in cognitive processes and anxiety-like behaviour placing it in a key position to regulate fear extinction processes. We sought to compare mGlu7 receptor mRNA levels in the S1 strain with those in the robustly extinguishing C57BL/6J (B6) inbred strain using in situ hybridisation (ISH) in three brain regions associated with fear extinction: the amygdala, hippocampus and prefrontal cortex (PFC). RESULTS Compared to the B6 strain, S1 mice had increased mGlu7 receptor mRNA levels in the lateral amygdala (LA) and basolateral amygdala (BLA) subdivisions. An increase was also seen in the hippocampal CA1 and CA3 subregions of S1 mice. No difference in mGlu7 receptor levels were seen in the central nucleus (CeA) of the amygdala, dentate gyrus (DG) of the hippocampus or prefrontal cortex. CONCLUSIONS These data show altered mGlu7 receptor expression in key brain regions associated with fear extinction in two different inbred mouse strains which differ markedly in their fear extinction behaviour. Altered mGlu7 receptor levels may contribute to the deficit fear extinction processes seen in fear extinction in the S1 strain.
Collapse
Affiliation(s)
- Richard M. O’Connor
- Department of Anatomy and Neuroscience and APC Microbiome Institute, University College Cork, Cork, Ireland,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, S10-20 Hess CSM, 1470 Madison Avenue, New York, NY 10029, USA,Present address: Department of Neuroscience, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Cian P. McCafferty
- Department of Anatomy and Neuroscience and APC Microbiome Institute, University College Cork, Cork, Ireland,Present address: Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Javier A. Bravo
- Grupo de NeuroGastroBioquímica, Laboratorio e Química Biológica & Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - John F. Cryan
- Department of Anatomy and Neuroscience and APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
29
|
Goode TD, Maren S. Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology (Berl) 2019; 236:415-437. [PMID: 30255379 PMCID: PMC6373193 DOI: 10.1007/s00213-018-5024-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Comorbidity of anxiety disorders, stressor- and trauma-related disorders, and substance use disorders is extremely common. Moreover, therapies that reduce pathological fear and anxiety on the one hand, and drug-seeking on the other, often prove short-lived and are susceptible to relapse. Considerable advances have been made in the study of the neurobiology of both aversive and appetitive extinction, and this work reveals shared neural circuits that contribute to both the suppression and relapse of conditioned responses associated with trauma or drug use. OBJECTIVES The goal of this review is to identify common neural circuits and mechanisms underlying relapse across domains of addiction biology and aversive learning in preclinical animal models. We focus primarily on neural circuits engaged during the expression of relapse. KEY FINDINGS After extinction, brain circuits involving the medial prefrontal cortex and hippocampus come to regulate the expression of conditioned responses by the amygdala, bed nucleus of the stria terminalis, and nucleus accumbens. During relapse, hippocampal projections to the prefrontal cortex inhibit the retrieval of extinction memories resulting in a loss of inhibitory control over fear- and drug-associated conditional responding. CONCLUSIONS The overlapping brain systems for both fear and drug memories may explain the co-occurrence of fear and drug-seeking behaviors.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA.
| |
Collapse
|
30
|
Abstract
The measurement of Pavlovian forms of fear extinction offers a relatively simple behavioral preparation that is nonetheless tractable, from a translational perspective, as an approach to study mechanisms of exposure therapy and biological underpinnings of anxiety and trauma-related disorders such as post-traumatic stress disorder (PTSD). Deficient fear extinction is considered a robust clinical endophenotype for these disorders and, as such, has particular significance in the current "age of RDoC (research domain criteria)." Various rodent models of impaired extinction have thus been generated with the objective of approximating this clinical, relapse prone aberrant extinction learning. These models have helped to reveal neurobiological correlates of extinction circuitry failure, gene variants, and other mechanisms underlying deficient fear extinction. In addition, they are increasingly serving as tools to investigate ways to therapeutically overcome poor extinction to support long-term retention of extinction memory and thus protection against various forms of fear relapse; modeled in the laboratory by measuring spontaneous recovery, reinstatement and renewal of fear. In the current article, we review models of impaired extinction built around (1) experimentally induced brain region and neural circuit disruptions (2) spontaneously-arising and laboratory-induced genetic modifications, or (3) exposure to environmental insults, including stress, drugs of abuse, and unhealthy diet. Collectively, these models have been instrumental in advancing in our understanding of extinction failure and underlying susceptibilities at the neural, genetic, molecular, and neurochemical levels; generating renewed interest in developing novel, targeted and effective therapeutic treatments for anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| |
Collapse
|
31
|
Gunduz-Cinar O, Brockway E, Lederle L, Wilcox T, Halladay LR, Ding Y, Oh H, Busch EF, Kaugars K, Flynn S, Limoges A, Bukalo O, MacPherson KP, Masneuf S, Pinard C, Sibille E, Chesler EJ, Holmes A. Identification of a novel gene regulating amygdala-mediated fear extinction. Mol Psychiatry 2019; 24:601-612. [PMID: 29311651 PMCID: PMC6035889 DOI: 10.1038/s41380-017-0003-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/08/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
Abstract
Recent years have seen advances in our understanding of the neural circuits associated with trauma-related disorders, and the development of relevant assays for these behaviors in rodents. Although inherited factors are known to influence individual differences in risk for these disorders, it has been difficult to identify specific genes that moderate circuit functions to affect trauma-related behaviors. Here, we exploited robust inbred mouse strain differences in Pavlovian fear extinction to uncover quantitative trait loci (QTL) associated with this trait. We found these strain differences to be resistant to developmental cross-fostering and associated with anatomical variation in basolateral amygdala (BLA) perineuronal nets, which are developmentally implicated in extinction. Next, by profiling extinction-driven BLA expression of QTL-linked genes, we nominated Ppid (peptidylprolyl isomerase D, a member of the tetratricopeptide repeat (TPR) protein family) as an extinction-related candidate gene. We then showed that Ppid was enriched in excitatory and inhibitory BLA neuronal populations, but at lower levels in the extinction-impaired mouse strain. Using a virus-based approach to directly regulate Ppid function, we demonstrated that downregulating BLA-Ppid impaired extinction, while upregulating BLA-Ppid facilitated extinction and altered in vivo neuronal extinction encoding. Next, we showed that Ppid colocalized with the glucocorticoid receptor (GR) in BLA neurons and found that the extinction-facilitating effects of Ppid upregulation were blocked by a GR antagonist. Collectively, our results identify Ppid as a novel gene involved in regulating extinction via functional actions in the BLA, with possible implications for understanding genetic and pathophysiological mechanisms underlying risk for trauma-related disorders.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| | - Emma Brockway
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Lauren Lederle
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Troy Wilcox
- 0000 0004 0374 0039grid.249880.fThe Jackson Laboratory, Bar Harbor, ME USA
| | - Lindsay R. Halladay
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Ying Ding
- Joint Carnegie Mellon University–University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, PA USA
| | - Hyunjung Oh
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA ,0000 0001 2157 2938grid.17063.33Departments of Psychiatry and Pharmacology & Toxicology, Campbell Family Mental Health Research Institute of CAMH, University of Toronto, Toronto, Canada
| | - Erica F. Busch
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Katie Kaugars
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Shaun Flynn
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Aaron Limoges
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Olena Bukalo
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Kathryn P. MacPherson
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Sophie Masneuf
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Courtney Pinard
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Etienne Sibille
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA ,0000 0001 2157 2938grid.17063.33Departments of Psychiatry and Pharmacology & Toxicology, Campbell Family Mental Health Research Institute of CAMH, University of Toronto, Toronto, Canada
| | - Elissa J. Chesler
- 0000 0004 0374 0039grid.249880.fThe Jackson Laboratory, Bar Harbor, ME USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
32
|
Shimizu T, Minami C, Mitani A. Effect of electrical stimulation of the infralimbic and prelimbic cortices on anxiolytic-like behavior of rats during the elevated plus-maze test, with particular reference to multiunit recording of the behavior-associated neural activity. Behav Brain Res 2018; 353:168-175. [PMID: 30057351 DOI: 10.1016/j.bbr.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
Abstract
Fear and anxiety affect the activities of daily living and require concerted management, such as coping strategies, to preserve quality of life. The infralimbic (IL) and prelimbic (PL) medial prefrontal cortices have been implicated in the regulation of fear- and anxiety-like behavior, but their roles in overcoming fear- and anxiety-like behavior remain unknown. We investigated the anxiolytic-like effects of electrical stimulation of the IL and PL cortices in rats during the elevated plus-maze test. IL stimulation led to a significantly higher percentage of time spent and entries in the open arms, whereas PL stimulation did not have any significant behavioral effects. Subsequently, we recorded multiunit activity from the IL and PL cortices in rats using a wireless telemetry device, to determine whether activation of the IL occurs when rats enter the open arms in the elevated plus-maze test. The firing rate of IL neurons increased 1-3 s prior to entry from the closed arm to the open arm, whereas there were no corresponding changes in the firing rate of PL neurons. Taken together, the present findings suggest that the IL plays a key role in exerting active action to overcome anxiety-like behavior.
Collapse
Affiliation(s)
- Tomoko Shimizu
- Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chihiro Minami
- Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Mitani
- Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
33
|
Neural Oscillatory Correlates for Conditioning and Extinction of Fear. Biomedicines 2018; 6:biomedicines6020049. [PMID: 29724018 PMCID: PMC6027138 DOI: 10.3390/biomedicines6020049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 12/27/2022] Open
Abstract
The extinction of conditioned-fear represents a hallmark of current exposure therapies as it has been found to be impaired in people suffering from post-traumatic stress disorder (PTSD) and anxiety. A large body of knowledge focusing on psychophysiological animal and human studies suggests the involvement of key brain structures that interact via neural oscillations during the acquisition and extinction of fear. Consequently, neural oscillatory correlates of such mechanisms appear relevant regarding the development of novel therapeutic approaches to counterbalance abnormal activity in fear-related brain circuits, which, in turn, could alleviate fear and anxiety symptoms. Here, we provide an account of state-of-the-art neural oscillatory correlates for the conditioning and extinction of fear, and also deal with recent translational efforts aimed at fear extinction by neural oscillatory modulation.
Collapse
|
34
|
Bukalo O, Holmes A. Everything in Its Right Place: A Prefrontal-Midbrain Circuit for Contextual Fear Discrimination. Neuron 2018; 97:732-733. [PMID: 29470964 PMCID: PMC11015330 DOI: 10.1016/j.neuron.2018.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this issue of Neuron, Rozeske et al. (2018) use an ingenuous behavioral paradigm to change pertinent sensory stimuli defining a given context to interrogate how the dorsomedial prefrontal cortex (dmPFC) and periaqueductal gray (PAG) interact during contextual fear discrimination.
Collapse
Affiliation(s)
- Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
35
|
Rozeske RR, Jercog D, Karalis N, Chaudun F, Khoder S, Girard D, Winke N, Herry C. Prefrontal-Periaqueductal Gray-Projecting Neurons Mediate Context Fear Discrimination. Neuron 2018; 97:898-910.e6. [DOI: 10.1016/j.neuron.2017.12.044] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 01/22/2023]
|
36
|
β-Adrenoceptor Blockade in the Basolateral Amygdala, But Not the Medial Prefrontal Cortex, Rescues the Immediate Extinction Deficit. Neuropsychopharmacology 2017; 42:2537-2544. [PMID: 28462941 PMCID: PMC5686500 DOI: 10.1038/npp.2017.89] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023]
Abstract
Early psychological interventions, such as exposure therapy, rely on extinction learning to reduce the development of stress- and trauma-related disorders. However, recent research suggests that extinction often fails to reduce fear when administered soon after trauma. This immediate extinction deficit (IED) may be due to stress-induced dysregulation of neural circuits involved in extinction learning. We have shown that systemic β-adrenoceptor blockade with propranolol rescues the IED, but impairs delayed extinction. Here we sought to determine the neural locus of these effects. Rats underwent auditory fear conditioning and then received either immediate (30 min) or delayed (24 h) extinction training. We used bilateral intracranial infusions of propranolol into either the infralimbic division of the medial prefrontal cortex (mPFC) or the basolateral amygdala (BLA) to examine the effects of β-adrenoceptor blockade on immediate and delayed extinction learning. Interestingly, intra-BLA, but not intra-mPFC, propranolol rescued the IED; animals receiving intra-BLA propranolol prior to immediate extinction showed less spontaneous recovery of fear during extinction retrieval. Importantly, this was not due to impaired consolidation of the conditioning memory. In contrast, neither intra-BLA nor intra-mPFC propranolol affected delayed extinction learning. Overall, these data contribute to a growing literature suggesting dissociable roles for key nodes in the fear extinction circuit depending on the timing of extinction relative to conditioning. These data also suggest that heightened noradrenergic activity in the BLA underlies stress-induced extinction deficits. Propranolol may be a useful adjunct to behavioral therapeutic interventions in recently traumatized individuals who are at risk for developing trauma-related disorders.
Collapse
|
37
|
MicroRNA-Mediated Rescue of Fear Extinction Memory by miR-144-3p in Extinction-Impaired Mice. Biol Psychiatry 2017; 81:979-989. [PMID: 28104225 DOI: 10.1016/j.biopsych.2016.12.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND MicroRNA (miRNA)-mediated control of gene expression suggests that miRNAs are interesting targets and/or biomarkers in the treatment of anxiety- and trauma-related disorders, where often memory-associated gene expression is adversely affected. METHODS The role of miRNAs in the rescue of impaired fear extinction was assessed using the 129S1/SvlmJ (S1) mouse model of impaired fear extinction. miRNA microarray analysis, reverse transcription polymerase chain reaction, fluorescent in situ hybridization, lentiviral overexpression, and Luciferase reporter assays were used to gain insight into the mechanisms underlying miRNA-mediated normalization of deficient fear extinction. RESULTS Rescuing impaired fear extinction via dietary zinc restriction was associated with differential expression of miRNAs in the amygdala. One candidate, miR-144-3p, robustly expressed in the basolateral amygdala, showed specific extinction-induced, but not fear-induced, increased expression in both extinction-rescued S1 mice and extinction-intact C57BL/6 (BL6) mice. miR-144-3p upregulation and effects on subsequent behavioral adaption was assessed in S1 and BL6 mice. miR-144-3p overexpression in the basolateral amygdala rescued impaired fear extinction in S1 mice, led to enhanced fear extinction acquisition in BL6 mice, and furthermore protected against fear renewal in BL6 mice. miR-144-3p targets a number of genes implicated in the control of plasticity-associated signaling cascades, including Pten, Spred1, and Notch1. In functional interaction studies, we revealed that the miR-144-3p target, PTEN, colocalized with miR-144-3p in the basolateral amygdala and showed functional downregulation following successful fear extinction in S1 mice. CONCLUSIONS These findings identify a fundamental role of miR-144-3p in the rescue of impaired fear extinction and suggest this miRNA as a viable target in developing novel treatments for posttraumatic stress disorder and related disorders.
Collapse
|
38
|
Minami C, Shimizu T, Mitani A. Neural activity in the prelimbic and infralimbic cortices of freely moving rats during social interaction: Effect of isolation rearing. PLoS One 2017; 12:e0176740. [PMID: 28459875 PMCID: PMC5411063 DOI: 10.1371/journal.pone.0176740] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/14/2017] [Indexed: 12/26/2022] Open
Abstract
Sociability promotes a sound daily life for individuals. Reduced sociability is a central symptom of various neuropsychiatric disorders, and yet the neural mechanisms underlying reduced sociability remain unclear. The prelimbic cortex (PL) and infralimbic cortex (IL) have been suggested to play an important role in the neural mechanisms underlying sociability because isolation rearing in rats results in impairment of social behavior and structural changes in the PL and IL. One possible mechanism underlying reduced sociability involves dysfunction of the PL and IL. We made a wireless telemetry system to record multiunit activity in the PL and IL of pairs of freely moving rats during social interaction and examined the influence of isolation rearing on this activity. In group-reared rats, PL neurons increased firing when the rat showed approaching behavior and also contact behavior, especially when the rat attacked the partner. Conversely, IL neurons increased firing when the rat exhibited leaving behavior, especially when the partner left on its own accord. In social interaction, the PL may be involved in active actions toward others, whereas the IL may be involved in passive relief from cautionary subjects. Isolation rearing altered social behavior and neural activity. Isolation-reared rats showed an increased frequency and decreased duration of contact behavior. The increased firing of PL neurons during approaching and contact behavior, observed in group-reared rats, was preserved in isolation-reared rats, whereas the increased firing of IL neurons during leaving behavior, observed in group-reared rats, was suppressed in isolation-reared rats. This result indicates that isolation rearing differentially alters neural activity in the PL and IL during social behavior. The differential influence of isolation rearing on neural activity in the PL and IL may be one of the neural bases of isolation rearing-induced behavior.
Collapse
Affiliation(s)
- Chihiro Minami
- Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Shimizu
- Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Mitani
- Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
39
|
Delli Pizzi S, Chiacchiaretta P, Mantini D, Bubbico G, Ferretti A, Edden RA, Di Giulio C, Onofrj M, Bonanni L. Functional and neurochemical interactions within the amygdala-medial prefrontal cortex circuit and their relevance to emotional processing. Brain Struct Funct 2017; 222:1267-1279. [PMID: 27566606 PMCID: PMC5549263 DOI: 10.1007/s00429-016-1276-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/15/2016] [Indexed: 02/02/2023]
Abstract
The amygdala-medial prefrontal cortex (mPFC) circuit plays a key role in emotional processing. GABA-ergic inhibition within the mPFC has been suggested to play a role in the shaping of amygdala activity. However, the functional and neurochemical interactions within the amygdala-mPFC circuits and their relevance to emotional processing remain unclear. To investigate this circuit, we obtained resting-state functional magnetic resonance imaging (rs-fMRI) and proton MR spectroscopy in 21 healthy subjects to assess the potential relationship between GABA levels within mPFC and the amygdala-mPFC functional connectivity. Trait anxiety was assessed using the State-Trait Anxiety Inventory (STAI-Y2). Partial correlations were used to measure the relationships among the functional connectivity outcomes, mPFC GABA levels and STAI-Y2 scores. Age, educational level and amount of the gray and white matters within 1H-MRS volume of interest were included as nuisance variables. The rs-fMRI signals of the amygdala and the vmPFC were significantly anti-correlated. This negative functional coupling between the two regions was inversely correlated with the GABA+/tCr level within the mPFC and the STAI-Y2 scores. We suggest a close relationship between mPFC GABA levels and functional interactions within the amygdala-vmPFC circuit, providing new insights in the physiology of emotion.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, ''G. d'Annunzio'' University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), ''G. d'Annunzio'' University of Chieti-Pescara, Chieti, Italy
- Aging Research Centre, ''G. d'Annunzio'' University of Chieti-Pescara, Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, ''G. d'Annunzio'' University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), ''G. d'Annunzio'' University of Chieti-Pescara, Chieti, Italy
| | - Dante Mantini
- Research Centre for Motor Control and Neuroplasticity, KU Leuven, Louvain, Belgium
- Department of Health Sciences and Technology, Neural Control of Movement Lab, ETH Zurich, Switzerland
- Department of Experimental Psychology, Oxford University, Oxford, UK
| | - Giovanna Bubbico
- Department of Neuroscience, Imaging and Clinical Sciences, ''G. d'Annunzio'' University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), ''G. d'Annunzio'' University of Chieti-Pescara, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, ''G. d'Annunzio'' University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), ''G. d'Annunzio'' University of Chieti-Pescara, Chieti, Italy
| | - Richard A Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Camillo Di Giulio
- Department of Neuroscience, Imaging and Clinical Sciences, ''G. d'Annunzio'' University of Chieti-Pescara, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, ''G. d'Annunzio'' University of Chieti-Pescara, Chieti, Italy
- Aging Research Centre, ''G. d'Annunzio'' University of Chieti-Pescara, Chieti, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, ''G. d'Annunzio'' University of Chieti-Pescara, Chieti, Italy.
- Aging Research Centre, ''G. d'Annunzio'' University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
40
|
Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nat Neurosci 2017; 20:836-844. [PMID: 28288126 DOI: 10.1038/nn.4523] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022]
Abstract
Fear-related disorders are thought to reflect strong and persistent fear memories. The basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) form strong reciprocal synaptic connections that play a key role in acquisition and extinction of fear memories. While synaptic contacts of BLA cells onto mPFC neurons are likely to play a crucial role in this process, the BLA connects with several additional nuclei within the fear circuit that could relay fear-associated information to the mPFC, and the contribution of direct monosynaptic BLA-mPFC inputs is not yet clear. Here we establish an optogenetic stimulation protocol that induces synaptic depression in BLA-mPFC synapses. In behaving mice, optogenetic high-frequency stimulation of BLA inputs to mPFC interfered with retention of cued associations, attenuated previously acquired cue-associated responses in mPFC neurons and facilitated extinction. Our findings demonstrate the contribution of BLA inputs to mPFC in forming and maintaining cued fear associations.
Collapse
|
41
|
Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction. Transl Psychiatry 2016; 6:e974. [PMID: 27922638 PMCID: PMC5315560 DOI: 10.1038/tp.2016.231] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 01/04/2023] Open
Abstract
Extinction-based exposure therapy is used to treat anxiety- and trauma-related disorders; however, there is the need to improve its limited efficacy in individuals with impaired fear extinction learning and to promote greater protection against return-of-fear phenomena. Here, using 129S1/SvImJ mice, which display impaired fear extinction acquisition and extinction consolidation, we revealed that persistent and context-independent rescue of deficient fear extinction in these mice was associated with enhanced expression of dopamine-related genes, such as dopamine D1 (Drd1a) and -D2 (Drd2) receptor genes in the medial prefrontal cortex (mPFC) and amygdala, but not hippocampus. Moreover, enhanced histone acetylation was observed in the promoter of the extinction-regulated Drd2 gene in the mPFC, revealing a potential gene-regulatory mechanism. Although enhancing histone acetylation, via administering the histone deacetylase (HDAC) inhibitor MS-275, does not induce fear reduction during extinction training, it promoted enduring and context-independent rescue of deficient fear extinction consolidation/retrieval once extinction learning was initiated as shown following a mild conditioning protocol. This was associated with enhanced histone acetylation in neurons of the mPFC and amygdala. Finally, as a proof-of-principle, mimicking enhanced dopaminergic signaling by L-dopa treatment rescued deficient fear extinction and co-administration of MS-275 rendered this effect enduring and context-independent. In summary, current data reveal that combining dopaminergic and epigenetic mechanisms is a promising strategy to improve exposure-based behavior therapy in extinction-impaired individuals by initiating the formation of an enduring and context-independent fear-inhibitory memory.
Collapse
|
42
|
Bennett MR, Arnold J, Hatton SN, Lagopoulos J. Regulation of fear extinction by long-term depression: The roles of endocannabinoids and brain derived neurotrophic factor. Behav Brain Res 2016; 319:148-164. [PMID: 27867101 DOI: 10.1016/j.bbr.2016.11.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 11/19/2022]
Abstract
The extinction of a conditioned fear response is of great interest in the search for a means of ameliorating adverse neurobiological changes resulting from stress. The discovery that endocannibinoid (EC) levels are inversely related to the extent of such stress, and that the amygdala is a primary site mediating stress, suggests that ECs in this brain region might play a major role in extinction. Supporting this are the observations that the basolateral complex of the amygdala shows an increase in ECs only during extinction and that early clinical trials indicate that cannabinoid-like agents, when taken orally by patients suffering from post traumatic stress disorder (PTSD), reduce insomnia and nightmares. In order to optimize the potential of these agents to ameliorate symptoms of PTSD four important questions need to be answered: first, what is the identity of the cells that release ECs in the amygdala during extinction; second, what are their sites of action; third, what roles do the ECs play in the alleviation of long- depression (LTD), a process central to extinction; and finally, to what extent does brain derived neurotrophic factor (BDNF) facilitate the release of ECs? A review of the relevant literature is presented in an attempt to answer these questions. It is suggested that the principal cell involved in EC synthesis and release during extinction is the so-called excitatory extinction neuron in the basal nucleus of the amygdala. Furthermore that the main site of action of the ECs is the adjacent calcitonin gene-related peptide inhibitory interneurons, whose normal role of blocking the excitatory neurons is greatly diminished. The molecular pathways leading (during extinction trials) to the synthesis and release of ECs from synaptic spines of extinction neurons, that is potentiated by BDNF, are also delineated in this review. Finally, consideration is given to how the autocrine action of BDNF, linked to the release of ECs, can lead to the sustained release of these, so maintaining extinction over long times.
Collapse
Affiliation(s)
- Maxwell R Bennett
- The Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.
| | - Jonathon Arnold
- The Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Sean N Hatton
- The Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Jim Lagopoulos
- The Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia; The Sunshine Coast Mind and Neuroscience, Thompson Institute, The University of the Sunshine Coast, QLD, Australia
| |
Collapse
|
43
|
Giustino TF, Fitzgerald PJ, Maren S. Fear Expression Suppresses Medial Prefrontal Cortical Firing in Rats. PLoS One 2016; 11:e0165256. [PMID: 27776157 PMCID: PMC5077087 DOI: 10.1371/journal.pone.0165256] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/07/2016] [Indexed: 11/29/2022] Open
Abstract
The medial prefrontal cortex (mPFC) plays a crucial role in emotional learning and memory in rodents and humans. While many studies suggest a differential role for the prelimbic (PL) and infralimbic (IL) subdivisions of mPFC, few have considered the relationship between neural activity in these two brain regions recorded simultaneously in behaving animals. Importantly, how concurrent PL and IL activity relate to conditioned freezing behavior is largely unknown. Here we used single-unit recordings targeting PL and IL in awake, behaving rats during the acquisition and expression of conditioned fear. On Day 1, rats received either signaled or unsignaled footshocks in the recording chamber; an auditory conditioned stimulus (CS) preceded signaled footshocks. Twenty-four hours later, animals were returned to the recording chamber (modified to create a novel context) where they received 5 CS-alone trials. After fear conditioning, both signaled and unsignaled rats exhibited high levels of post-shock freezing that was associated with an enduring suppression of mPFC spontaneous firing, particularly in the IL of signaled rats. Twenty-four hours later, CS presentation produced differential conditioned freezing in signaled and unsignaled rats: freezing increased in rats that had received signaled shocks, but decreased in animals in the unsignaled condition (i.e., external inhibition). This group difference in CS-evoked freezing was mirrored in the spontaneous firing rate of neurons in both PL and IL. Interestingly, differences in PL and IL firing rate highly correlated with freezing levels. In other words, in the signaled group IL spontaneous rates were suppressed relative to PL, perhaps limiting IL-mediated suppression of fear and allowing PL activity to dominate performance, resulting in high levels of freezing. This was not observed in the unsignaled group, which exhibited low freezing. These data reveal that the activity of mPFC neurons is modulated by both associative and nonassociative stimuli that regulate conditioned fear.
Collapse
Affiliation(s)
- Thomas F. Giustino
- Department of Psychology and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Paul J. Fitzgerald
- Department of Psychology and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Stephen Maren
- Department of Psychology and Institute for Neuroscience, Texas A&M University, College Station, Texas
- * E-mail:
| |
Collapse
|
44
|
Hill JL, Hardy NF, Jimenez DV, Maynard KR, Kardian AS, Pollock CJ, Schloesser RJ, Martinowich K. Loss of promoter IV-driven BDNF expression impacts oscillatory activity during sleep, sensory information processing and fear regulation. Transl Psychiatry 2016; 6:e873. [PMID: 27552586 PMCID: PMC5022093 DOI: 10.1038/tp.2016.153] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 11/09/2022] Open
Abstract
Posttraumatic stress disorder is characterized by hyperarousal, sensory processing impairments, sleep disturbances and altered fear regulation; phenotypes associated with changes in brain oscillatory activity. Molecules associated with activity-dependent plasticity, including brain-derived neurotrophic factor (BDNF), may regulate neural oscillations by controlling synaptic activity. BDNF synthesis includes production of multiple Bdnf transcripts, which contain distinct 5' noncoding exons. We assessed arousal, sensory processing, fear regulation and sleep in animals where BDNF expression from activity-dependent promoter IV is disrupted (Bdnf-e4 mice). Bdnf-e4 mice display sensory hyper-reactivity and impaired electrophysiological correlates of sensory information processing as measured by event-related potentials (ERP). Utilizing electroencephalogram, we identified a decrease in slow-wave activity during non-rapid eye movement sleep, suggesting impaired sleep homeostasis. Fear extinction is controlled by hippocampal-prefrontal cortical BDNF signaling, and neurophysiological communication patterns between the hippocampus (HPC) and medial prefrontal cortex (mPFC) correlate with behavioral performance during extinction. Impaired fear extinction in Bdnf-e4 mice is accompanied by increased HPC activation and decreased HPC-mPFC theta phase synchrony during early extinction, as well as increased mPFC activation during extinction recall. These results suggest that activity-dependent BDNF signaling is critical for regulating oscillatory activity, which may contribute to altered behavior.
Collapse
Affiliation(s)
- J L Hill
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - N F Hardy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - D V Jimenez
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - K R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - A S Kardian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - C J Pollock
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - R J Schloesser
- Sheppard Pratt-Lieber Research Institute, Inc., Baltimore, MD, USA
| | - K Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Lieber Institute for Brain Development, 855 North Wolfe Street, 347B, Suite 300, Baltimore, MD 21205, USA. E-mail:
| |
Collapse
|
45
|
Sex differences in learned fear expression and extinction involve altered gamma oscillations in medial prefrontal cortex. Neurobiol Learn Mem 2016; 135:66-72. [PMID: 27344940 DOI: 10.1016/j.nlm.2016.06.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/06/2016] [Accepted: 06/21/2016] [Indexed: 11/22/2022]
Abstract
Sex differences in learned fear expression and extinction involve the medial prefrontal cortex (mPFC). We recently demonstrated that enhanced learned fear expression during auditory fear extinction and its recall is linked to persistent theta activation in the prelimbic (PL) but not infralimbic (IL) cortex of female rats. Emerging evidence indicates that gamma oscillations in mPFC are also implicated in the expression and extinction of learned fear. Therefore we re-examined our in vivo electrophysiology data and found that females showed persistent PL gamma activation during extinction and a failure of IL gamma activation during extinction recall. Altered prefrontal gamma oscillations thus accompany sex differences in learned fear expression and its extinction. These findings are relevant for understanding the neural basis of post-traumatic stress disorder, which is more prevalent in women and involves impaired extinction and mPFC dysfunction.
Collapse
|
46
|
Gunduz-Cinar O, Flynn S, Brockway E, Kaugars K, Baldi R, Ramikie TS, Cinar R, Kunos G, Patel S, Holmes A. Fluoxetine Facilitates Fear Extinction Through Amygdala Endocannabinoids. Neuropsychopharmacology 2016; 41:1598-609. [PMID: 26514583 PMCID: PMC4832021 DOI: 10.1038/npp.2015.318] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/11/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023]
Abstract
Pharmacologically elevating brain endocannabinoids (eCBs) share anxiolytic and fear extinction-facilitating properties with classical therapeutics, including the selective serotonin reuptake inhibitor, fluoxetine. There are also known functional interactions between the eCB and serotonin systems and preliminary evidence that antidepressants cause alterations in brain eCBs. However, the potential role of eCBs in mediating the facilitatory effects of fluoxetine on fear extinction has not been established. Here, to test for a possible mechanistic contribution of eCBs to fluoxetine's proextinction effects, we integrated biochemical, electrophysiological, pharmacological, and behavioral techniques, using the extinction-impaired 129S1/Sv1mJ mouse strain. Chronic fluoxetine treatment produced a significant and selective increase in levels of anandamide in the BLA, and an associated decrease in activity of the anandamide-catabolizing enzyme, fatty acid amide hydrolase. Slice electrophysiological recordings showed that fluoxetine-induced increases in anandamide were associated with the amplification of eCB-mediated tonic constraint of inhibitory, but not excitatory, transmission in the BLA. Behaviorally, chronic fluoxetine facilitated extinction retrieval in a manner that was prevented by systemic or BLA-specific blockade of CB1 receptors. In contrast to fluoxetine, citalopram treatment did not increase BLA eCBs or facilitate extinction. Taken together, these findings reveal a novel, obligatory role for amygdala eCBs in the proextinction effects of a major pharmacotherapy for trauma- and stressor-related disorders and anxiety disorders.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA,Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Room 2N09, Rockville, MD 20852-9411, USA, Tel: +1 301 443 4052, Fax: +1 301 480 8035, E-mail: or
| | - Shaun Flynn
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Emma Brockway
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Katherine Kaugars
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rita Baldi
- Department of Psychiatry and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Teniel S Ramikie
- Department of Psychiatry and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Resat Cinar
- Laboratory of Physiological Studies, NIAAA, NIH, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiological Studies, NIAAA, NIH, Bethesda, MD, USA
| | - Sachin Patel
- Department of Psychiatry and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA,Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Room 2N09, Rockville, MD 20852-9411, USA, Tel: +1 301 443 4052, Fax: +1 301 480 8035, E-mail: or
| |
Collapse
|
47
|
Specific Targeting of the Basolateral Amygdala to Projectionally Defined Pyramidal Neurons in Prelimbic and Infralimbic Cortex. eNeuro 2016; 3:eN-NWR-0002-16. [PMID: 27022632 PMCID: PMC4804386 DOI: 10.1523/eneuro.0002-16.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 11/21/2022] Open
Abstract
Adjacent prelimbic (PL) and infralimbic (IL) regions in the medial prefrontal cortex have distinct roles in emotional learning. A complete mechanistic understanding underlying this dichotomy remains unclear. Here we explored targeting of specific PL and IL neurons by the basolateral amygdala (BLA), a limbic structure pivotal in pain and fear processing. In mice, we used retrograde labeling, brain-slice recordings, and adenoviral optogenetics to dissect connectivity of ascending BLA input onto PL and IL neurons projecting to the periaqueductal gray (PAG) or the amygdala. We found differential targeting of BLA projections to PL and IL cortex. Activating BLA projections evoked excitatory and inhibitory responses in cortico-PAG (CP) neurons in layer 5 (L5) of both PL and IL cortex. However, all inhibitory responses were polysynaptic and monosynaptic BLA input was stronger to CP neurons in IL cortex. Conversely, the BLA preferentially targeted corticoamygdalar (CA) neurons in layer 2 (L2) of PL over IL cortex. We also reveal that BLA input is projection specific by showing preferential targeting of L5 CP neurons over neighboring L3/5 CA neurons in IL cortex. We conclude by showing that BLA input is laminar-specific by producing stronger excitatory responses CA neurons in L3/5 compared with L2 in IL cortex. Collectively, this study reveals differential targeting of the BLA to PL and IL cortex, which depends both on laminar location and projection target of cortical neurons. Overall, our findings should have important implications for understanding the processing of pain and fear input by the PL and IL cortex.
Collapse
|
48
|
Hill JL, Martinowich K. Activity-dependent signaling: influence on plasticity in circuits controlling fear-related behavior. Curr Opin Neurobiol 2016; 36:59-65. [PMID: 26485574 PMCID: PMC4738053 DOI: 10.1016/j.conb.2015.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
Fear regulation is impaired in anxiety and trauma-related disorders. Patients experience heightened fear expression and reduced ability to extinguish fear memories. Because fear regulation is abnormal in these disorders and extinction recapitulates current treatment strategies, understanding the underlying mechanisms is vital for developing new treatments. This is critical because although extinction-based exposure therapy is a mainstay of treatment, relapse is common. We examine recent findings describing changes in network activity and functional connectivity within limbic circuits during fear regulation, and explore how activity-dependent signaling contributes to the neural activity patterns that control fear and anxiety. We review the role of the prototypical activity-dependent molecule, brain-derived neurotrophic factor (BDNF), whose signaling has been critically linked to regulation of fear behavior.
Collapse
Affiliation(s)
- Julia L Hill
- Lieber Institute for Brain Development, Baltimore, MD 21205, United States
| | - Keri Martinowich
- Lieber Institute for Brain Development, Baltimore, MD 21205, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
49
|
Kiritoshi T, Ji G, Neugebauer V. Rescue of Impaired mGluR5-Driven Endocannabinoid Signaling Restores Prefrontal Cortical Output to Inhibit Pain in Arthritic Rats. J Neurosci 2016; 36:837-50. [PMID: 26791214 PMCID: PMC4719019 DOI: 10.1523/jneurosci.4047-15.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022] Open
Abstract
The medial prefrontal cortex (mPFC) serves executive functions that are impaired in neuropsychiatric disorders and pain. Underlying mechanisms remain to be determined. Here we advance the novel concept that metabotropic glutamate receptor 5 (mGluR5) fails to engage endocannabinoid (2-AG) signaling to overcome abnormal synaptic inhibition in pain, but restoring endocannabinoid signaling allows mGluR5 to increase mPFC output hence inhibit pain behaviors and mitigate cognitive deficits. Whole-cell patch-clamp recordings were made from layer V pyramidal cells in the infralimbic mPFC in rat brain slices. Electrical and optogenetic stimulations were used to analyze amygdala-driven mPFC activity. A selective mGluR5 activator (VU0360172) increased pyramidal output through an endocannabinoid-dependent mechanism because intracellular inhibition of the major 2-AG synthesizing enzyme diacylglycerol lipase or blockade of CB1 receptors abolished the facilitatory effect of VU0360172. In an arthritis pain model mGluR5 activation failed to overcome abnormal synaptic inhibition and increase pyramidal output. mGluR5 function was rescued by restoring 2-AG-CB1 signaling with a CB1 agonist (ACEA) or inhibitors of postsynaptic 2-AG hydrolyzing enzyme ABHD6 (intracellular WWL70) and monoacylglycerol lipase MGL (JZL184) or by blocking GABAergic inhibition with intracellular picrotoxin. CB1-mediated depolarization-induced suppression of synaptic inhibition (DSI) was also impaired in the pain model but could be restored by coapplication of VU0360172 and ACEA. Stereotaxic coadministration of VU0360172 and ACEA into the infralimbic, but not anterior cingulate, cortex mitigated decision-making deficits and pain behaviors of arthritic animals. The results suggest that rescue of impaired endocannabinoid-dependent mGluR5 function in the mPFC can restore mPFC output and cognitive functions and inhibit pain. Significance statement: Dysfunctions in prefrontal cortical interactions with subcortical brain regions, such as the amygdala, are emerging as important players in neuropsychiatric disorders and pain. This study identifies a novel mechanism and rescue strategy for impaired medial prefrontal cortical function in an animal model of arthritis pain. Specifically, an integrative approach of optogenetics, pharmacology, electrophysiology, and behavior is used to advance the novel concept that a breakdown of metabotropic glutamate receptor subtype mGluR5 and endocannabinoid signaling in infralimbic pyramidal cells fails to control abnormal amygdala-driven synaptic inhibition in the arthritis pain model. Restoring endocannabinoid signaling allows mGluR5 activation to increase infralimbic output hence inhibit pain behaviors and mitigate pain-related cognitive deficits.
Collapse
Affiliation(s)
| | | | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, Texas 79430-6592
| |
Collapse
|
50
|
Maren S, Holmes A. Stress and Fear Extinction. Neuropsychopharmacology 2016; 41:58-79. [PMID: 26105142 PMCID: PMC4677122 DOI: 10.1038/npp.2015.180] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/03/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022]
Abstract
Stress has a critical role in the development and expression of many psychiatric disorders, and is a defining feature of posttraumatic stress disorder (PTSD). Stress also limits the efficacy of behavioral therapies aimed at limiting pathological fear, such as exposure therapy. Here we examine emerging evidence that stress impairs recovery from trauma by impairing fear extinction, a form of learning thought to underlie the suppression of trauma-related fear memories. We describe the major structural and functional abnormalities in brain regions that are particularly vulnerable to stress, including the amygdala, prefrontal cortex, and hippocampus, which may underlie stress-induced impairments in extinction. We also discuss some of the stress-induced neurochemical and molecular alterations in these brain regions that are associated with extinction deficits, and the potential for targeting these changes to prevent or reverse impaired extinction. A better understanding of the neurobiological basis of stress effects on extinction promises to yield novel approaches to improving therapeutic outcomes for PTSD and other anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychology, Institute of Neuroscience, Texas A&M University, College Station, TX, USA
| | - Andrew Holmes
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|