1
|
Bornhoft KN, Prohofsky J, O’Neal TJ, Wolff AR, Saunders BT. Striatal dopamine represents valence on dynamic regional scales. J Neurosci 2025; 45:e1551242025. [PMID: 40097183 PMCID: PMC12019117 DOI: 10.1523/jneurosci.1551-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/31/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025] Open
Abstract
Adaptive decision making relies on dynamic updating of learned associations where environmental cues come to predict valenced stimuli, such as food or threat. Cue-guided behavior depends on a network of brain systems, including dopaminergic projections to the striatum. Critically, it remains unclear how dopamine signaling across the striatum encodes multi-valent, dynamic learning contexts, where positive and negative associations must be rapidly disambiguated. To understand this, we employed a Pavlovian discrimination paradigm, where cues predicting food or threat were intermingled during conditioning sessions, and their meaning was serially reversed across training. We found that male and female rats readily distinguished these cues and updated their behavior rapidly upon valence reversal. Using fiber photometry, we recorded dopamine signaling in three major striatal subregions - the dorsolateral striatum (DLS), the nucleus accumbens (NAc) core, and the nucleus accumbens medial shell - finding that valence was represented uniquely across all three regions, indicative of local signals biased for value and salience. Further, ambiguity introduced by cue reversals reshaped striatal dopamine on different timelines: nucleus accumbens signals updated more readily than those in the DLS. Together, these results indicate that striatal dopamine flexibly encodes stimulus valence according to region-specific rules, and these signals are dynamically modulated by changing contingencies in the resolution of ambiguity about the meaning of environmental cues.Significance Statement Adaptive decision making relies on updating learned associations to disambiguate predictions of reward or threat. This cue-guided behavior depends on striatal dopamine, but it remains unclear how dopamine signaling encodes multi-valent, dynamic learning contexts. Here, we employed a paradigm where cues predicting positive and negative outcomes were intermingled, and their meaning was serially reversed across time. We recorded dopamine signaling, finding heterogeneous patterns of valence encoding across striatal subregions, and cue reversal reshaped subregional signals on different timelines. Our results suggest that dopamine flexibly encodes dynamic learning contexts to resolve ambiguity about the meaning of environmental cues.
Collapse
Affiliation(s)
- Kaisa N. Bornhoft
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
| | - Julianna Prohofsky
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
| | - Timothy J. O’Neal
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
| | - Amy R. Wolff
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
| | - Benjamin T. Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
2
|
Opendak M, Meyer H, Callaghan BL, Abramson L, John SR, Bath K, Lee F, Tottenham N, Sullivan R. Understanding the development of a functional brain circuit: reward processing as an illustration. Transl Psychiatry 2025; 15:53. [PMID: 39962048 PMCID: PMC11832941 DOI: 10.1038/s41398-025-03280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 01/13/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Aberrant reward processing is common in psychiatric disorders that begin during development. However, our understanding of the early reward system is limited, due to few studies assessing reward engagement across development. Moreover, the interpretation of these findings is based primarily on our understanding of the adult reward system. Here, we argue that approaches to early reward processing must be re-framed within the context of developmental transitions. This alternate perspective takes into account unique, age-specific brain network functions that promote adaptive behaviors as environmental demands change from infancy through childhood. We survey the literature on developing reward systems and ask the following critical questions: (1) how are rewarding stimuli defined for infants and children? (2) do adult-defined neural reward circuits also support early reward behavior? and (3) how can early circuit perturbation impact infant and adult circuit function? Altogether, we argue that this developmental niche-centered framework is needed for conceptually and theoretically approaching developmental research questions, including but also extending beyond the scope of reward. Finally, this framework can help us understand how disturbance in developmental processes may ultimately manifest as pathology.
Collapse
Affiliation(s)
- Maya Opendak
- Kennedy Krieger Institute, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Baltimore, MD, USA.
| | - Heidi Meyer
- Boston University Department of Psychological and Brain Sciences, Boston, MA, USA
| | | | - Lior Abramson
- Department of Psychology, Columbia University in the City of New York, New York, NY, USA
- Tel Aviv University, Tel Aviv, Israel
| | - Shanah Rachel John
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin Bath
- New York State Psychiatric Institute, New York, NY, USA
- Columbia University Irving Medical College, New York, NY, USA
| | - Francis Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Nim Tottenham
- Department of Psychology, Columbia University in the City of New York, New York, NY, USA
| | - Regina Sullivan
- Department of Child & Adolescent Psychiatry, NYU Grossman School of Health, New York, NY, USA
| |
Collapse
|
3
|
Casey BJ, Lin YC, Meyer HC. Examining threat responses through a developmental lens. Cereb Cortex 2025; 35:19-33. [PMID: 39562146 DOI: 10.1093/cercor/bhae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Adolescence has been characterized by risk taking and fearlessness. Yet, the emergence of anxiety disorders that are associated with fear peaks during this developmental period. Moreover, adolescents show heightened sensitivity to stress relative to children and adults. To address inconsistencies between the common characterization of adolescents as fearless and the evidence of heightened anxiety and stress during this time, we build upon foundational discoveries of threat-related circuitry and behavior in adult rodents by Joseph LeDoux and colleagues. Specifically, the conservation of this circuitry across species has provided opportunities for identifying mechanisms underlying threat responses that we have extended to developing humans and rodents. We elucidate situations in which adolescents show heightened threat responses and others where they appear fearless and link them to developmental changes of threat circuitry during this period. We discuss the potential adaptiveness of these threat responses for survival of the individual and species but also the potential risks for anxiety and stress. We end by offering potential new ways in which behavioral treatments for youth with anxiety and stress-related disorders may be optimized to target the developing vs developed brain.
Collapse
Affiliation(s)
- B J Casey
- Department of Neuroscience and Behavior, Barnard College-Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Yen-Chu Lin
- Department of Neuroscience and Behavior, Barnard College-Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Heidi C Meyer
- Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215, United States
| |
Collapse
|
4
|
Ontiveros-Araiza LF. The Neurobehavioral State hypothesis. Biosystems 2025; 247:105361. [PMID: 39521269 DOI: 10.1016/j.biosystems.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Since the early attempts to understand the brain made by Greek philosophers more than 2000 years ago, one of the main questions in neuroscience has been how the brain perceives all the stimuli in the environment and uses this information to implement a response. Recent hypotheses of the neural code rely on the existence of an ideal observer, whether on specific areas of the cerebral cortex or distributed network composed of cortical and subcortical elements. The Neurobehavioral State hypothesis stipulates that neurons are in a quasi-stable state due to the dynamic interaction of their molecular components. This increases their computational capabilities and electrophysiological behavior further than a binary active/inactive state. Together, neuronal populations across the brain learn to identify and associate internal and external stimuli with actions and emotions. Furthermore, such associations can be stored through the regulation of neuronal components as new quasi-stable states. Using this framework, behavior arises as the result of the dynamic interaction between internal and external stimuli together with previously established quasi-stable states that delineate the behavioral response. Finally, the Neurobehavioral State hypothesis is firmly grounded on present evidence of the complex dynamics within the brain, from the molecular to the network level, and avoids the need for a central observer by proposing the brain configures itself through experience-driven associations.
Collapse
Affiliation(s)
- Luis Fernando Ontiveros-Araiza
- Department of Cognitive Neuroscience, Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
5
|
Duvarci S. Dopaminergic circuits controlling threat and safety learning. Trends Neurosci 2024; 47:1014-1027. [PMID: 39472156 DOI: 10.1016/j.tins.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The ability to learn from experience that certain cues and situations are associated with threats or safety is crucial for survival and adaptive behavior. Understanding the neural substrates of threat and safety learning has high clinical significance because deficits in these forms of learning characterize anxiety disorders. Traditionally, dopamine neurons were thought to uniformly support reward learning by signaling reward prediction errors. However, the dopamine system is functionally more diverse than was initially appreciated and is also critical for processing threat and safety. In this review, I highlight recent studies demonstrating that dopamine neurons generate prediction errors for threat and safety, and describe how dopamine projections to the amygdala, medial prefrontal cortex (mPFC), and striatum regulate associative threat and safety learning.
Collapse
Affiliation(s)
- Sevil Duvarci
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany.
| |
Collapse
|
6
|
Schroyens N, Vercammen L, Özcan B, Salazar VAO, Zaman J, De Bundel D, Beckers T, Luyten L. No evidence that post-training dopamine D2 receptor agonism affects fear generalization in male rats. J Psychopharmacol 2024; 38:672-682. [PMID: 39068641 PMCID: PMC7616352 DOI: 10.1177/02698811241261375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
BACKGROUND The neurotransmitter dopamine plays an important role in the processing of emotional memories, and prior research suggests that dopaminergic manipulations immediately after fear learning can affect the retention and generalization of acquired fear. AIMS The current study focuses specifically on the role of dopamine D2 receptors (D2Rs) regarding fear generalization in adult, male Wistar rats, and aims to replicate previous findings in mice. METHODS In a series of five experiments, D2R (ant)agonists were injected systemically, immediately after differential cued fear conditioning (CS+ followed by shock, CS- without shock). All five experiments involved the administration of the D2R agonist quinpirole at different doses versus saline (n = 12, 16, or 44 rats/group). In addition, one of the studies administered the D2R antagonist raclopride (n = 12). One day later, freezing during the CS+ and CS- was assessed. RESULTS We found no indications for an effect of quinpirole or raclopride on fear generalization during this drug-free test. Importantly, and contradicting earlier research in mice, the evidence for the absence of an effect of D2R agonist quinpirole (1 mg/kg) on fear generalization was substantial according to Bayesian analyses and was observed in a highly powered experiment (N = 87). We did find acute behavioral effects in line with the literature, for both quinpirole and raclopride in a locomotor activity test. CONCLUSION In contrast with prior studies in mice, we have obtained evidence against a preventative effect of post-training D2R agonist quinpirole administration on subsequent fear generalization in rats.
Collapse
Affiliation(s)
- Natalie Schroyens
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
| | - Laura Vercammen
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
- KU Leuven, Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3714, 3000Leuven, Belgium
| | - Burcu Özcan
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
| | - Victoria Aurora Ossorio Salazar
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
- KU Leuven, Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3714, 3000Leuven, Belgium
| | - Jonas Zaman
- KU Leuven, Health Psychology, Tiensestraat 102 box 3726, 3000Leuven, Belgium
| | - Dimitri De Bundel
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, 1090Brussel, Belgium
| | - Tom Beckers
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
| | - Laura Luyten
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
| |
Collapse
|
7
|
Bornhoft KN, Prohofsky J, O'Neal TJ, Wolff AR, Saunders BT. Valence ambiguity dynamically shapes striatal dopamine heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594692. [PMID: 38798567 PMCID: PMC11118546 DOI: 10.1101/2024.05.17.594692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Adaptive decision making relies on dynamic updating of learned associations where environmental cues come to predict positive and negatively valenced stimuli, such as food or threat. Flexible cue-guided behaviors depend on a network of brain systems, including dopamine signaling in the striatum, which is critical for learning and maintenance of conditioned behaviors. Critically, it remains unclear how dopamine signaling encodes multi-valent, dynamic learning contexts, where positive and negative associations must be rapidly disambiguated. To understand this, we employed a Pavlovian discrimination paradigm, where cues predicting positive and negative outcomes were intermingled during conditioning sessions, and their meaning was serially reversed across training. We found that rats readily distinguished these cues, and updated their behavior rapidly upon valence reversal. Using fiber photometry, we recorded dopamine signaling in three major striatal subregions -,the dorsolateral striatum (DLS), the nucleus accumbens core, and the nucleus accumbens medial shell - and found heterogeneous responses to positive and negative conditioned cues and their predicted outcomes. Valence ambiguity introduced by cue reversal reshaped striatal dopamine on different timelines: nucleus accumbens core and shell signals updated more readily than those in the DLS. Together, these results suggest that striatal dopamine flexibly encodes multi-valent learning contexts, and these signals are dynamically modulated by changing contingencies to resolve ambiguity about the meaning of environmental cues.
Collapse
|
8
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Krueger JN, Patel NN, Shim K, Ng K, Sangha S. Conditioned inhibition of fear and reward in male and female rats. Neurobiol Learn Mem 2024; 208:107881. [PMID: 38135111 PMCID: PMC10922191 DOI: 10.1016/j.nlm.2023.107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Stimuli in our environment are not always associated with an outcome. Some of these stimuli, depending on how they are presented, may gain inhibitory value or simply be ignored. If experienced in the presence of other cues predictive of appetitive or aversive outcomes, they typically gain inhibitory value and become predictive cues indicating the absence of appetitive or aversive outcomes. In this case, these cues are referred to as conditioned inhibitors. Here, male and female Long Evans rats underwent cue discrimination training where a reward cue was paired with sucrose, a fear cue with footshock, and an inhibitor cue resulted in neither sucrose or footshock. During a subsequent summation test for conditioned inhibition of fear and reward, the inhibitor cue was presented concurrently with the reward and fear cues without any outcome, intermixed with trials of reinforced reward and fear trials. Males showed significant conditioned inhibition of freezing, while females did not, which was not dependent on estrous. Both males and females showed significant conditioned inhibition of reward. During a retardation of fear acquisition test, the inhibitor was paired with footshock and both males and females showed delayed acquisition of fear. During a retardation of reward acquisition test, the inhibitor was paired with sucrose, and females showed delayed acquisition of reward, while males did not. In summary, males and females showed significant reward-fear-inhibitor cue discrimination, conditioned inhibition of reward, and retardation of fear acquisition. The main sex difference, which was not estrous-dependent, was the lack of conditioned inhibition of freezing in females. These data imply that while the inhibitor cue gained some inhibitory value in the females, the strength of this inhibitory value may not have been great enough to effectively downregulate freezing elicited by the fear cue.
Collapse
Affiliation(s)
- Jamie N Krueger
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA 47907
| | - Nupur N Patel
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA 47907
| | - Kevin Shim
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA 47907
| | - Ka Ng
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA 47907
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA 47907; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA 46202.
| |
Collapse
|
10
|
Ng K, Pollock M, Escobedo A, Bachman B, Miyazaki N, Bartlett EL, Sangha S. Suppressing fear in the presence of a safety cue requires infralimbic cortical signaling to central amygdala. Neuropsychopharmacology 2024; 49:359-367. [PMID: 37188848 PMCID: PMC10724163 DOI: 10.1038/s41386-023-01598-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Stressful events can have lasting and impactful effects on behavior, especially by disrupting normal regulation of fear and reward processing. Accurate discrimination among environmental cues predicting threat, safety or reward adaptively guides behavior. Post-traumatic stress disorder (PTSD) represents a condition in which maladaptive fear persists in response to explicit safety-predictive cues that coincide with previously learned threat cues, but without threat being present. Since both the infralimbic cortex (IL) and amygdala have each been shown to be important for fear regulation to safety cues, we tested the necessity of specific IL projections to the basolateral amygdala (BLA) or central amygdala (CeA) during safety recall. Male Long Evans rats were used since prior work showed female Long Evans rats did not acquire the safety discrimination task used in this study. Here, we show the infralimbic projection to the central amygdala was necessary for suppressing fear cue-induced freezing in the presence of a learned safety cue, and the projection to the basolateral amygdala was not. The loss of discriminative fear regulation seen specifically during IL->CeA inhibition is similar to the behavioral disruption seen in PTSD individuals that fail to regulate fear in the presence of a safety cue.
Collapse
Affiliation(s)
- Ka Ng
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Pollock
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Abraham Escobedo
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Brent Bachman
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nanami Miyazaki
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Edward L Bartlett
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
11
|
Fitzgerald JM, Webb EK, Sangha S. Psychological and physiological correlates of stimulus discrimination in adults. Psychophysiology 2023; 60:e14327. [PMID: 37170664 PMCID: PMC10527767 DOI: 10.1111/psyp.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023]
Abstract
The discrimination of cues in the environment that signal danger ("fear cue") is important for survival but depends critically on the discernment of such cues from ones that pose no threat ("safety cues"). In rodents, we previously demonstrated the underlying neurobiological mechanisms that support fear versus safety discrimination and documented that these mechanisms extend to the discrimination of reward as well. While learning about reward is equally important for survival, it remains an under-studied area of research, particularly in human studies of conditional discrimination. In the present study, we translated our rodent task of fear reward and neutral discrimination (fear, reward, and neutral discrimination [FRND]) for use in humans. Undergraduate students (N = 53) completed the FRND while electrodermal activity was recorded. Skin conductance response (SCR) amplitude, a marker of arousal response, was derived for fear, reward, and neutral cues that signaled no outcome; critical trials assessed conditional discrimination using combined fear + neutral and reward + neutral cues. Participants provided likeability ratings for each cue type. Results demonstrated that participants rated reward cues the best, fear cues the worst, and neutral cues in between, while SCR amplitude was largest for fear and reward cues and lowest for neutral cues. SCR amplitudes were reduced for fear + neutral (compared to fear) and reward + neutral cues (compared to reward). Results demonstrate that the FRND is a useful paradigm for the assessment of psychological and physiological discrimination of fear and reward. Implications and directions for future work are discussed.
Collapse
Affiliation(s)
| | - E. Kate Webb
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts, USA
| | - Susan Sangha
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
12
|
Rajan KE, Karen C, Dhivakar S. Early-life stressful social experience (SSE) alters ultrasound vocalizations and impairs novel odor preference: Influence of histone dopaminylation. Neurosci Lett 2023; 809:137304. [PMID: 37225119 DOI: 10.1016/j.neulet.2023.137304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIM Rat pups emit ultrasound vocalizations (USVs) in response to negative/positive stimuli, the acoustic features of USVs are altered during the stressful and threatening situation. We hypothesize that maternal separation (MS) and/or stranger (St) exposure would alter acoustic features of USVs, neurotransmitter transmission, epigenetic status and impaired odor recognition later in life. METHOD Rat pups were left undisturbed in the home cage (a) control, (b) pups were separated from mother MS [postnatal day (PND) 5-10], (c) intrusion of stranger (St; social experience: SE) to the pups either in the presence of mother (M + P + St) or (d) absence of mother (MSP + St). USVs was recorded on PND10 in two context i) five minutes after MS, MS and St, mother with their pups and St, ii) five minutes after the pups reunited with their pups and/or removal of stranger. Novel odor preference test was conducted during their mid-adolescence on PND34, 35. RESULTS Rat pups produced two complex USVs (frequency step-down: 38-48 kHz; and two syllable: 42-52 kHz) especially when the mother was absent and the stranger was present. Further, pups failed to recognize novel odor, which can be linked to an increased dopamine transmission, decreased transglutaminase (TGM)-2, increased histone trimethylation (H3K4me3) and dopaminylation (H3Q5dop) in the amygdala. CONCLUSIONS This result suggest that USVs act as acoustic code of different early-life stressful social experience, which appears to have long-term effect on odor recognition, dopaminergic activity and dopamine dependent epigenetic status.
Collapse
Affiliation(s)
- Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India.
| | - Christopher Karen
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; Section on Behavioural Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Selvavinayagam Dhivakar
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
13
|
Cassaday HJ, Muir C, Stevenson CW, Bonardi C, Hock R, Waite L. From safety to frustration: The neural substrates of inhibitory learning in aversive and appetitive conditioning procedures. Neurobiol Learn Mem 2023; 202:107757. [PMID: 37044368 DOI: 10.1016/j.nlm.2023.107757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Inhibitory associative learning counters the effects of excitatory learning, whether appetitively or aversively motivated. Moreover, the affective responses accompanying the inhibitory associations are of opponent valence to the excitatory conditioned responses. Inhibitors for negative aversive outcomes (e.g. shock) signal safety, while inhibitors for appetitive outcomes (e.g. food reward) elicit frustration and/or disappointment. This raises the question as to whether studies using appetitive and aversive conditioning procedures should demonstrate the same neural substrates for inhibitory learning. We review the neural substrates of appetitive and aversive inhibitory learning as measured in different procedural variants and in the context of the underpinning excitatory conditioning on which it depends. The mesocorticolimbic dopamine pathways, retrosplenial cortex and hippocampus are consistently implicated in inhibitory learning. Further neural substrates identified in some procedural variants may be related to the specific motivation of the learning task and modalities of the learning cues. Finally, we consider the translational implications of our understanding of the neural substrates of inhibitory learning, for obesity and addictions as well as for anxiety disorders.
Collapse
Affiliation(s)
- H J Cassaday
- School of Psychology, University of Nottingham, United Kingdom.
| | - C Muir
- School of Psychology, University of Nottingham, United Kingdom; School of Physiology, Pharmacology, and Neuroscience, University of Bristol, United Kingdom
| | - C W Stevenson
- School of Biosciences, University of Nottingham, United Kingdom
| | - C Bonardi
- School of Psychology, University of Nottingham, United Kingdom
| | - R Hock
- School of Psychology, University of Nottingham, United Kingdom
| | - L Waite
- School of Psychology, University of Nottingham, United Kingdom
| |
Collapse
|
14
|
Ng KH, Sangha S. Encoding of conditioned inhibitors of fear in the infralimbic cortex. Cereb Cortex 2023; 33:5658-5670. [PMID: 36411540 PMCID: PMC10152082 DOI: 10.1093/cercor/bhac450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cues in the environment signaling the absence of threat, i.e. safety, can influence both fear and reward-seeking behaviors. Heightened and maladaptive fear is associated with reduced activity in the medial prefrontal cortex. We have previously shown in male rats that the infralimbic (IL) prefrontal cortex is necessary for suppressing fear during a safety cue. The objective of the present study was to determine if there was safety cue-specific neural activity within the IL using a Pavlovian conditioning paradigm, where a fear cue was paired with shock, a safety cue was paired with no shock, and a reward cue was paired with sucrose. To investigate how safety cues can suppress fear, the fear and safety cues were presented together as a compound fear + safety cue. Single-unit activity showed a large proportion of neurons with excitatory responses to the fear + safety cue specifically, a separate group of neurons with excitatory responses to both the reward and fear + safety cues, and bidirectional neurons with excitation to the fear + safety cue and inhibition to the fear cue. Neural activity was also found to be negatively correlated with freezing during the fear + safety cue. Together, these data implicate the IL in encoding specific aspects of conditioned inhibitors when fear is being actively suppressed.
Collapse
Affiliation(s)
- Ka H Ng
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Susan Sangha
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
15
|
Meyer HC, Fields A, Vannucci A, Gerhard DM, Bloom PA, Heleniak C, Opendak M, Sullivan R, Tottenham N, Callaghan BL, Lee FS. The Added Value of Crosstalk Between Developmental Circuit Neuroscience and Clinical Practice to Inform the Treatment of Adolescent Anxiety. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:169-178. [PMID: 37124361 PMCID: PMC10140450 DOI: 10.1016/j.bpsgos.2022.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Significant advances have been made in recent years regarding the developmental trajectories of brain circuits and networks, revealing links between brain structure and function. Emerging evidence highlights the importance of developmental trajectories in determining early psychiatric outcomes. However, efforts to encourage crosstalk between basic developmental neuroscience and clinical practice are limited. Here, we focus on the potential advantage of considering features of neural circuit development when optimizing treatments for adolescent patient populations. Drawing on characteristics of adolescent neurodevelopment, we highlight two examples, safety cues and incentives, that leverage insights from neural circuit development and may have great promise for augmenting existing behavioral treatments for anxiety disorders during adolescence. This commentary seeks to serve as a framework to maximize the translational potential of basic research in developmental populations for strengthening psychiatric treatments. In turn, input from clinical practice including the identification of age-specific clinically relevant phenotypes will continue to guide future basic research in the same neural circuits to better reflect clinical practices. Encouraging reciprocal communication to bridge the gap between basic developmental neuroscience research and clinical implementation is an important step toward advancing both research and practice in this domain.
Collapse
Affiliation(s)
- Heidi C. Meyer
- Department of Psychiatry, Joan & Sanford I. Weill Medical College of Cornell University, New York, New York
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Andrea Fields
- Department of Psychology, Columbia University, New York, New York
| | - Anna Vannucci
- Department of Psychology, Columbia University, New York, New York
| | - Danielle M. Gerhard
- Department of Psychiatry, Joan & Sanford I. Weill Medical College of Cornell University, New York, New York
| | - Paul A. Bloom
- Department of Psychology, Columbia University, New York, New York
| | | | - Maya Opendak
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, New York
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
- Department of Neuroscience, Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Regina Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, New York
| | - Bridget L. Callaghan
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Francis S. Lee
- Department of Psychiatry, Joan & Sanford I. Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
16
|
Liu MN, Tian XY, Fang T, Wu N, Li H, Li J. Insights into the Involvement and Therapeutic Target Potential of the Dopamine System in the Posttraumatic Stress Disorder. Mol Neurobiol 2023; 60:3708-3723. [PMID: 36933147 DOI: 10.1007/s12035-023-03312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a neuropsychiatric disease closely related to life-threatening events and psychological stress. Re-experiencing, hyperarousal, avoidance, and numbness are the hallmark symptoms of PTSD, but their underlying neurological processes have not been clearly elucidated. Therefore, the identification and development of drugs for PTSD that targets brain neuronal activities have stalled. Considering that the persistent fear memory induced by traumatic stimulation causes high alertness, high arousal, and cognitive impairment of PTSD symptoms. While the midbrain dopamine system can affect physiological processes such as aversive fear memory learning, consolidation, persistence, and extinction, by altering the functions of the dopaminergic neurons, our viewpoint is that the dopamine system plays a considerable role in the PTSD occurrence and acts as a potential therapeutic target of the disorder. This paper reviews recent findings on the structural and functional connections between ventral tegmental area neurons and the core synaptic circuits involved in PTSD, gene polymorphisms related to the dopamine system that confer susceptibility to clinical PTSD. Moreover, the progress of research on medications that target the dopamine system as PTSD therapies is also discussed. Our goal is to offer some hints for early detection and assist in identifying novel, efficient approaches for treating PTSD.
Collapse
Affiliation(s)
- Meng-Nan Liu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Xiao-Yu Tian
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.,Medical School of Chinese PLA, Beijing, 100853, China
| | - Ting Fang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Hong Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
17
|
Hackleman A, Ibrahim M, Shim K, Sangha S. Interaction of stress and alcohol on discriminating fear from safety and reward in male and female rats. Psychopharmacology (Berl) 2023; 240:609-621. [PMID: 35960326 PMCID: PMC9922333 DOI: 10.1007/s00213-022-06206-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
Abstract
RATIONALE Stressful events can have lasting and impactful effects on behavior, especially in terms of appropriate fear regulation and reward seeking. Our prior work in rats has shown baseline sex differences in fear expression and sucrose seeking in a discriminative reward-fear-safety conditioning task. OBJECTIVES The objectives of the current study were to determine how prior stress may affect alcohol consumption across a reward-fear-safety learning task, and how prior alcohol history may interact with stress to impact learning in this task. METHODS Male and female Long Evans rats were given home cage intermittent 24 h access to both water and alcohol for 5 weeks. A subset of rats then received exposure to stress (15 unsignaled footshocks), while remaining unstressed rats received context exposure without shock. One week later, all rats were trained on the same reward-fear-safety cue task while having continuous home cage access to both water and alcohol. RESULTS All rats increased consumption (g/kg/24 h) across the 5 weeks of intermittent access, with females showing higher consumption levels. Stress exposure did not alter alcohol consumption in the week following stress, but did increase home cage alcohol consumption during later reward-fear-safety cue learning. Stress in both sexes also elevated freezing levels to the reward cue resulting in decreased sucrose seeking and was positively correlated with home cage alcohol consumption. CONCLUSIONS While stress increased drinking in both males and females, the effects of stress were particularly pronounced in females, indicating our results could be capturing a higher propensity for females to display stress-induced drinking.
Collapse
Affiliation(s)
- Abigail Hackleman
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Muhja Ibrahim
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Kevin Shim
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA. .,Department of Psychiatry, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN, NB 300A46202, USA.
| |
Collapse
|
18
|
Laing PAF, Felmingham KL, Davey CG, Harrison BJ. The neurobiology of Pavlovian safety learning: Towards an acquisition-expression framework. Neurosci Biobehav Rev 2022; 142:104882. [PMID: 36150453 DOI: 10.1016/j.neubiorev.2022.104882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Abstract
Safety learning creates associations between conditional stimuli and the absence of threat. Studies of human fear conditioning have accumulated evidence for the neural signatures of safety over various paradigms, aligning on several common brain systems. While these systems are often interpreted as underlying safety learning in a generic sense, they may instead reflect the expression of learned safety, pertaining to processes of fear inhibition, positive affect, and memory. Animal models strongly suggest these can be separable from neural circuits implicated in the conditioning process itself (or safety acquisition). While acquisition-expression distinctions are ubiquitous in behavioural science, this lens has not been applied to safety learning, which remains a novel area in the field. In this mini-review, we overview findings from prevalent safety paradigms in humans, and synthesise these with insights from animal models to propose that the neurobiology of safety learning be conceptualised along an acquisition-expression model, with the aim of stimulating richer brain-based characterisations of this important process.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| |
Collapse
|
19
|
Liley AE, Gabriel DBK, Simon NW. Lateral Orbitofrontal Cortex and Basolateral Amygdala Regulate Sensitivity to Delayed Punishment during Decision-making. eNeuro 2022; 9:ENEURO.0170-22.2022. [PMID: 36038251 PMCID: PMC9463980 DOI: 10.1523/eneuro.0170-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
In real-world decision-making scenarios, negative consequences do not always occur immediately after a choice. This delay between action and outcome drives the underestimation, or "delay discounting", of punishment. While the neural substrates underlying sensitivity to immediate punishment have been well-studied, there has been minimal investigation of delayed consequences. Here, we assessed the role of lateral orbitofrontal cortex (LOFC) and basolateral amygdala (BLA), two regions implicated in cost/benefit decision-making, in sensitivity to delayed vs immediate punishment. The delayed punishment decision-making task (DPDT) was used to measure delay discounting of punishment in rodents. During DPDT, rats choose between a small, single pellet reward and a large, three pellet reward accompanied by a mild foot shock. As the task progresses, the shock is preceded by a delay that systematically increases or decreases throughout the session. We observed that rats avoid choices associated with immediate punishment, then shift preference toward these options when punishment is delayed. LOFC inactivation did not influence choice of rewards with immediate punishment, but decreased choice of delayed punishment. We also observed that BLA inactivation reduced choice of delayed punishment for ascending but not descending delays. Inactivation of either brain region produced comparable effects on decision-making in males and females, but there were sex differences observed in omissions and latency to make a choice. In summary, both LOFC and BLA contribute to the delay discounting of punishment and may serve as promising therapeutic targets to improve sensitivity to delayed punishment during decision-making.Significance StatementNegative consequences occurring after a delay are often underestimated, which can lead to maladaptive decision-making. While sensitivity to immediate punishment during reward-seeking has been well-studied, the neural substrates underlying sensitivity to delayed punishment remain unclear. Here, we used the Delayed Punishment Decision-making Task to determine that lateral orbitofrontal cortex and basolateral amygdala both regulate the discounting of delayed punishment, suggesting that these regions may be potential targets to improve decision-making in psychopathology.
Collapse
Affiliation(s)
- Anna E Liley
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152
| | - Daniel B K Gabriel
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152
| | - Nicholas W Simon
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152
| |
Collapse
|
20
|
Hu S, Packard K, Opendak M. Social Regulation of Negative Valence Systems During Development. Front Syst Neurosci 2022; 15:828685. [PMID: 35126064 PMCID: PMC8811468 DOI: 10.3389/fnsys.2021.828685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
The ability to sense, perceive, and respond appropriately to aversive cues is critical for survival. Conversely, dysfunction in any of these pathway components can lead to heightened avoidance of neutral or rewarding cues, such as social partners. The underlying circuitry mediating both negative valence processing and social behavior is particularly sensitive to early life experience, but mechanisms linking experience to pathology remain elusive. Previous research in humans, rodents, and non-human primates has highlighted the unique neurobiology of the developing infant and the role of the caregiver in mediating the infant’s negative valence circuitry, and the importance of this early social relationship for scaffolding lasting social behavior. In this review, we summarize the current literature on the development of negative valence circuits in the infant and their social regulation by the caregiver following both typical and adversity-rearing. We focus on clinically-relevant research using infant rodents which highlights the amygdala and its interface with the mesolimbic dopamine system through innervation from the ventral tegmental area (VTA) as a locus of dysfunction following early-life adversity. We then describe how these circuits are recruited to perturb life-long social behavior following adversity and propose additional therapeutic targets in these circuits with an eye toward developing age-appropriate interventions.
Collapse
|
21
|
Opendak M, Raineki C, Perry RE, Rincón-Cortés M, Song SC, Zanca RM, Wood E, Packard K, Hu S, Woo J, Martinez K, Vinod KY, Brown RW, Deehan GA, Froemke RC, Serrano PA, Wilson DA, Sullivan RM. Bidirectional control of infant rat social behavior via dopaminergic innervation of the basolateral amygdala. Neuron 2021; 109:4018-4035.e7. [PMID: 34706218 PMCID: PMC8988217 DOI: 10.1016/j.neuron.2021.09.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Social interaction deficits seen in psychiatric disorders emerge in early-life and are most closely linked to aberrant neural circuit function. Due to technical limitations, we have limited understanding of how typical versus pathological social behavior circuits develop. Using a suite of invasive procedures in awake, behaving infant rats, including optogenetics, microdialysis, and microinfusions, we dissected the circuits controlling the gradual increase in social behavior deficits following two complementary procedures-naturalistic harsh maternal care and repeated shock alone or with an anesthetized mother. Whether the mother was the source of the adversity (naturalistic Scarcity-Adversity) or merely present during the adversity (repeated shock with mom), both conditions elevated basolateral amygdala (BLA) dopamine, which was necessary and sufficient in initiating social behavior pathology. This did not occur when pups experienced adversity alone. These data highlight the unique impact of social adversity as causal in producing mesolimbic dopamine circuit dysfunction and aberrant social behavior.
Collapse
Affiliation(s)
- Maya Opendak
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Kennedy Krieger Institute, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Charlis Raineki
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rosemarie E Perry
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Applied Psychology, New York University, New York, NY 10012, USA
| | - Millie Rincón-Cortés
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh PA 15260, USA
| | - Soomin C Song
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Roseanna M Zanca
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychology, CUNY Hunter College, New York, 10016, USA; The Graduate Center of CUNY, New York, 10016, USA
| | - Emma Wood
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Katherine Packard
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Shannon Hu
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Joyce Woo
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Krissian Martinez
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA
| | - K Yaragudri Vinod
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Russell W Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Gerald A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN 37614, USA
| | - Robert C Froemke
- Center for Neural Science, New York University, New York, NY 10003, USA; Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Peter A Serrano
- Department of Psychology, CUNY Hunter College, New York, 10016, USA; The Graduate Center of CUNY, New York, 10016, USA
| | - Donald A Wilson
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Regina M Sullivan
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY 10016, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
22
|
Meyer HC, Sangha S, Radley JJ, LaLumiere RT, Baratta MV. Environmental certainty influences the neural systems regulating responses to threat and stress. Neurosci Biobehav Rev 2021; 131:1037-1055. [PMID: 34673111 PMCID: PMC8642312 DOI: 10.1016/j.neubiorev.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Flexible calibration of threat responding in accordance with the environment is an adaptive process that allows an animal to avoid harm while also maintaining engagement of other goal-directed actions. This calibration process, referred to as threat response regulation, requires an animal to calculate the probability that a given encounter will result in a threat so they can respond accordingly. Here we review the neural correlates of two highly studied forms of threat response suppression: extinction and safety conditioning. We focus on how relative levels of certainty or uncertainty in the surrounding environment alter the acquisition and application of these processes. We also discuss evidence indicating altered threat response regulation following stress exposure, including enhanced fear conditioning, and disrupted extinction and safety conditioning. To conclude, we discuss research using an animal model of coping that examines the impact of stressor controllability on threat responding, highlighting the potential for previous experiences with control, or other forms of coping, to protect against the effects of future adversity.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA.
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jason J Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Ryan T LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA.
| |
Collapse
|
23
|
Ney LJ, Akhurst J, Bruno R, Laing PAF, Matthews A, Felmingham KL. Dopamine, endocannabinoids and their interaction in fear extinction and negative affect in PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110118. [PMID: 32991952 DOI: 10.1016/j.pnpbp.2020.110118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
There currently exist few frameworks for common neurobiology between reexperiencing and negative cognitions and mood symptoms of PTSD. Adopting a dopaminergic framework for PTSD unites many aspects of unique symptom clusters, and this approach also links PTSD symptomology to common comorbidities with a common neurobiological deficiency. Here we review the dopamine literature and incorporate it with a growing field of research that describes both the contribution of endocannabinoids to fear extinction and PTSD, as well as the interactions between dopaminergic and endocannabinoid systems underlying this disorder. Based on current evidence, we outline an early, preliminary model that links re-experiencing and negative cognitions and mood in PTSD by invoking the interaction between endocannabinoid and dopaminergic signalling in the brain. These interactions between PTSD, dopamine and endocannabinoids may have implications for future therapies for treatment-resistant and comorbid PTSD patients.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Australia.
| | - Jane Akhurst
- School of Psychology, University of Tasmania, Australia
| | | | - Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Australia
| | | | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|
24
|
Odriozola P, Gee DG. Learning About Safety: Conditioned Inhibition as a Novel Approach to Fear Reduction Targeting the Developing Brain. Am J Psychiatry 2021; 178:136-155. [PMID: 33167673 PMCID: PMC7951569 DOI: 10.1176/appi.ajp.2020.20020232] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adolescence is a peak time for the onset of psychiatric disorders, with anxiety disorders being the most common and affecting as many as 30% of youths. A core feature of anxiety disorders is difficulty regulating fear, with evidence suggesting deficits in extinction learning and corresponding alterations in frontolimbic circuitry. Despite marked changes in this neural circuitry and extinction learning throughout development, interventions for anxious youths are largely based on principles of extinction learning studied in adulthood. Safety signal learning, based on conditioned inhibition of fear in the presence of a cue that indicates safety, has been shown to effectively reduce anxiety-like behavior in animal models and attenuate fear responses in healthy adults. Cross-species evidence suggests that safety signal learning involves connections between the ventral hippocampus and the prelimbic cortex in rodents or the dorsal anterior cingulate cortex in humans. Particularly because this pathway follows a different developmental trajectory than fronto-amygdala circuitry involved in traditional extinction learning, safety cues may provide a novel approach to reducing fear in youths. In this review, the authors leverage a translational framework to bring together findings from studies in animal models and humans and to bridge the gap between research on basic neuroscience and clinical treatment. The authors consider the potential application of safety signal learning for optimizing interventions for anxious youths by targeting the biological state of the developing brain. Based on the existing cross-species literature on safety signal learning, they propose that the judicious use of safety cues may be an effective and neurodevelopmentally optimized approach to enhancing treatment outcomes for youths with anxiety disorders.
Collapse
Affiliation(s)
| | - Dylan G. Gee
- Department of Psychology, Yale University, New Haven, Conn
| |
Collapse
|
25
|
SKF83959, an agonist of phosphatidylinositol-linked dopamine receptors, prevents renewal of extinguished conditioned fear and facilitates extinction. Brain Res 2020; 1749:147136. [PMID: 32980332 DOI: 10.1016/j.brainres.2020.147136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Fear-related anxiety disorders, such as social phobia and post-traumatic stress disorder, are partly explained by an uncontrollable state of fear. An emerging literature suggests dopamine receptor-1 (D1 receptor) in the amygdala is involved in the regulation of fear memory. An early study has reported that amygdaloid D1 receptor (D1R) is not coupled to the classic cAMP-dependent signal transduction. Here, we investigated whether SKF83959, a typical D1R agonist that mainly activates a D1-like receptor-dependent phosphatidylinositol (PI) signal pathway, facilitates fear extinction and reduces the return of extinguished fear. Interestingly, long-term loss of fearful memories can be induced through a combination of SKF83959 (1 mg/kg/day, i.p., once daily for one week) pharmacotherapy and extinction training. Furthermore, sub-chronic administration of SKF83959 after fear conditioning reduced fear renewal and reinstatement in the mice. We found that the activation D1R and PI signaling in the amygdala was responsible for the effect of SKF83959 on fear extinction. Additionally, SKF83959 significantly promoted the elevation of brain-derived neurotrophic factor (BDNF) expression, possibly by the cAMP response element binding protein (CREB) -directed gene transcription. Given the beneficial effects on extinction, SKF83959 may emerge as a candidate pharmacological approach for improving cognitive-behavioral therapy on fear-related anxiety disorders.
Collapse
|
26
|
Liu J, Likhtik E, Shereen AD, Dennis-Tiwary TA, Casaccia P. White Matter Plasticity in Anxiety: Disruption of Neural Network Synchronization During Threat-Safety Discrimination. Front Cell Neurosci 2020; 14:587053. [PMID: 33250713 PMCID: PMC7674975 DOI: 10.3389/fncel.2020.587053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Recent evidence highlighted the importance of white matter tracts in typical and atypical behaviors. White matter dynamically changes in response to learning, stress, and social experiences. Several lines of evidence have reported white matter dysfunction in psychiatric conditions, including depression, stress- and anxiety-related disorders. The mechanistic underpinnings of these associations, however, remain poorly understood. Here, we outline an integrative perspective positing a link between aberrant myelin plasticity and anxiety. Drawing on extant literature and emerging new findings, we suggest that in anxiety, unique changes may occur in response to threat and to safety learning and the ability to discriminate between both types of stimuli. We propose that altered myelin plasticity in the neural circuits underlying these two forms of learning relates to the emergence of anxiety-related disorders, by compromising mechanisms of neural network synchronization. The clinical and translational implications of this model for anxiety-related disorders are discussed.
Collapse
Affiliation(s)
- Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States
| | - Ekaterina Likhtik
- Department of Biology, Hunter College, City University of New York, New York, NY, United States
- Graduate Program in Biology at the Graduate Center, City University of New York, New York, NY, United States
| | - A. Duke Shereen
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States
| | - Tracy A. Dennis-Tiwary
- Department of Psychology, Hunter College, City University of New York, New York, NY, United States
- Graduate Program in Psychology and Behavioral and Cognitive Neuroscience at the Graduate Center, City University of New York, New York, NY, United States
| | - Patrizia Casaccia
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States
- Graduate Program in Biology at the Graduate Center, City University of New York, New York, NY, United States
- Graduate Program in Biochemistry at the Graduate Center, City University of New York, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
27
|
Individual expression of conditioned safety but not of conditioned relief is correlated with contextual fear. Behav Brain Res 2020; 393:112799. [DOI: 10.1016/j.bbr.2020.112799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/19/2020] [Accepted: 07/05/2020] [Indexed: 11/20/2022]
|
28
|
Neural correlates of safety learning. Behav Brain Res 2020; 396:112884. [PMID: 32871228 DOI: 10.1016/j.bbr.2020.112884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023]
Abstract
Accurate discrimination between safe and dangerous stimuli is essential for survival. Prior research has begun to uncover the neural structures that are necessary for learning this discrimination, but exploration of brain regions involved in this learning process has been mostly limited to males. Recent findings show sex differences in discrimination learning, with reduced fear expression to safe cues in females compared to males. Here, we used male and female Sprague Dawley rats to explore neural activation, as measured by Fos expression, in fear and safety learning related brain regions. Neural activation after fear discrimination (Discrimination) was compared between males and females, as well as with fear conditioned (Fear Only) and stimulus presented (Control) conditions. Correlations of discrimination ability and neural activation were also calculated. We uncovered a correlation between central amygdala (CeA) activation and discrimination abilities in males and females. Anterior medial bed nucleus of the stria terminalis (BNST) was the only region where sex differences in Fos counts were observed in the Discrimination condition, and the only region where neural activation significantly differed between Fear Only and Discrimination conditions. Together, these findings indicate the importance of fear expression circuitry in mediating discrimination responses and generate important questions for future investigation.
Collapse
|
29
|
Vega-Torres JD, Azadian M, Rios-Orsini RA, Reyes-Rivera AL, Ontiveros-Angel P, Figueroa JD. Adolescent Vulnerability to Heightened Emotional Reactivity and Anxiety After Brief Exposure to an Obesogenic Diet. Front Neurosci 2020; 14:562. [PMID: 32694970 PMCID: PMC7338851 DOI: 10.3389/fnins.2020.00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Emerging evidence demonstrates that diet-induced obesity disrupts corticolimbic circuits underlying emotional regulation. Studies directed at understanding how obesity alters brain and behavior are easily confounded by a myriad of complications related to obesity. This study investigated the early neurobiological stress response triggered by an obesogenic diet. Furthermore, this study directly determined the combined impact of a short-term obesogenic diet and adolescence on critical behavioral and molecular substrates implicated in emotion regulation and stress. METHODS Adolescent (postnatal day 31) or adult (postnatal day 81) Lewis rats were fed for 1 week with an experimental Western-like high-saturated fat diet (WD, 41% kcal from fat) or a matched control diet (CD, 13% kcal from fat). We used the acoustic fear-potentiated startle (FPS) paradigm to determine the effects of the WD on cued fear conditioning and fear extinction. We used c-Fos mapping to determine the functional influence of the diet and stress on corticolimbic circuits. RESULTS We report that 1-week WD consumption was sufficient to induce fear extinction deficits in adolescent rats, but not in adult rats. We identify fear-induced alterations in corticolimbic neuronal activation and demonstrate increased prefrontal cortex CRHR1 messenger RNA (mRNA) levels in the rats that consumed the WD. CONCLUSION Our findings demonstrate that short-term consumption of an obesogenic diet during adolescence heightens behavioral and molecular vulnerabilities associated with risk for anxiety and stress-related disorders. Given that fear extinction promotes resilience and that fear extinction principles are the foundation of psychological treatments for posttraumatic stress disorder (PTSD), understanding how obesogenic environments interact with the adolescent period to affect the acquisition and expression of fear extinction memories is of tremendous clinical relevance.
Collapse
Affiliation(s)
- Julio D. Vega-Torres
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Matine Azadian
- Stanford University School of Medicine, Stanford, CA, United States
| | | | | | - Perla Ontiveros-Angel
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Johnny D. Figueroa
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
30
|
Sangha S, Diehl MM, Bergstrom HC, Drew MR. Know safety, no fear. Neurosci Biobehav Rev 2020; 108:218-230. [PMID: 31738952 PMCID: PMC6981293 DOI: 10.1016/j.neubiorev.2019.11.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/27/2019] [Accepted: 11/11/2019] [Indexed: 02/08/2023]
Abstract
Every day we are bombarded by stimuli that must be assessed for their potential for harm or benefit. Once a stimulus is learned to predict harm, it can elicit fear responses. Such learning can last a lifetime but is not always beneficial for an organism. For an organism to thrive in its environment, it must know when to engage in defensive, avoidance behaviors and when to engage in non-defensive, approach behaviors. Fear should be suppressed in situations that are not dangerous: when a novel, innocuous stimulus resembles a feared stimulus, when a feared stimulus no longer predicts harm, or when there is an option to avoid harm. A cardinal feature of anxiety disorders is the inability to suppress fear adaptively. In PTSD, for instance, learned fear is expressed inappropriately in safe situations and is resistant to extinction. In this review, we discuss mechanisms of suppressing fear responses during stimulus discrimination, fear extinction, and active avoidance, focusing on the well-studied tripartite circuit consisting of the amygdala, medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Susan Sangha
- Department of Psychological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| | - Maria M Diehl
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA.
| | - Hadley C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA.
| | - Michael R Drew
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
31
|
Woon EP, Seibert TA, Urbanczyk PJ, Ng KH, Sangha S. Differential effects of prior stress on conditioned inhibition of fear and fear extinction. Behav Brain Res 2019; 381:112414. [PMID: 31891742 DOI: 10.1016/j.bbr.2019.112414] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/14/2019] [Accepted: 12/02/2019] [Indexed: 01/22/2023]
Abstract
Resistant and generalized fear are hallmark symptoms of Post-Traumatic Stress Disorder (PTSD). Given PTSD is highly comorbid with addiction disorders indicates a maladaptive interaction between fear and reward circuits. To investigate learning processes underlying fear, reward and safety, we trained male rats to discriminate among a fear cue paired with footshock, a reward cue paired with sucrose and an explicit safety cue co-occurring with the fear cue in which no footshocks were delivered. In an attempt to emulate aspects of PTSD, we pre-exposed male rats to a stressor (15 unsignaled footshocks) before training them to fear, reward and safety cues, and subsequent fear and reward extinction. Prior stress did not produce any significant impairments on conditioned inhibition to a safety cue compared to non-stressed controls. However, in subsequent fear extinction, prior stress profoundly impaired fear reduction to an extinguished fear cue. Prior stress also significantly reduced reward seeking to a reward-associated cue throughout training. Together, our data show that prior stress did not affect conditioned inhibition of fear to the same extent as impairing fear extinction. These results have interesting implications on how safety circuits are organized and impacted by stress, leading to possibly new avenues of research on mechanisms of stress disorders, such as PTSD.
Collapse
Affiliation(s)
| | | | | | - Ka H Ng
- Department of Psychological Sciences, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Susan Sangha
- Department of Psychological Sciences, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
32
|
Meyer HC, Odriozola P, Cohodes EM, Mandell JD, Li A, Yang R, Hall BS, Haberman JT, Zacharek SJ, Liston C, Lee FS, Gee DG. Ventral hippocampus interacts with prelimbic cortex during inhibition of threat response via learned safety in both mice and humans. Proc Natl Acad Sci U S A 2019; 116:26970-26979. [PMID: 31822612 PMCID: PMC6936350 DOI: 10.1073/pnas.1910481116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Heightened fear and inefficient safety learning are key features of fear and anxiety disorders. Evidence-based interventions for anxiety disorders, such as cognitive behavioral therapy, primarily rely on mechanisms of fear extinction. However, up to 50% of clinically anxious individuals do not respond to current evidence-based treatment, suggesting a critical need for new interventions based on alternative neurobiological pathways. Using parallel human and rodent conditioned inhibition paradigms alongside brain imaging methodologies, we investigated neural activity patterns in the ventral hippocampus in response to stimuli predictive of threat or safety and compound cues to test inhibition via safety in the presence of threat. Distinct hippocampal responses to threat, safety, and compound cues suggest that the ventral hippocampus is involved in conditioned inhibition in both mice and humans. Moreover, unique response patterns within target-differentiated subpopulations of ventral hippocampal neurons identify a circuit by which fear may be inhibited via safety. Specifically, ventral hippocampal neurons projecting to the prelimbic cortex, but not to the infralimbic cortex or basolateral amygdala, were more active to safety and compound cues than threat cues, and activity correlated with freezing behavior in rodents. A corresponding distinction was observed in humans: hippocampal-dorsal anterior cingulate cortex functional connectivity-but not hippocampal-anterior ventromedial prefrontal cortex or hippocampal-basolateral amygdala connectivity-differentiated between threat, safety, and compound conditions. These findings highlight the potential to enhance treatment for anxiety disorders by targeting an alternative neural mechanism through safety signal learning.
Collapse
Affiliation(s)
- Heidi C. Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065
| | - Paola Odriozola
- Department of Psychology, Yale University, New Haven, CT 06511
| | | | - Jeffrey D. Mandell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| | - Anfei Li
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065
| | - Ruirong Yang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065
| | - Baila S. Hall
- Department of Psychology, Brain Research Institute, University of California, Los Angeles, CA 90095
| | | | | | - Conor Liston
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10065
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10065
| | - Dylan G. Gee
- Department of Psychology, Yale University, New Haven, CT 06511
| |
Collapse
|
33
|
Takemoto M, Song WJ. Cue-dependent safety and fear learning in a discriminative auditory fear conditioning paradigm in the mouse. ACTA ACUST UNITED AC 2019; 26:284-290. [PMID: 31308247 PMCID: PMC6636544 DOI: 10.1101/lm.049577.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/25/2019] [Indexed: 12/28/2022]
Abstract
Discrimination between sensory stimuli associated with safety and threat is crucial for behavioral decisions. Discriminative conditioning paradigms with two acoustic conditioned stimuli (one paired with shock [CS+], the other unpaired with shock [CS−]) have been widely used as an experimental model for fear learning. However, no attention has been paid to the effect of the CS− on safety in the paradigms, because the CS− served as a neutral cue or elevated the freezing level due to fear generalization although less effectively than the CS+. By using a noise and a tone as two acoustic CSs in a discriminative auditory fear conditioning (AFC) paradigm, here we demonstrate that mice learn safety for the CS− while showing fear for the CS+ with opposing emotional behaviors. We found that after learning mice exhibited a significant suppression of context-dependent freezing during the CS−, but not during the CS+, indicating learned safety without fear generalization for the CS−. In contrast, the mice showed an enhanced level of freezing during the CS+ even in a novel spatial context, indicating cued fear for the CS+. Moreover, the CS+ also induced rapid defensive behaviors, whereas the CS− disinhibited normal exploratory behaviors. On the other hand, mice showed no significant suppression of contextual fear during the CS− in a paradigm with a pair of tone CSs at different frequencies, although they clearly discriminated the two tones. These results suggest our AFC paradigm with the noise and tone CSs as a useful experimental model for cue-dependent discriminative learning of safety and threat.
Collapse
Affiliation(s)
- Makoto Takemoto
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Program for Leading Graduate Schools HIGO Program, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
34
|
Elevated dopamine signaling from ventral tegmental area to prefrontal cortical parvalbumin neurons drives conditioned inhibition. Proc Natl Acad Sci U S A 2019; 116:13077-13086. [PMID: 31182594 DOI: 10.1073/pnas.1901902116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Conditioned inhibition is an important process to suppress learned responses for optimal adaptation, but its underlying biological mechanism is poorly understood. Here we used safety learning (SL)/fear discrimination after fear conditioning as a conditioned inhibition model because it demonstrates the essential properties of summation and retardation. Activity of the dorsomedial prefrontal cortex (dmPFC) parvalbumin (PV) neurons bidirectionally regulates spiking levels of dmPFC excitatory neurons and fear states. Responses to safety cues are increased in dopaminergic (DA) neurons in the ventral tegmental area (VTA) and in PV neurons in dmPFC after SL. Plasticity in the VTA is implicated, since SL requires activation of N-methyl-d-aspartate receptors. Furthermore, in a posttraumatic stress disorder model, impaired SL is associated with impaired potentiation of VTA DA neuron activity. Our results demonstrate a DA-dependent learning process that targets prefrontal inhibitory neurons for suppression of learned responses, and have implications for the pathogenesis and treatment of various psychiatric diseases.
Collapse
|
35
|
Greiner EM, Müller I, Norris MR, Ng KH, Sangha S. Sex differences in fear regulation and reward-seeking behaviors in a fear-safety-reward discrimination task. Behav Brain Res 2019; 368:111903. [PMID: 30981735 DOI: 10.1016/j.bbr.2019.111903] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/27/2022]
Abstract
Reward availability and the potential for danger or safety potently regulate emotion. Despite women being more likely than men to develop emotion dysregulation disorders, there are comparatively few studies investigating fear, safety and reward regulation in females. Here, we show that female Long Evans rats did not suppress conditioned freezing in the presence of a safety cue, nor did they extinguish their freezing response, whereas males did both. Females were also more reward responsive during the reward cue until the first footshock exposure, at which point there were no sex differences in reward seeking to the reward cue. Darting analyses suggest females were able to regulate this behavior in response to the safety cue, suggesting they were able to discriminate between fear and safety cues but did not demonstrate this with conditioned suppression of freezing behavior. However, levels of darting in this study were too low to make any definitive conclusions. In summary, females showed a significantly different behavioral profile than males in a task that tested the ability to discriminate among fear, safety and reward cues. This paradigm offers a great opportunity to test for mechanisms that are generating these behavioral sex differences in learned safety and reward seeking.
Collapse
Affiliation(s)
- Eliza M Greiner
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Iris Müller
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Makenzie R Norris
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ka H Ng
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
36
|
Zhao Y, Bijlsma EY, ter Heegde F, Verdouw MP, Garssen J, Newman-Tancredi A, Groenink L. Activation of somatodendritic 5-HT 1A autoreceptors reduces the acquisition and expression of cued fear in the rat fear-potentiated startle test. Psychopharmacology (Berl) 2019; 236:1171-1185. [PMID: 30539269 PMCID: PMC6591185 DOI: 10.1007/s00213-018-5124-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/14/2018] [Indexed: 11/29/2022]
Abstract
RATIONALE Fear conditioning is an important factor in the etiology of anxiety disorders. Previous studies have demonstrated a role for serotonin (5-HT)1A receptors in fear conditioning. However, the relative contribution of somatodendritic 5-HT1A autoreceptors and post-synaptic 5-HT1A heteroreceptors in fear conditioning is still unclear. OBJECTIVE To determine the role of pre- and post-synaptic 5-HT1A receptors in the acquisition and expression of cued and contextual conditioned fear. METHODS We studied the acute effects of four 5-HT1A receptor ligands in the fear-potentiated startle test. Male Wistar rats were injected with the 5-HT1A receptors biased agonists F13714 (0-0.16 mg/kg, IP), which preferentially activates somatodendritic 5-HT1A autoreceptors, or F15599 (0-0.16 mg/kg, IP), which preferentially activates cortical post-synaptic 5-HT1A heteroreceptors, with the prototypical 5-HT1A receptor agonist R(+)8-OH-DPAT (0-0.3 mg/kg, SC) or the 5-HT1A receptor antagonist WAY100,635 (0-1.0 mg/kg, SC). RESULTS F13714 (0.16 mg/kg) and R(+)-8-OH-DPAT (0.03 mg/kg) injected before training reduced cued fear acquisition. Pre-treatment with F15599 or WAY100,635 had no effect on fear learning. In the fear-potentiated startle test, F13714 (0.04-0.16 mg/kg) and R(+)-8-OH-DPAT (0.1-0.3 mg/kg) reduced the expression of cued and contextual fear, whereas F15599 had no effect. WAY100,635 (0.03-1.0 mg/kg) reduced the overall startle response. CONCLUSIONS The current findings indicate that activation of somatodendritic 5-HT1A autoreceptors reduces cued fear learning, whereas 5-HT1A receptors seem not involved in contextual fear learning. Moreover, activation of somatodendritic 5-HT1A autoreceptors may reduce cued and contextual fear expression, whereas we found no evidence for the involvement of cortical 5-HT1A heteroreceptors in the expression of conditioned fear.
Collapse
Affiliation(s)
- Yulong Zhao
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Elisabeth Y. Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Freija ter Heegde
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Monika P. Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - J. Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands. .,Brain Center Rudolf Magnus (BCRM), UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Adolescent conditioning affects rate of adult fear, safety and reward learning during discriminative conditioning. Sci Rep 2018; 8:17315. [PMID: 30470766 PMCID: PMC6251908 DOI: 10.1038/s41598-018-35678-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Fear and reward memories formed in adulthood are influenced by prior experiences. Experiences that occur during sensitive periods, such as adolescence, can have an especially high impact on later learning. Fear and reward memories form when aversive or appetitive events co-occur with initially neutral stimuli, that then gain negative or positive emotional load. Fear and reward seeking behaviours are influenced by safety cues, signalling the non-occurrence of a threat. It is unclear how adolescent fear or reward pre-conditioning influences later dynamics of these conditioned emotions, and conditioned safety. In this study, we presented male rats with adolescent fear or reward pre-conditioning, followed by discriminative conditioning in adulthood. In this discriminative task, rats are simultaneously conditioned to reward, fear and safety cues. We show that adolescent reward pre-conditioning did not affect the rate of adult reward conditioning, but instead accelerated adult safety conditioning. Adolescent fear pre-conditioning accelerated adult fear and reward seeking behaviours but delayed adult safety expression. Together, our results suggest that the dynamics of safety conditioning can be influenced by adolescent priming of different valences. Taking adolescent experiences into consideration can have implications on how we approach therapy options for later learned fear disorders where safety learning is compromised.
Collapse
|
38
|
Abstract
Active avoidance is the prototypical paradigm for studying aversively-motivated instrumental behavior. However, avoidance research stalled amid heated theoretical debates and the hypothesis that active avoidance is essentially Pavlovian flight. Here I reconsider key "avoidance problems" and review neurobehavioral data collected with modern tools. Although the picture remains incomplete, these studies strongly suggest that avoidance has an instrumental component and is mediated by brain circuits that resemble appetitive instrumental actions more than Pavlovian fear reactions. Rapid progress may be possible if investigators consider important factors like safety signals, response-competition, goal-directed vs. habitual control and threat imminence in avoidance study design. Since avoidance responses likely contribute to active coping, this research has important implications for understanding human resilience and disorders of control.
Collapse
Affiliation(s)
- Christopher K Cain
- NYU School of Medicine, Dept. of Child & Adolescent Psychiatry, 1 Park Avenue, 8 Floor, New York, NY 10016.,Nathan S. Kline Institute for Psychiatric Research, Emotional Brain Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962
| |
Collapse
|