1
|
Trent S, Abdullah MH, Parwana K, Valdivieso MA, Hassan Z, Müller CP. Fear conditioning: Insights into learning, memory and extinction and its relevance to clinical disorders. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111310. [PMID: 40056965 DOI: 10.1016/j.pnpbp.2025.111310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Fear, whether innate or learned, is an essential emotion required for survival. The learning, and subsequent memory, of fearful events enhances our ability to recognise and respond to threats, aiding adaptation to new, ever-changing environments. Considerable research has leveraged associative learning protocols such as contextual or auditory forms of fear conditioning in rodents, to understand fear learning, memory consolidation and extinction phases of memory. Such assays have led to detailed characterisation of the underlying neurocircuitry and neurobiology supporting fear learning processes. Given fear processing is conserved across rodents and humans, fear conditioning experiments provide translational insights into fundamental memory processes and fear-related pathologies. This review examines associative learning protocols used to measure fear learning, memory and extinction, before providing an overview on the underlying complex neurocircuitry including the amygdala, hippocampus and medial prefrontal cortex. This is followed by an in-depth commentary on the neurobiology, particularly synaptic plasticity mechanisms, which regulate fear learning, memory and extinction. Next, we consider how fear conditioning assays in rodents can inform our understanding of disrupted fear memory in human disorders such as post-traumatic stress disorder (PTSD), anxiety and psychiatric disorders including schizophrenia. Lastly, we critically evaluate fear conditioning protocols, highlighting some of the experimental and theoretical limitations and the considerations required when conducting such assays, alongside recent methodological advancements in the field. Overall, rodent-based fear conditioning assays remain central to making progress in uncovering fundamental memory phenomena and understanding the aetiological mechanisms that underpin fear associated disorders, alongside the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Simon Trent
- School of Life Sciences, Faculty of Natural Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK.
| | | | - Krishma Parwana
- School of Life Sciences, Faculty of Natural Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK
| | - Maria Alcocer Valdivieso
- School of Life Sciences, Faculty of Natural Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK
| | - Zurina Hassan
- Centre for Drug Research, Universiti Malaysia (USM), 11800 Penang, Malaysia
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
2
|
Cybinski LM, Hüsch S, Ziegler GC, Mühlberger A, Herrmann MJ. Intermittent theta burst stimulation to the left prefrontal cortex enhances extinction learning but not extinction recall. Behav Brain Res 2025; 479:115357. [PMID: 39592059 DOI: 10.1016/j.bbr.2024.115357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Non-invasive brain stimulation targeting the left ventromedial prefrontal cortex (vmPFC) has shown potential in enhancing fear extinction. However, optimal stimulation parameters for clinical application remain unclear. METHODS This study investigated the effects of intermittent theta burst stimulation (iTBS) on fear extinction using a three-day paradigm. Fifty healthy participants underwent fear acquisition (day 1), extinction learning (day 2), and both a spontaneous recovery and reinstatement test (day 3). Active or sham iTBS was applied before extinction learning to the left posterior PFC (MNI: -56, 2, 40), previously shown to be functionally connected to the vmPFC. Fear responses were measured using skin conductance responses (SCR) during CS+ and CS- presentations, along with arousal, valence, and contingency awareness ratings. RESULTS A significant time x group interaction was found for iTBS administered before extinction learning, with the active group showing reduced SCR during extinction learning compared to sham. However, no TMS effects were observed during the spontaneous recovery or reinstatement tests. CONCLUSION These findings suggest limited therapeutic potential for iTBS targeting the left posterior PFC in enhancing extinction memory consolidation. Further research is needed to determine optimal stimulation parameters for clinical application.
Collapse
Affiliation(s)
- Lisa M Cybinski
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, Wuerzburg 97080, Germany
| | - Sophia Hüsch
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, Wuerzburg 97080, Germany
| | - Georg C Ziegler
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, Wuerzburg 97080, Germany
| | - Andreas Mühlberger
- Department of Psychology - Clinical Psychology and Psychotherapy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Martin J Herrmann
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, Wuerzburg 97080, Germany.
| |
Collapse
|
3
|
Lacagnina AF, Dong TN, Iyer RR, Boesch LF, Khan S, Mohamed MK, Clem RL. Ventral hippocampal interneurons govern extinction and relapse of contextual associations. Cell Rep 2024; 43:114880. [PMID: 39425930 PMCID: PMC11665204 DOI: 10.1016/j.celrep.2024.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/02/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Contextual memories are critical for survival but must be extinguished when new conditions render them nonproductive. By most accounts, extinction forms a new memory that competes with the original association for control over behavior, but the underlying circuit mechanisms remain largely enigmatic. Here, we demonstrate that extinction of contextual fear conditioning recruits somatostatin interneurons (SST-INs) in the ventral hippocampus. Correspondingly, real-time activity of SST-INs correlates with transitions between immobility and movement, signaling exit from defensive freezing bouts. Optogenetic manipulation of SST-INs but not parvalbumin interneurons (PV-INs) elicits bidirectional changes in freezing that are specific to the context in which extinction was acquired. Finally, similar effects were obtained following extinction of sucrose-based appetitive conditioning, in which SST-IN inhibition triggers relapse to reward seeking. These data suggest that ventral hippocampal SST-INs play a fundamental role in extinction that is independent of affective valence and may be related to their disruption of spontaneous emotional responses.
Collapse
Affiliation(s)
- Anthony F Lacagnina
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tri N Dong
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rasika R Iyer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leonie F Boesch
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saqib Khan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mazen K Mohamed
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roger L Clem
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Baumbach JL, Mui CYY, Tuz Zahra F, Martin LJ. A single exposure to the predator odor 2,4,5-trimethylthiazoline causes long-lasting affective behavioral changes in female mice: Modulation by kappa opioid receptor signaling. Pharmacol Biochem Behav 2024; 242:173822. [PMID: 38996927 DOI: 10.1016/j.pbb.2024.173822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
The volatile compound 2,4,5-trimethylthiazoline (TMT, a synthetic predator scent) triggers fear, anxiety, and defensive responses in rodents that can outlast the encounter. The receptor systems underlying the development and persistence of TMT-induced behavioral changes remain poorly characterized, especially in females. Kappa opioid receptors regulate threat generalization and fear conditioning and alter basal anxiety, but their role in unconditioned fear responses in females has not been examined. Here, we investigated the effects of the long-lasting kappa opioid receptor antagonist, nor-binalthorphinmine dihydrochloride (nor-BNI; 10 mg/kg), on TMT-induced freezing and conditioned place aversion in female mice. We also measured anxiety-like behavior in the elevated plus maze three days after TMT and freezing behavior when returned to the TMT-paired context ten days after the single exposure. We found that 35μl of 10 % TMT elicited a robust freezing response during a five-minute exposure in female mice. TMT evoked persistent fear as measured by conditioned place aversion, reduced entries into the open arm of the elevated plus maze, and increased general freezing behavior long after TMT exposure. In line with the known role of kappa-opioid receptors in threat generalization, we found that kappa-opioid receptor antagonism increased basal freezing but reduced freezing during TMT presentation. Together, these findings indicate that a single exposure to TMT causes long-lasting changes in fear-related behavioral responses in female mice and highlights the modulatory role of kappa-opioid receptor signaling on fear-related behavioral patterns in females.
Collapse
Affiliation(s)
| | | | | | - Loren J Martin
- Department of Psychology, University of Toronto, Canada; Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
5
|
Huggins AA, Baird CL, Briggs M, Laskowitz S, Hussain A, Fouda S, Haswell C, Sun D, Salminen LE, Jahanshad N, Thomopoulos SI, Veltman DJ, Frijling JL, Olff M, van Zuiden M, Koch SBJ, Nawjin L, Wang L, Zhu Y, Li G, Stein DJ, Ipser J, Seedat S, du Plessis S, van den Heuvel LL, Suarez-Jimenez B, Zhu X, Kim Y, He X, Zilcha-Mano S, Lazarov A, Neria Y, Stevens JS, Ressler KJ, Jovanovic T, van Rooij SJH, Fani N, Hudson AR, Mueller SC, Sierk A, Manthey A, Walter H, Daniels JK, Schmahl C, Herzog JI, Říha P, Rektor I, Lebois LAM, Kaufman ML, Olson EA, Baker JT, Rosso IM, King AP, Liberzon I, Angstadt M, Davenport ND, Sponheim SR, Disner SG, Straube T, Hofmann D, Qi R, Lu GM, Baugh LA, Forster GL, Simons RM, Simons JS, Magnotta VA, Fercho KA, Maron-Katz A, Etkin A, Cotton AS, O'Leary EN, Xie H, Wang X, Quidé Y, El-Hage W, Lissek S, Berg H, Bruce S, Cisler J, Ross M, Herringa RJ, Grupe DW, Nitschke JB, Davidson RJ, Larson CL, deRoon-Cassini TA, Tomas CW, Fitzgerald JM, Blackford JU, Olatunji BO, Kremen WS, Lyons MJ, Franz CE, Gordon EM, May G, Nelson SM, Abdallah CG, Levy I, Harpaz-Rotem I, et alHuggins AA, Baird CL, Briggs M, Laskowitz S, Hussain A, Fouda S, Haswell C, Sun D, Salminen LE, Jahanshad N, Thomopoulos SI, Veltman DJ, Frijling JL, Olff M, van Zuiden M, Koch SBJ, Nawjin L, Wang L, Zhu Y, Li G, Stein DJ, Ipser J, Seedat S, du Plessis S, van den Heuvel LL, Suarez-Jimenez B, Zhu X, Kim Y, He X, Zilcha-Mano S, Lazarov A, Neria Y, Stevens JS, Ressler KJ, Jovanovic T, van Rooij SJH, Fani N, Hudson AR, Mueller SC, Sierk A, Manthey A, Walter H, Daniels JK, Schmahl C, Herzog JI, Říha P, Rektor I, Lebois LAM, Kaufman ML, Olson EA, Baker JT, Rosso IM, King AP, Liberzon I, Angstadt M, Davenport ND, Sponheim SR, Disner SG, Straube T, Hofmann D, Qi R, Lu GM, Baugh LA, Forster GL, Simons RM, Simons JS, Magnotta VA, Fercho KA, Maron-Katz A, Etkin A, Cotton AS, O'Leary EN, Xie H, Wang X, Quidé Y, El-Hage W, Lissek S, Berg H, Bruce S, Cisler J, Ross M, Herringa RJ, Grupe DW, Nitschke JB, Davidson RJ, Larson CL, deRoon-Cassini TA, Tomas CW, Fitzgerald JM, Blackford JU, Olatunji BO, Kremen WS, Lyons MJ, Franz CE, Gordon EM, May G, Nelson SM, Abdallah CG, Levy I, Harpaz-Rotem I, Krystal JH, Dennis EL, Tate DF, Cifu DX, Walker WC, Wilde EA, Harding IH, Kerestes R, Thompson PM, Morey R. Smaller total and subregional cerebellar volumes in posttraumatic stress disorder: a mega-analysis by the ENIGMA-PGC PTSD workgroup. Mol Psychiatry 2024; 29:611-623. [PMID: 38195980 PMCID: PMC11153161 DOI: 10.1038/s41380-023-02352-0] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p-FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.
Collapse
Grants
- I01 RX002171 RRD VA
- R21MH106998 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX002170 RRD VA
- 27040 Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
- R01 MH129832 NIMH NIH HHS
- R01MH105535 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX002172 RRD VA
- P41 EB015922 NIBIB NIH HHS
- P50 U.S. Department of Health & Human Services | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAAA)
- I01 RX002174 RRD VA
- W81XWH-10-1-0925 U.S. Department of Defense (United States Department of Defense)
- R56 MH071537 NIMH NIH HHS
- 20ZDA079 National Natural Science Foundation of China (National Science Foundation of China)
- P30 HD003352 NICHD NIH HHS
- R01AG059874 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01MH107382 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R61NS120249 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- K01 MH122774 NIMH NIH HHS
- I01 RX003444 RRD VA
- IK2 RX002922 RRD VA
- R01AG022381 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- 31971020 National Natural Science Foundation of China (National Science Foundation of China)
- R21 MH098212 NIMH NIH HHS
- R01 MH113574 NIMH NIH HHS
- K12 HD085850 NICHD NIH HHS
- 1IK2CX001680 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- R01 MH071537 NIMH NIH HHS
- HD085850 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R21 MH106998 NIMH NIH HHS
- I01 RX003442 RRD VA
- IK2 CX001680 CSRD VA
- 14848 Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- R01 AG064955 NIA NIH HHS
- R01MH110483 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 CX001135 CSRD VA
- 1IK2RX000709 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- R21 MH112956 NIMH NIH HHS
- W81XWH-08-2-0038 United States Department of Defense | United States Army | Army Medical Command | Congressionally Directed Medical Research Programs (CDMRP)
- R01 MH105355 NIMH NIH HHS
- K23MH090366 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- K01 MH118428 NIMH NIH HHS
- R01 MH105535 NIMH NIH HHS
- MH101380 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- WA 1539/8-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- M01RR00039 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- M01 RR000039 NCRR NIH HHS
- I01 RX003443 RRD VA
- R01 MH111671 NIMH NIH HHS
- R01 MH106574 NIMH NIH HHS
- R01 MH116147 NIMH NIH HHS
- R01MH111671 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01MH117601 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- 1K2RX002922 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- I01 RX001880 RRD VA
- R21MH102634 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- MH071537 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX000622 RRD VA
- R01MH096987 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- K01MH122774 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 HX003155 HSRD VA
- R01MH106574 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U54 EB020403 NIBIB NIH HHS
- R01 MH117601 NIMH NIH HHS
- I01 RX001774 RRD VA
- I01 CX002097 CSRD VA
- UL1TR000454 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- I01 RX002076 RRD VA
- R01 MH119227 NIMH NIH HHS
- K01MH118467 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- SFB/TRR 58: C06, C07 Deutsche Forschungsgemeinschaft (German Research Foundation)
- U21A20364 National Natural Science Foundation of China (National Science Foundation of China)
- BK20221554 Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
- UL1 TR000454 NCATS NIH HHS
- R01 MH107382 NIMH NIH HHS
- R01MH119227 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 CX001246 CSRD VA
- MH098212 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R56 AG058854 NIA NIH HHS
- 40-00812-98-10041 ZonMw (Netherlands Organisation for Health Research and Development)
- T32 MH018931 NIMH NIH HHS
- R01 AG076838 NIA NIH HHS
- K23 MH101380 NIMH NIH HHS
- R01 MH043454 NIMH NIH HHS
- R21 MH102634 NIMH NIH HHS
- K01MH118428 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- HD071982 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R01 HD071982 NICHD NIH HHS
- K23 MH090366 NIMH NIH HHS
- I01 RX002173 RRD VA
- R01MH105355 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01RX000622 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- W81XWH-12-2-0012 U.S. Department of Defense (United States Department of Defense)
- R61 NS120249 NINDS NIH HHS
- R21MH098198 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- K01 MH118467 NIMH NIH HHS
- I01 CX002096 CSRD VA
- I01 CX001820 CSRD VA
- R21MH112956 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- IK2 RX000709 RRD VA
- I01 RX001135 RRD VA
- DA 1222/4-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R01 MH096987 NIMH NIH HHS
- 1184403 Department of Health | National Health and Medical Research Council (NHMRC)
- R01 AG022381 NIA NIH HHS
- R01 AG050595 NIA NIH HHS
- M01RR00039 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01AG050595 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01 AG059874 NIA NIH HHS
- VA Mid-Atlantic MIRECC
- Michael J. Fox Foundation for Parkinson’s Research (Michael J. Fox Foundation)
- Amsterdam Academic Medical Center grant
- South African Medical Research Council (SAMRC)
- Ghent University Special Research Fund (BOF) 01J05415
- Julia Kasparian Fund for Neuroscience Research
- McLean Hospital Trauma Scholars Fund, Barlow Family Fund, Julia Kasparian Fund for Neuroscience Research
- Foundation for the Social Development Project of Jiangsu No. BE2022705
- Center for Brain and Behavior Research Pilot Grant, South Dakota Governor’s Research Center Grant
- Center for Brain and Behavior Research Pilot Grant, South Dakota Governor ’s Research Center Grant
- Fondation Pierre Deniker pour la Recherche et la Prévention en Santé Mentale (Fondation Pierre Deniker pour la Recherche & la Prévention en Santé Mentale)
- PHRC, SFR FED4226
- Dana Foundation (Charles A. Dana Foundation)
- UW | Institute for Clinical and Translational Research, University of Wisconsin, Madison (UW Institute for Clinical and Translational Research)
- National Science Foundation (NSF)
- US VA VISN17 Center of Excellence Pilot funding
- VA National Center for PTSD, Beth K and Stuart Yudofsky Chair in the Neuropsychiatry of Military Post Traumatic Stress Syndrome
- US VA National Center for PTSD, NCATS
- This work was supported by the Assistant Secretary of Defense for Health Affairs endorsed by the Department of Defense, through the Psychological Health/Traumatic Brain Injury Research Program Long-Term Impact of Military-Relevant Brain Injury Consortium (LIMBIC) Award/W81XWH-18-PH/TBIRP-LIMBIC under Awards No. W81XWH1920067 and W81XWH-13-2-0095, and by the U.S. Department of Veterans Affairs Awards No. I01 CX002097, I01 CX002096, I01 CX001820, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX 001135, I01 RX 002076, I01 RX 001880, I01 RX 002172, I01 RX 002173, I01 RX 002171, I01 RX 002174, and I01 RX 002170. The U.S. Army Medical Research Acquisition Activity, 839 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office.
- HFP90-020
- VA VISN6 MIRECC
Collapse
Affiliation(s)
- Ashley A Huggins
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA.
| | - C Lexi Baird
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Melvin Briggs
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Sarah Laskowitz
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Ahmed Hussain
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Samar Fouda
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychiatry & Behavioral Sciences, Duke School of Medicine, Durham, NC, USA
| | - Courtney Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Delin Sun
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychology, The Education University of Hong Kong, Ting Kok, Hong Kong
| | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Dick J Veltman
- Amsterdam UMC Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jessie L Frijling
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Miranda Olff
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Mirjam van Zuiden
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Saskia B J Koch
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Laura Nawjin
- Amsterdam UMC Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Li Wang
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Center for Global Health Equity, New York University Shanghai, Shanghai, China
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan Ipser
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Yoojean Kim
- New York State Psychiatric Institute, New York, NY, USA
| | - Xiaofu He
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | | | - Amit Lazarov
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna R Hudson
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Anika Sierk
- University Medical Centre Charité, Berlin, Germany
| | | | | | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julia I Herzog
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Pavel Říha
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Elizabeth A Olson
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Justin T Baker
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Isabelle M Rosso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Anthony P King
- Department of Psychiatry and Behavioral Health, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Isreal Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, Texas, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lee A Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Raluca M Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
- Disaster Mental Health Institute, Vermillion, SD, USA
| | - Jeffrey S Simons
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Vincent A Magnotta
- Departments of Radiology, Psychiatry, and Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Kelene A Fercho
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, OK, USA
| | - Adi Maron-Katz
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Andrew S Cotton
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Erin N O'Leary
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Hong Xie
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Yann Quidé
- School of Psychology, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Wissam El-Hage
- UMR1253, Université de Tours, Inserm, Tours, France
- CIC1415, CHRU de Tours, Inserm, Tours, France
| | - Shmuel Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Hannah Berg
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Steven Bruce
- Department of Psychological Sciences, Center for Trauma Recovery University of Missouri-St. Louis, St. Louis, MO, USA
| | - Josh Cisler
- Department of Psychiatry, University of Texas at Austin, Austin, TX, USA
| | - Marisa Ross
- Northwestern Neighborhood and Network Initiative, Northwestern University Institute for Policy Research, Evanston, IL, USA
| | - Ryan J Herringa
- School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, USA
| | - Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Terri A deRoon-Cassini
- Division of Trauma and Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carissa W Tomas
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Epidemiology and Social Sciences, Institute of Health and Equity, Medical College of Wisconsin Milwaukee, Milwaukee, WI, USA
| | | | - Jennifer Urbano Blackford
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bunmi O Olatunji
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Michael J Lyons
- Dept. of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Geoffrey May
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Chadi G Abdallah
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine, Neuroscience and Psychology, Wu Tsai Institute, Yale University, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
- Departments of Psychiatry and of Psychology, Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - David X Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - William C Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
- Veterans Affairs (VA) Richmond Health Care, Richmond, VA, USA
| | - Elizabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Vic, Australia
| | - Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Rajendra Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| |
Collapse
|
6
|
Latagliata EC, Orsini C, Cabib S, Biagioni F, Fornai F, Puglisi-Allegra S. Prefrontal Dopamine in Flexible Adaptation to Environmental Changes: A Game for Two Players. Biomedicines 2023; 11:3189. [PMID: 38137410 PMCID: PMC10740496 DOI: 10.3390/biomedicines11123189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Deficits in cognitive flexibility have been characterized in affective, anxiety, and neurodegenerative disorders. This paper reviews data, mainly from studies on animal models, that support the existence of a cortical-striatal brain circuit modulated by dopamine (DA), playing a major role in cognitive/behavioral flexibility. Moreover, we reviewed clinical findings supporting misfunctioning of this circuit in Parkinson's disease that could be responsible for some important non-motoric symptoms. The reviewed findings point to a role of catecholaminergic transmission in the medial prefrontal cortex (mpFC) in modulating DA's availability in the nucleus accumbens (NAc), as well as a role of NAc DA in modulating the motivational value of natural and conditioned stimuli. The review section is accompanied by a preliminary experiment aimed at testing weather the extinction of a simple Pavlovian association fosters increased DA transmission in the mpFC and inhibition of DA transmission in the NAc.
Collapse
Affiliation(s)
| | - Cristina Orsini
- I.R.C.C.S. Fondazione Santa Lucia, 00143 Rome, Italy; (C.O.); (S.C.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Simona Cabib
- I.R.C.C.S. Fondazione Santa Lucia, 00143 Rome, Italy; (C.O.); (S.C.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.F.)
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.F.)
- Department of Translational Research and New Technologies on Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | | |
Collapse
|
7
|
Lacagnina AF, Dong TN, Iyer RR, Khan S, Mohamed MK, Clem RL. Ventral hippocampal interneurons govern extinction and relapse of contextual associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568835. [PMID: 38077077 PMCID: PMC10705382 DOI: 10.1101/2023.11.28.568835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Contextual associations are critical for survival but must be extinguished when new conditions render them nonproductive. By most accounts, extinction forms a new memory that competes with the original association for control over behavior, but the mechanisms underlying this competition remain largely enigmatic. Here we find the retrieval of contextual fear conditioning and extinction yield contrasting patterns of activity in prefrontal cortex and ventral hippocampus. Within ventral CA1, activation of somatostatin-expressing interneurons (SST-INs) occurs preferentially during extinction retrieval and correlates with differences in input synaptic transmission. Optogenetic manipulation of these cells but not parvalbumin interneurons (PV-INs) elicits bidirectional changes in fear expression following extinction, and the ability of SST-INs to gate fear is specific to the context in which extinction was acquired. A similar pattern of results was obtained following reward-based extinction. These data show that ventral hippocampal SST-INs are critical for extinguishing prior associations and thereby gate relapse of both aversive and appetitive responses.
Collapse
|
8
|
Zimmermann KS, Richardson R, Baker KD. Developmental changes in functional connectivity between the prefrontal cortex and amygdala following fear extinction. Neurobiol Learn Mem 2023; 205:107847. [PMID: 37865263 DOI: 10.1016/j.nlm.2023.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The amygdala and prefrontal cortex (PFC) undergo dramatic changes in structure, function, and regional connectivity in early life, ultimately stabilizing in early adulthood. Pathways between these two structures underlie many forms of emotional learning, including the extinction of conditioned fear. Here we sought to characterize changes in extinction-related medial PFC (mPFC) → amygdala functional connectivity across development that might explain adolescent impairments in extinction. The retrograde tracer Fluorogold was infused into the amygdala of postnatal day (P)22-23 (juvenile), P31-32 (adolescent), or ≥ P69 (adult) rats, which were then exposed to fear conditioning and extinction training. Brains were collected following extinction or context exposure and processed for expression of pMAPK (as a marker of learning-dependent plasticity) in prelimbic (PL) and infralimbic (IL) amygdala-projecting neurons. Consistent with previous findings, amygdala-projecting mPFC neurons were located primarily in layers (L)II/III and V of the mPFC. We noted that mPFC LII/III projected predominantly to the ipsilateral basolateral amygdala, whereas LV projected bilaterally and targeted multiple amygdalar nuclei. Extinction was not associated with changes in extinction-related plasticity in the PL-amygdala pathways in any age group. No changes were seen in LII/III of the IL, but extinction-related plasticity in LV amygdala-projecting IL neurons decreased linearly across development. These findings suggest that extinction-related functional connectivity between the IL and the amygdala undergoes fundamental changes across development that may contribute to alterations in fear suppression across development.
Collapse
Affiliation(s)
- K S Zimmermann
- School of Psychology, UNSW Sydney, New South Wales 2052, Australia
| | - R Richardson
- School of Psychology, UNSW Sydney, New South Wales 2052, Australia
| | - K D Baker
- School of Psychology, UNSW Sydney, New South Wales 2052, Australia.
| |
Collapse
|
9
|
Mamat Z, Anderson MC. Improving mental health by training the suppression of unwanted thoughts. SCIENCE ADVANCES 2023; 9:eadh5292. [PMID: 37729415 PMCID: PMC10511195 DOI: 10.1126/sciadv.adh5292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
Anxiety, posttraumatic stress, and depression markedly increased worldwide during the COVID-19 pandemic. People with these conditions experience distressing intrusive thoughts, yet conventional therapies often urge them to avoid suppressing their thoughts because intrusions might rebound in intensity and frequency, worsening the disorders. In contrast, we hypothesized that training thought suppression would improve mental health. One hundred and twenty adults from 16 countries underwent 3 days of online training to suppress either fearful or neutral thoughts. No paradoxical increases in fears occurred. Instead, suppression reduced memory for suppressed fears and rendered them less vivid and anxiety provoking. After training, participants reported less anxiety, negative affect, and depression with the latter benefit persisting at 3 months. Participants high in trait anxiety and pandemic-related posttraumatic stress gained the largest and most durable mental health benefits. These findings challenge century-old wisdom that suppressing thoughts is maladaptive, offering an accessible approach to improving mental health.
Collapse
Affiliation(s)
- Zulkayda Mamat
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Michael C. Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Kampa M, Hermann A, Stark R, Klucken T. Neural correlates of immediate versus delayed extinction when simultaneously varying the time of the test in humans. Cereb Cortex 2023:bhad205. [PMID: 37317067 DOI: 10.1093/cercor/bhad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Anxiety disorders are effectively treated with exposure therapy based on the extinction of Pavlovian fear conditioning. Animal research indicates that both the timing of extinction and test are important factors to reduce the return of fear. However, empirical evidence in humans is incomplete and inconsistent. In this neuroimaging study, we, therefore, tested 103 young, healthy participants in a 2-factorial between-subjects design with the factors extinction group (immediate, delayed) and test group (+1 day and +7 days). Immediate extinction led to greater retention of fear memory at the beginning of extinction training indicated by increased skin conductance responses. A return of fear was observed in both extinction groups, with a trend toward a greater return of fear in immediate extinction. The return of fear was generally higher in groups with an early test. Neuroimaging results show successful cross-group fear acquisition and retention, as well as activation of the left nucleus accumbens during extinction training. Importantly, the delayed extinction group showed a larger bilateral nucleus accumbens activation during test. This nucleus accumbens finding is discussed in terms of salience, contingency, relief, and prediction error processing. It may imply that the delayed extinction group benefits more from the test as a new learning opportunity.
Collapse
Affiliation(s)
- Miriam Kampa
- Department of Clinical Psychology and Psychotherapy, University of Siegen, Siegen 57072, Germany
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
| | - Andrea Hermann
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University, Giessen 35394, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen 35394, Germany
| | - Rudolf Stark
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University, Giessen 35394, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen 35394, Germany
| | - Tim Klucken
- Department of Clinical Psychology and Psychotherapy, University of Siegen, Siegen 57072, Germany
| |
Collapse
|
11
|
Zaizar ED, Papini S, Gonzalez-Lima F, Telch MJ. Singular and combined effects of transcranial infrared laser stimulation and exposure therapy on pathological fear: a randomized clinical trial. Psychol Med 2023; 53:908-917. [PMID: 34284836 PMCID: PMC9976021 DOI: 10.1017/s0033291721002270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Preclinical findings suggest that transcranial infrared laser stimulation (TILS) improves fear extinction learning and cognitive function by enhancing prefrontal cortex (PFC) oxygen metabolism. These findings prompted our investigation of treating pathological fear using this non-invasive stimulation approach either alone to the dorsolateral PFC (dlPFC), or to the ventromedial PFC (vmPFC) in combination with exposure therapy. METHODS Volunteers with pathological fear of either enclosed spaces, contamination, public speaking, or anxiety-related bodily sensations were recruited for this randomized, single-blind, sham-controlled trial with four arms: (a) Exposure + TILS_vmPFC (n = 29), (b) Exposure + sham TILS_vmPFC (n = 29), (c) TILS_dlPFC alone (n = 26), or (d) Sham TILS _dlPFC alone (n = 28). Post-treatment assessments occurred immediately following treatment. Follow-up assessments occurred 2 weeks after treatment. RESULTS A total of 112 participants were randomized [age range: 18-63 years; 96 females (85.71%)]. Significant interactions of Group × Time and Group × Context indicated differential treatment effects on retention (i.e. between time-points, averaged across contexts) and on generalization (i.e. between contexts, averaged across time-points), respectively. Among the monotherapies, TILS_dlPFC outperformed SHAM_dlPFC in the initial context, b = -13.44, 95% CI (-25.73 to -1.15), p = 0.03. Among the combined treatments, differences between EX + TILS_vmPFC and EX + SHAM_vmPFC were non-significant across all contrasts. CONCLUSIONS TILS to the dlPFC, one of the PFC regions implicated in emotion regulation, resulted in a context-specific benefit as a monotherapy for reducing fear. Contrary to prediction, TILS to the vmPFC, a region implicated in fear extinction memory consolidation, did not enhance exposure therapy outcome.
Collapse
Affiliation(s)
- Eric D. Zaizar
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Institute for Mental Health Research, The University of Texas at Austin, Austin, TX, USA
| | - Santiago Papini
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Institute for Mental Health Research, The University of Texas at Austin, Austin, TX, USA
| | - F. Gonzalez-Lima
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Michael J. Telch
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Institute for Mental Health Research, The University of Texas at Austin, Austin, TX, USA
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Kitt ER, Odriozola P, Gee DG. Extinction Learning Across Development: Neurodevelopmental Changes and Implications for Pediatric Anxiety Disorders. Curr Top Behav Neurosci 2023; 64:237-256. [PMID: 37532964 DOI: 10.1007/7854_2023_430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Alterations in extinction learning relate to the development and maintenance of anxiety disorders across the lifespan. While exposure therapy, based on principles of extinction, can be highly effective for treating anxiety, many patients do not show sufficient improvement following treatment. In particular, evidence suggests that exposure therapy does not work sufficiently for up to 40% of children who receive this evidence-based treatment.Importantly, fear learning and extinction, as well as the neural circuitry supporting these processes, undergo dynamic changes across development. An improved understanding of developmental changes in extinction learning and the associated neural circuitry may help to identify targets to improve treatment response in clinically anxious children and adolescents. In this chapter, we provide a brief overview of methods used to study fear learning and extinction in developmental populations. We then review what is currently known about the developmental changes that occur in extinction learning and related neural circuitry. We end this chapter with a discussion of the implications of these neurodevelopmental changes for the characterization and treatment of pediatric anxiety disorders.
Collapse
Affiliation(s)
| | - Paola Odriozola
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
Lee D, Guiomar R, Gonçalves ÓF, Almeida J, Ganho-Ávila A. Effects of transcranial direct current stimulation on neural activity and functional connectivity during fear extinction. Int J Clin Health Psychol 2023; 23:100342. [PMID: 36299490 PMCID: PMC9578989 DOI: 10.1016/j.ijchp.2022.100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Background/Objective Anxiety disorders are highly prevalent and negatively impact daily functioning and quality of life. Transcranial direct current stimulation (tDCS) targeting the dorsolateral prefrontal cortex (dlPFC), especially in the right hemisphere impacts extinction learning; however, the underlying neural mechanisms are elusive. Therefore, we aimed to investigate the effects of cathodal tDCS stimulation to the right dlPFC on neural activity and connectivity patterns during delayed fear extinction in healthy participants. Methods We conducted a two-day fear conditioning and extinction procedure. On the first day, we collected fear-related self-reports, clinical questionnaires, and skin conductance responses during fear acquisition. On the second day, participants in the tDCS group (n = 16) received 20-min offline tDCS before fMRI and then completed the fear extinction session during fMRI. Participants in the control group (n = 18) skipped tDCS and directly underwent fMRI to complete the fear extinction procedure. Whole-brain searchlight classification and resting-state functional connectivity analyses were performed. Results Whole-brain searchlight classification during fear extinction showed higher classification accuracy of threat and safe cues in the left anterior dorsal and ventral insulae and hippocampus in the tDCS group than in the control group. Functional connectivity derived from the insula with the dlPFC, ventromedial prefrontal cortex, and inferior parietal lobule was increased after tDCS. Conclusion tDCS over the right dlPFC may function as a primer for information exchange among distally connected areas, thereby increasing stimulus discrimination. The current study did not include a sham group, and one participant of the control group was not randomized. Therefore, to address potential allocation bias, findings should be confirmed in the future with a fully randomized and sham controlled study.
Collapse
Key Words
- ACC, anterior cingulate cortex
- CS, conditioned stimulus
- EPI, echo-planar imaging
- FOV, field of view
- Fear extinction
- GLM, general linear model
- HC, hippocampus
- IPL, inferior parietal lobule
- PFC, prefrontal cortex
- Resting-state functional connectivity
- SCR, skin conductance response
- TE, echo time
- TR, repetition time
- US, unconditioned stimulus
- Whole-brain searchlight classification
- dAI, dorsal anterior insula
- dlPFC, dorsolateral prefrontal cortex
- fMRI, functional magnetic resonance imaging
- tDCS
- tDCS, transcranial direct current stimulation
- vAI, ventral anterior insula
- vmPFC, ventromedial prefrontal cortex
Collapse
Affiliation(s)
- Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, Republic of Korea,Corresponding author at: Cognitive Science Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, Republic of Korea 41062.
| | - Raquel Guiomar
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, Rua do Colégio Novo 3000-115, Coimbra, Portugal
| | - Óscar F. Gonçalves
- Proaction Laboratory, Center for Research in Neuropsychology and Cognitive Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, Rua do Colégio Novo 3001-802 Coimbra, Portugal
| | - Jorge Almeida
- Proaction Laboratory, Center for Research in Neuropsychology and Cognitive Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, Rua do Colégio Novo 3001-802 Coimbra, Portugal
| | - Ana Ganho-Ávila
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, Rua do Colégio Novo 3000-115, Coimbra, Portugal,Corresponding author at: Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115 Coimbra, Portugal.
| |
Collapse
|
14
|
Bauer EP. Sex differences in fear responses: Neural circuits. Neuropharmacology 2023; 222:109298. [PMID: 36328063 PMCID: PMC11267399 DOI: 10.1016/j.neuropharm.2022.109298] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Women have increased vulnerability to PTSD and anxiety disorders compared to men. Understanding the neurobiological underpinnings of these disorders is critical for identifying risk factors and developing appropriate sex-specific interventions. Despite the clear clinical relevance of an examination of sex differences in fear responses, the vast majority of pre-clinical research on fear learning and memory formation has exclusively used male animals. This review highlights sex differences in context and cued fear conditioning, fear extinction and fear generalization with a focus on the neural circuits underlying these behaviors in rodents. There are mixed reports of behavioral sex differences in context and cued fear conditioning paradigms, which can depend upon the behavioral indices of fear. However, there is greater evidence of differential activation of the hippocampus, amygdalar nuclei and the prefrontal cortical regions in male and female rodents during context and cued fear conditioning. The bed nucleus of the stria terminalis (BNST), a sexually dimorphic structure, is of particular interest as it differentially contributes to fear responses in males and females. In addition, while the influence of the estrous cycle on different phases of fear conditioning is delineated, the clearest modulatory effect of estrogen is on fear extinction processes. Examining the variability in neural responses and behavior in both sexes should increase our understanding of how that variability contributes to the neurobiology of affective disorders. This article is part of the Special Issue on 'Fear, anxiety and PTSD'.
Collapse
Affiliation(s)
- Elizabeth P Bauer
- Departments of Biology and Neuroscience & Behavior, Barnard College of Columbia University, 3009 Broadway, New York, NY, 10027, United States.
| |
Collapse
|
15
|
Webler RD, Oathes DJ, van Rooij SJH, Gewirtz JC, Nahas Z, Lissek SM, Widge AS. Causally mapping human threat extinction relevant circuits with depolarizing brain stimulation methods. Neurosci Biobehav Rev 2023; 144:105005. [PMID: 36549377 PMCID: PMC10210253 DOI: 10.1016/j.neubiorev.2022.105005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Laboratory threat extinction paradigms and exposure-based therapy both involve repeated, safe confrontation with stimuli previously experienced as threatening. This fundamental procedural overlap supports laboratory threat extinction as a compelling analogue of exposure-based therapy. Threat extinction impairments have been detected in clinical anxiety and may contribute to exposure-based therapy non-response and relapse. However, efforts to improve exposure outcomes using techniques that boost extinction - primarily rodent extinction - have largely failed to date, potentially due to fundamental differences between rodent and human neurobiology. In this review, we articulate a comprehensive pre-clinical human research agenda designed to overcome these failures. We describe how connectivity guided depolarizing brain stimulation methods (i.e., TMS and DBS) can be applied concurrently with threat extinction and dual threat reconsolidation-extinction paradigms to causally map human extinction relevant circuits and inform the optimal integration of these methods with exposure-based therapy. We highlight candidate targets including the amygdala, hippocampus, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, and mesolimbic structures, and propose hypotheses about how stimulation delivered at specific learning phases could strengthen threat extinction.
Collapse
Affiliation(s)
- Ryan D Webler
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| | - Desmond J Oathes
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, Arizona State University, AZ, USA
| | - Ziad Nahas
- Department of Psychology, Arizona State University, AZ, USA
| | - Shmuel M Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Alik S Widge
- Department of Psychiatry and Medical Discovery Team on Addictions, University of Minnesota Medical School, MN, USA
| |
Collapse
|
16
|
de Oliveira Alves C, Reimer AE, de Oliveira AR. Involvement of D2-like dopaminergic receptors in contextual fear conditioning in female rats: influence of estrous cycle. Front Behav Neurosci 2022; 16:1033649. [PMID: 36518813 PMCID: PMC9742248 DOI: 10.3389/fnbeh.2022.1033649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 10/19/2023] Open
Abstract
Introduction: Dopamine has been increasingly recognized as a key neurotransmitter regulating fear/anxiety states. Nevertheless, the influence of sex and estrous cycle differences on the role of dopamine in fear responses needs further investigation. We aimed to evaluate the effects of sulpiride (a dopaminergic D2-like receptor antagonist) on contextual fear conditioning in females while exploring the influence of the estrous cycle. Methods: First, using a contextual fear conditioning paradigm, we assessed potential differences in acquisition, expression, and extinction of the conditioned freezing response in male and female (split in proestrus/estrus and metestrus/diestrus) Wistar rats. In a second cohort, we evaluated the effects of sulpiride (20 and 40 mg/kg) on contextual conditioned fear in females during proestrus/estrus and metestrus/diestrus. Potential nonspecific effects were assessed in motor activity assays (catalepsy and open-field tests). Results: No sex differences nor estrous cycle effects on freezing behavior were observed during the fear conditioning phases. Sulpiride reduced freezing expression in female rats. Moreover, females during the proestrus/estrus phases of the estrous cycle were more sensitive to the effects of sulpiride than females in metestrus/diestrus. Sulpiride did not cause motor impairments. Discussion: Although no sex or estrous cycle differences were observed in basal conditioned fear expression and extinction, the estrous cycle seems to influence the effects of D2-like antagonists on contextual fear conditioning.
Collapse
Affiliation(s)
- Camila de Oliveira Alves
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| | - Adriano Edgar Reimer
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| | - Amanda Ribeiro de Oliveira
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| |
Collapse
|
17
|
Wroblewski A, Hollandt M, Yang Y, Ridderbusch IC, Pietzner A, Szeska C, Lotze M, Wittchen HU, Heinig I, Pittig A, Arolt V, Koelkebeck K, Rothkopf CA, Adolph D, Margraf J, Lueken U, Pauli P, Herrmann MJ, Winkler MH, Ströhle A, Dannlowski U, Kircher T, Hamm AO, Straube B, Richter J. Sometimes I feel the fear of uncertainty: How intolerance of uncertainty and trait anxiety impact fear acquisition, extinction and the return of fear. Int J Psychophysiol 2022; 181:125-140. [PMID: 36116610 DOI: 10.1016/j.ijpsycho.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
It is hypothesized that the ability to discriminate between threat and safety is impaired in individuals with high dispositional negativity, resulting in maladaptive behavior. A large body of research investigated differential learning during fear conditioning and extinction protocols depending on individual differences in intolerance of uncertainty (IU) and trait anxiety (TA), two closely-related dimensions of dispositional negativity, with heterogenous results. These might be due to varying degrees of induced threat/safety uncertainty. Here, we compared two groups with high vs. low IU/TA during periods of low (instructed fear acquisition) and high levels of uncertainty (delayed non-instructed extinction training and reinstatement). Dependent variables comprised subjective (US expectancy, valence, arousal), psychophysiological (skin conductance response, SCR, and startle blink), and neural (fMRI BOLD) measures of threat responding. During fear acquisition, we found strong threat/safety discrimination for both groups. During early extinction (high uncertainty), the low IU/TA group showed an increased physiological response to the safety signal, resulting in a lack of CS discrimination. In contrast, the high IU/TA group showed strong initial threat/safety discrimination in physiology, lacking discriminative learning on startle, and reduced neural activation in regions linked to threat/safety processing throughout extinction training indicating sustained but non-adaptive and rigid responding. Similar neural patterns were found after the reinstatement test. Taken together, we provide evidence that high dispositional negativity, as indicated here by IU and TA, is associated with greater responding to threat cues during the beginning of delayed extinction, and, thus, demonstrates altered learning patterns under changing environments.
Collapse
Affiliation(s)
- Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Germany.
| | - Maike Hollandt
- Department of Psychology, University of Greifswald, Germany
| | - Yunbo Yang
- Department of Psychiatry and Psychotherapy, Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Germany
| | - Isabelle C Ridderbusch
- Department of Psychiatry and Psychotherapy, Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Germany
| | - Anne Pietzner
- Department of Psychology, University of Greifswald, Germany
| | | | - Martin Lotze
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology of the University Medicine Greifswald, Germany
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Germany; Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians University Munich, Germany
| | - Ingmar Heinig
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Germany
| | - Andre Pittig
- Translational Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Katja Koelkebeck
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, University of Duisburg-Essen, Germany
| | | | - Dirk Adolph
- Mental Health Research and Treatment Center, Ruhr-University Bochum, Germany
| | - Jürgen Margraf
- Mental Health Research and Treatment Center, Ruhr-University Bochum, Germany
| | - Ulrike Lueken
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Wuerzburg, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Germany
| | - Paul Pauli
- Department of Psychology I, Biological Psychology, Clinical Psychology, and Psychotherapy, University of Würzburg, Germany
| | - Martin J Herrmann
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Wuerzburg, Germany
| | - Markus H Winkler
- Department of Psychology I, Biological Psychology, Clinical Psychology, and Psychotherapy, University of Würzburg, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Germany corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin und Berliner Institut für Gesundheitsforschung, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Germany
| | - Alfons O Hamm
- Department of Psychology, University of Greifswald, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Germany
| | - Jan Richter
- Department of Psychology, University of Greifswald, Germany
| |
Collapse
|
18
|
Raju S, Notaras M, Grech AM, Schroeder A, van den Buuse M, Hill RA. BDNF Val66Met genotype and adolescent glucocorticoid treatment induce sex-specific disruptions to fear extinction and amygdala GABAergic interneuron expression in mice. Horm Behav 2022; 144:105231. [PMID: 35779519 DOI: 10.1016/j.yhbeh.2022.105231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The BDNF Val66Met single nucleotide polymorphism has been implicated in stress sensitivity and Post-Traumatic Stress Disorder (PTSD) risk. We previously reported that chronic young-adult stress hormone treatment enhanced fear memory in adult BDNFVal66Met mice with the Met/Met genotype. This study aimed to extend this work to fear extinction learning, spontaneous recovery of fear, and neurobiological correlates in the amygdala. METHODS Male and female Val/Val and Met/Met mice received corticosterone in their drinking water during late adolescence to model chronic stress. Following a 2-week recovery period, the mice underwent fear conditioning and extinction training. Immunofluorescent labelling was used to assess density of three interneuron subtypes; somatostatin, parvalbumin and calretinin, within distinct amygdala nuclei. RESULTS No significant effects of genotype, treatment or sex were found for fear learning. However, adolescent CORT treatment selectively abolished fear extinction of female Met/Met mice. No effect of genotype, sex, or treatment was observed for spontaneous recovery of fear. Significant main effects of genotype and CORT emerged for somatostatin and calretinin cell density, again in females only, further supporting sex-specific effects of the Met/Met genotype and chronic CORT exposure. CONCLUSION BDNF Val66Met genotype interacts with chronic adolescent stress hormone exposure to abolish fear extinction in female Met/Met mice in adulthood. This effect was associated with female-specific interneuron dysfunction induced by either genotype or stress hormone exposure, depending on the interneuron subtype. These data provide biological insight into the role of BDNF in sex differences in sensitivity to stress and vulnerability to stress-related disorders in adulthood.
Collapse
Affiliation(s)
- Sharvada Raju
- Behavioural Neuroscience Laboratory, Department of Psychiatry, Monash University, Melbourne, Victoria, Australia
| | - Michael Notaras
- Behavioural Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Centre for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medical College, Cornell University, NY, New York, USA
| | - Adrienne M Grech
- Behavioural Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Anna Schroeder
- Behavioural Neuroscience Laboratory, Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Behavioural Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia; Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel A Hill
- Behavioural Neuroscience Laboratory, Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Behavioural Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.
| |
Collapse
|
19
|
Kaplan GB, Lakis GA, Zhoba H. Sleep-Wake and Arousal Dysfunctions in Post-Traumatic Stress Disorder:Role of Orexin Systems. Brain Res Bull 2022; 186:106-122. [PMID: 35618150 DOI: 10.1016/j.brainresbull.2022.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-related condition that produces distressing fear memory intrusions, avoidance behaviors, hyperarousal/startle, stress responses and insomnia. This review focuses on the importance of the orexin neural system as a novel mechanism related to the pathophysiology of PTSD. Orexinergic neurons originate in the lateral hypothalamus and project widely to key neurotransmitter system neurons, autonomic neurons, the hypothalamic-pituitaryadrenal (HPA) axis, and fear-related neural circuits. After trauma or stress, the basolateral amygdala (BLA) transmits sensory information to the central nucleus of the amygdala (CeA) and in turn to the hypothalamus and other subcortical and brainstem regions to promote fear and threat. Orexin receptors have a prominent role in this circuit as fear conditioned orexin receptor knockout mice show decreased fear expression while dual orexin receptor antagonists (DORAs) inhibit fear acquisition and expression. Orexin activation of an infralimbic-amygdala circuit impedes fear extinction while DORA treatments enhance it. Increased orexin signaling to the amygdalocortical- hippocampal circuit promotes avoidance behaviors. Orexin has an important role in activating sympathetic nervous system (SNS) activity and the HPA axis stress responses. Blockade of orexin receptors reduces fear-conditioned startle responses. In PTSD models, individuals demonstrate sleep disturbances such as increased sleep latency and more transitions to wakefulness. Increased orexin activity impairs sleep by promoting wakefulness and reducing total sleep time while DORA treatments enhance sleep onset and maintenance. The orexinergic neural system provides important mechanisms for understanding multiple PTSD behaviors and provides new medication targets to treat this often persistent and debilitating illness.
Collapse
Affiliation(s)
- Gary B Kaplan
- Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118 USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118 USA.
| | - Gabrielle A Lakis
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Undergraduate Program in Neuroscience, Boston University, Boston, MA, 02215 USA
| | - Hryhoriy Zhoba
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA
| |
Collapse
|
20
|
Anderson MC, Floresco SB. Prefrontal-hippocampal interactions supporting the extinction of emotional memories: the retrieval stopping model. Neuropsychopharmacology 2022; 47:180-195. [PMID: 34446831 PMCID: PMC8616908 DOI: 10.1038/s41386-021-01131-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Neuroimaging has revealed robust interactions between the prefrontal cortex and the hippocampus when people stop memory retrieval. Efforts to stop retrieval can arise when people encounter reminders to unpleasant thoughts they prefer not to think about. Retrieval stopping suppresses hippocampal and amygdala activity, especially when cues elicit aversive memory intrusions, via a broad inhibitory control capacity enabling prepotent response suppression. Repeated retrieval stopping reduces intrusions of unpleasant memories and diminishes their affective tone, outcomes resembling those achieved by the extinction of conditioned emotional responses. Despite this resemblance, the role of inhibitory fronto-hippocampal interactions and retrieval stopping broadly in extinction has received little attention. Here we integrate human and animal research on extinction and retrieval stopping. We argue that reconceptualising extinction to integrate mnemonic inhibitory control with learning would yield a greater understanding of extinction's relevance to mental health. We hypothesize that fear extinction spontaneously engages retrieval stopping across species, and that controlled suppression of hippocampal and amygdala activity by the prefrontal cortex reduces fearful thoughts. Moreover, we argue that retrieval stopping recruits extinction circuitry to achieve affect regulation, linking extinction to how humans cope with intrusive thoughts. We discuss novel hypotheses derived from this theoretical synthesis.
Collapse
Affiliation(s)
- Michael C Anderson
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Stan B Floresco
- Department of Psychology, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
21
|
Visser RM, Bathelt J, Scholte HS, Kindt M. Robust BOLD Responses to Faces But Not to Conditioned Threat: Challenging the Amygdala's Reputation in Human Fear and Extinction Learning. J Neurosci 2021; 41:10278-10292. [PMID: 34750227 PMCID: PMC8672698 DOI: 10.1523/jneurosci.0857-21.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Most of our knowledge about human emotional memory comes from animal research. Based on this work, the amygdala is often labeled the brain's "fear center", but it is unclear to what degree neural circuitries underlying fear and extinction learning are conserved across species. Neuroimaging studies in humans yield conflicting findings, with many studies failing to show amygdala activation in response to learned threat. Such null findings are often treated as resulting from MRI-specific problems related to measuring deep brain structures. Here we test this assumption in a mega-analysis of three studies on fear acquisition (n = 98; 68 female) and extinction learning (n = 79; 53 female). The conditioning procedure involved the presentation of two pictures of faces and two pictures of houses: one of each pair was followed by an electric shock [a conditioned stimulus (CS+)], the other one was never followed by a shock (CS-), and participants were instructed to learn these contingencies. Results revealed widespread responses to the CS+ compared with the CS- in the fear network, including anterior insula, midcingulate cortex, thalamus, and bed nucleus of the stria terminalis, but not the amygdala, which actually responded stronger to the CS- Results were independent of spatial smoothing, and of individual differences in trait anxiety and conditioned pupil responses. In contrast, robust amygdala activation distinguished faces from houses, refuting the idea that a poor signal could account for the absence of effects. Moving forward, we suggest that, apart from imaging larger samples at higher resolution, alternative statistical approaches may be used to identify cross-species similarities in fear and extinction learning.SIGNIFICANCE STATEMENT The science of emotional memory provides the foundation of numerous theories on psychopathology, including stress and anxiety disorders. This field relies heavily on animal research, which suggests a central role of the amygdala in fear learning and memory. However, this finding is not strongly corroborated by neuroimaging evidence in humans, and null findings are too easily explained away by methodological limitations inherent to imaging deep brain structures. In a large nonclinical sample, we find widespread BOLD activation in response to learned fear, but not in the amygdala. A poor signal could not account for the absence of effects. While these findings do not disprove the involvement of the amygdala in human fear learning, they challenge its typical portrayals and illustrate the complexities of translational science.
Collapse
Affiliation(s)
- Renée M Visser
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Joe Bathelt
- Department of Psychology, Royal Holloway University of London, Egham TW20 0EX, United Kingdom
| | - H Steven Scholte
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Merel Kindt
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Craeghs L, Callaerts-Vegh Z, Verslegers M, Van der Jeugd A, Govaerts K, Dresselaers T, Wogensen E, Verreet T, Moons L, Benotmane MA, Himmelreich U, D'Hooge R. Prenatal Radiation Exposure Leads to Higher-Order Telencephalic Dysfunctions in Adult Mice That Coincide with Reduced Synaptic Plasticity and Cerebral Hypersynchrony. Cereb Cortex 2021; 32:3525-3541. [PMID: 34902856 DOI: 10.1093/cercor/bhab431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
Higher-order telencephalic circuitry has been suggested to be especially vulnerable to irradiation or other developmentally toxic impact. This report details the adult effects of prenatal irradiation at a sensitive time point on clinically relevant brain functions controlled by telencephalic regions, hippocampus (HPC), and prefrontal cortex (PFC). Pregnant C57Bl6/J mice were whole-body irradiated at embryonic day 11 (start of neurogenesis) with X-ray intensities of 0.0, 0.5, or 1.0 Gy. Female offspring completed a broad test battery of HPC-/PFC-controlled tasks that included cognitive performance, fear extinction, exploratory, and depression-like behaviors. We examined neural functions that are mechanistically related to these behavioral and cognitive changes, such as hippocampal field potentials and long-term potentiation, functional brain connectivity (by resting-state functional magnetic resonance imaging), and expression of HPC vesicular neurotransmitter transporters (by immunohistochemical quantification). Prenatally exposed mice displayed several higher-order dysfunctions, such as decreased nychthemeral activity, working memory defects, delayed extinction of threat-evoked response suppression as well as indications of perseverative behavior. Electrophysiological examination indicated impaired hippocampal synaptic plasticity. Prenatal irradiation also induced cerebral hypersynchrony and increased the number of glutamatergic HPC terminals. These changes in brain connectivity and plasticity could mechanistically underlie the irradiation-induced defects in higher telencephalic functions.
Collapse
Affiliation(s)
- Livine Craeghs
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Mieke Verslegers
- Department of Radiobiology, Institute for Environmental Health and Safety, Nuclear Research Center (SCK CEN), Mol 2400, Belgium
| | - Ann Van der Jeugd
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Kristof Govaerts
- Department of Imaging & Pathology, Research Group Biomedical MRI, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Tom Dresselaers
- Department of Imaging & Pathology, Research Group Biomedical MRI, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Elise Wogensen
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Tine Verreet
- Department of Radiobiology, Institute for Environmental Health and Safety, Nuclear Research Center (SCK CEN), Mol 2400, Belgium
| | - Lieve Moons
- Department of Biology, Research Group Neural Circuit Development and Regeneration, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Mohammed A Benotmane
- Department of Radiobiology, Institute for Environmental Health and Safety, Nuclear Research Center (SCK CEN), Mol 2400, Belgium
| | - Uwe Himmelreich
- Department of Imaging & Pathology, Research Group Biomedical MRI, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Rudi D'Hooge
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| |
Collapse
|
23
|
Wen Z, Chen ZS, Milad MR. Fear extinction learning modulates large-scale brain connectivity. Neuroimage 2021; 238:118261. [PMID: 34126211 PMCID: PMC8436785 DOI: 10.1016/j.neuroimage.2021.118261] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
Abstract
Exploring the neural circuits of the extinction of conditioned fear is critical to advance our understanding of fear- and anxiety-related disorders. The field has focused on examining the role of various regions of the medial prefrontal cortex, insular cortex, hippocampus, and amygdala in conditioned fear and its extinction. The contribution of this 'fear network' to the conscious awareness of fear has recently been questioned. And as such, there is a need to examine higher/multiple cortical systems that might contribute to the conscious feeling of fear and anxiety. Herein, we studied functional connectivity patterns across the entire brain to examine the contribution of multiple networks to the acquisition of fear extinction learning and its retrieval. We conducted trial-by-trial analyses on data from 137 healthy participants who underwent a two-day fear conditioning and extinction paradigm in a functional magnetic resonance imaging (fMRI) scanner. We found that functional connectivity across a broad range of brain regions, many of which are part of the default mode, frontoparietal, and ventral attention networks, increased from early to late extinction learning only to a conditioned cue. The increased connectivity during extinction learning predicted the magnitude of extinction memory tested 24 h later. Together, these findings provide evidence supporting recent studies implicating distributed brain regions in learning, consolidation and expression of fear extinction memory in the human brain.
Collapse
Affiliation(s)
- Zhenfu Wen
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States; The Neuroscience Institute, New York University School of Medicine, New York, NY, United States
| | - Mohammed R Milad
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States; The Neuroscience Institute, New York University School of Medicine, New York, NY, United States; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.
| |
Collapse
|
24
|
Drummond KD, Waring ML, Faulkner GJ, Blewitt ME, Perry CJ, Kim JH. Hippocampal neurogenesis mediates sex-specific effects of social isolation and exercise on fear extinction in adolescence. Neurobiol Stress 2021; 15:100367. [PMID: 34337114 PMCID: PMC8313755 DOI: 10.1016/j.ynstr.2021.100367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Impaired extinction of conditioned fear is associated with anxiety disorders. Common lifestyle factors, like isolation stress and exercise, may alter the ability to extinguish fear. However, the effect of and interplay between these factors on adolescent fear extinction, and the relevant underlying neural mechanisms are unknown. Here we examined the effects of periadolescent social isolation and physical activity on adolescent fear extinction in rats and explored neurogenesis as a potential mechanism. Isolation stress impaired extinction recall in male adolescents, an effect prevented by exercise. Extinction recall in female adolescents was unaffected by isolation stress. However, exercise disrupted extinction recall in isolated females. Extinction recall in isolated females was positively correlated to the number of immature neurons in the ventral hippocampus, suggesting that exercise affected extinction recall via neurogenesis in females. Pharmacologically suppressing cellular proliferation in isolated adolescents using temozolomide blocked the effect of exercise on extinction recall in both sexes. Together, these findings highlight sex-specific outcomes of isolation stress and exercise on adolescent brain and behavior, and highlights neurogenesis as a potential mechanism underlying lifestyle effects on adolescent fear extinction. Periadolescent isolation stress disrupted extinction recall in male adolescents. Running prevented isolation-induced extinction recall deficit in male adolescents. Exercise impaired extinction recall in isolated female adolescents. Exercise increased hippocampal neurogenesis, except in isolated males. Suppression of neurogenesis blocked exercise effects in isolated adolescents.
Collapse
Affiliation(s)
- Katherine D Drummond
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Michelle L Waring
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, Woolloongabba, QLD, 4102, Australia.,Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4067, Australia
| | - Marnie E Blewitt
- The Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christina J Perry
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jee Hyun Kim
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.,IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| |
Collapse
|
25
|
Marković V, Vicario CM, Yavari F, Salehinejad MA, Nitsche MA. A Systematic Review on the Effect of Transcranial Direct Current and Magnetic Stimulation on Fear Memory and Extinction. Front Hum Neurosci 2021; 15:655947. [PMID: 33828472 PMCID: PMC8019721 DOI: 10.3389/fnhum.2021.655947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Anxiety disorders are among the most prevalent mental disorders. Present treatments such as cognitive behavior therapy and pharmacological treatments show only moderate success, which emphasizes the importance for the development of new treatment protocols. Non-invasive brain stimulation methods such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) have been probed as therapeutic option for anxiety disorders in recent years. Mechanistic information about their mode of action, and most efficient protocols is however limited. Here the fear extinction model can serve as a model of exposure therapies for studying therapeutic mechanisms, and development of appropriate intervention protocols. We systematically reviewed 30 research articles that investigated the impact of rTMS and tDCS on fear memory and extinction in animal models and humans, in clinical and healthy populations. The results of these studies suggest that tDCS and rTMS can be efficient methods to modulate fear memory and extinction. Furthermore, excitability-enhancing stimulation applied over the vmPFC showed the strongest potential to enhance fear extinction. We further discuss factors that determine the efficacy of rTMS and tDCS in the context of the fear extinction model and provide future directions to optimize parameters and protocols of stimulation for research and treatment.
Collapse
Affiliation(s)
- Vuk Marković
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- International Graduate School of Neuroscience, Ruhr-University-Bochum, Bochum, Germany
| | | | - Fatemeh Yavari
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohammad A. Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A. Nitsche
- International Graduate School of Neuroscience, Ruhr-University-Bochum, Bochum, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
26
|
Feurer C, Suor J, Jimmy J, Klumpp H, Monk CS, Phan KL, Burkhouse KL. Differences in cortical thinning across development among individuals with and without anxiety disorders. Depress Anxiety 2021; 38:372-381. [PMID: 33001526 PMCID: PMC7920900 DOI: 10.1002/da.23096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/04/2020] [Accepted: 09/09/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Anxiety is associated with aberrant patterns of cortical thickness in regions implicated in emotion regulation. However, few studies have examined cortical thickness differences between individuals with anxiety and healthy controls (HCs) across development, particularly during childhood when cortical thinning begins and anxiety risk increases. A better understanding of age-related changes in cortical thickness patterns among anxious individuals is essential to develop plausible targets for early identification. METHODS The current study examined how age impacted differences in cortical thickness patterns between HCs and anxious individuals. Participants included 233 individuals (ages 7-35) with a current anxiety disorder (n = 149) or no lifetime history of psychopathology (n = 84). Cortical thickness of regions that are implicated in emotion regulation (ventromedial prefrontal cortex [vmPFC], rostral anterior cingulate [rACC], and insula) were assessed. RESULTS All regions showed significant thinning with age, except left rACC and right insula. However, rates of thinning differed among anxious and HC participants, with anxious participants demonstrating slower rates of right vmPFC thinning. Regions of significance analyses indicated that anxious, relative to HC, participants exhibited thinner right vmPFC before age 11, but thicker right vmPFC after age 24. CONCLUSIONS Current findings suggest that anxious individuals do not demonstrate normative right vmPFC cortical thinning, which may lead them to exhibit both thinner vmPFC in middle childhood and thicker vmPFC in adulthood compared with HCs. These findings may provide plausible targets for identification of anxiety risk that differ based on developmental stage.
Collapse
Affiliation(s)
- Cope Feurer
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA
| | - Jennifer Suor
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA
| | - Jagan Jimmy
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA
| | - Heide Klumpp
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA
| | | | - K. Luan Phan
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA,Ohio State University, Department of Psychiatry and Behavioral Medicine, Columbus, OH, USA
| | - Katie L. Burkhouse
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA
| |
Collapse
|
27
|
Dadkhah M, Rashidy-Pour A, Vafaei AA. Temporary inactivation of the infralimbic cortex impairs while the blockade of its dopamine D2 receptors enhances auditory fear extinction in rats. Pharmacol Biochem Behav 2021; 203:173131. [PMID: 33545214 DOI: 10.1016/j.pbb.2021.173131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Fear extinction is defined as decline in conditioned fear responses that occurs with repeated and non-reinforced exposure to a feared conditioned stimulus. Experimental evidence suggests that the extinction of fear memory requires the integration of the medial prefrontal cortex (mPFC); nevertheless, the role of its sub-regions in regulating the expression and extinction of auditory fear has been rarely addressed in literature. The present study examined the roles of the infra-limbic (IL) and pre-limbic (PL) regions of the mPFC in the expression and extinction of auditory fear by temporally deactivating these regions using lidocaine (10 μg/0.5 μl) before training male Wistar rats in auditory fear-conditioning tasks. The results showed increased freezing levels and impaired extinction through deactivating the IL rather than the PL cortex. Given the role of the dopaminergic pathways in regulating fear memory, this study also investigated the role of D2 receptors located in the IL cortex in fear extinction. Fear extinction was improved in an inverted U-shape pattern through the intra-IL infusion of 15.125, 31.25, 62.5, 125, 250 and 500 ng/0.5 μl of the D2 receptor antagonist sulpiride. In other words, the moderate doses, i.e. 31.25, 62.5, 125, 250 ng/0.5 μl, enhanced auditory fear extinction, whereas the lowest and highest doses, i.e. 15.125 and 500 ng/0.5 μl, were ineffective. These findings demonstrated the key roles of the IL cortex and its dopamine D2 receptors in regulating auditory fear in rats.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
28
|
Extinction learning alters the neural representation of conditioned fear. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:983-997. [PMID: 32720205 DOI: 10.3758/s13415-020-00814-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extinction learning is a primary means by which conditioned associations to threats are controlled and is a model system for emotion dysregulation in anxiety disorders. Recent work has called for new approaches to track extinction-related changes in conditioned stimulus (CS) representations. We applied a multivariate analysis to previously -collected functional magnetic resonance imaging data on extinction learning, in which healthy young adult participants (N = 43; 21 males, 22 females) encountered dynamic snake and spider CSs while passively navigating 3D virtual environments. We used representational similarity analysis to compare voxel-wise activation t-statistic maps for the shock-reinforced CS (CS+) from the late phase of fear acquisition to the early and late phases of extinction learning within subjects. These patterns became more dissimilar from early to late extinction in a priori regions of interest: subgenual and dorsal anterior cingulate gyrus, amygdala and hippocampus. A whole-brain searchlight analysis revealed similar findings in the insula, mid-cingulate cortex, ventrolateral prefrontal cortex, somatosensory cortex, cerebellum, and visual cortex. High state anxiety attenuated extinction-related changes to the CS+ patterning in the amygdala, which suggests an enduring threat representation. None of these effects generalized to an unreinforced control cue, nor were they evident in traditional univariate analyses. Our approach extends previous neuroimaging work by emphasizing how evoked neural patterns change from late acquisition through phases of extinction learning, including those in brain regions not traditionally implicated in animal models. Finally, the findings provide additional support for a role of the amygdala in anxiety-related persistence of conditioned fears.
Collapse
|
29
|
Day HLL, Stevenson CW. The neurobiological basis of sex differences in learned fear and its inhibition. Eur J Neurosci 2020; 52:2466-2486. [PMID: 31631413 PMCID: PMC7496972 DOI: 10.1111/ejn.14602] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Learning that certain cues or environments predict threat enhances survival by promoting appropriate fear and the resulting defensive responses. Adapting to changing stimulus contingencies by learning that such cues no longer predict threat, or distinguishing between these threat-related and other innocuous stimuli, also enhances survival by limiting fear responding in an appropriate manner to conserve resources. Importantly, a failure to inhibit fear in response to harmless stimuli is a feature of certain anxiety and trauma-related disorders, which are also associated with dysfunction of the neural circuitry underlying learned fear and its inhibition. Interestingly, these disorders are up to twice as common in women, compared to men. Despite this striking sex difference in disease prevalence, the neurobiological factors involved remain poorly understood. This is due in part to the majority of relevant preclinical studies having neglected to include female subjects alongside males, which has greatly hindered progress in this field. However, more recent studies have begun to redress this imbalance and emerging evidence indicates that there are significant sex differences in the inhibition of learned fear and associated neural circuit function. This paper provides a narrative review on sex differences in learned fear and its inhibition through extinction and discrimination, along with the key gonadal hormone and brain mechanisms involved. Understanding the endocrine and neural basis of sex differences in learned fear inhibition may lead to novel insights on the neurobiological mechanisms underlying the enhanced vulnerability to develop anxiety-related disorders that are observed in women.
Collapse
Affiliation(s)
- Harriet L. L. Day
- School of BiosciencesUniversity of NottinghamLoughboroughUK
- Present address:
RenaSci LtdBioCity, Pennyfoot StreetNottinghamNG1 1GFUK
| | | |
Collapse
|
30
|
Stubbendorff C, Stevenson CW. Dopamine regulation of contextual fear and associated neural circuit function. Eur J Neurosci 2020; 54:6933-6947. [DOI: 10.1111/ejn.14772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023]
|
31
|
Haaker J, Maren S, Andreatta M, Merz CJ, Richter J, Richter SH, Meir Drexler S, Lange MD, Jüngling K, Nees F, Seidenbecher T, Fullana MA, Wotjak CT, Lonsdorf TB. Making translation work: Harmonizing cross-species methodology in the behavioural neuroscience of Pavlovian fear conditioning. Neurosci Biobehav Rev 2019; 107:329-345. [PMID: 31521698 PMCID: PMC7822629 DOI: 10.1016/j.neubiorev.2019.09.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/08/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022]
Abstract
Translational neuroscience bridges insights from specific mechanisms in rodents to complex functions in humans and is key to advance our general understanding of central nervous function. A prime example of translational research is the study of cross-species mechanisms that underlie responding to learned threats, by employing Pavlovian fear conditioning protocols in rodents and humans. Hitherto, evidence for (and critique of) these cross-species comparisons in fear conditioning research was based on theoretical viewpoints. Here, we provide a perspective to substantiate these theoretical concepts with empirical considerations of cross-species methodology. This meta-research perspective is expected to foster cross-species comparability and reproducibility to ultimately facilitate successful transfer of results from basic science into clinical applications.
Collapse
Affiliation(s)
- Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Marta Andreatta
- Department of Psychology, University of Würzburg, Würzburg, Germany; Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Netherlands
| | - Christian J Merz
- Ruhr University Bochum, Faculty of Psychology, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Germany
| | - Jan Richter
- Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Shira Meir Drexler
- Ruhr University Bochum, Faculty of Psychology, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Germany
| | - Maren D Lange
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Kay Jüngling
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Miquel A Fullana
- Institute of Neurosciences, Hospital Clinic, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Carsten T Wotjak
- Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Tina B Lonsdorf
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Junjiao L, Wei C, Jingwen C, Yanjian H, Yong Y, Liang X, Jing J, Xifu Z. Role of prediction error in destabilizing fear memories in retrieval extinction and its neural mechanisms. Cortex 2019; 121:292-307. [PMID: 31669978 DOI: 10.1016/j.cortex.2019.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/06/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023]
Abstract
Memory reconsolidation interference has been shown to be an effective way to neutralize conditioned fear memory and prevent relapse. The critical factor to utilize this paradigm is inducing a labile state of the long-term memory. Novel information is viewed as a driving factor to update memory; however, it is unknown whether different forms of novelty play the same role. In addition, although pharmacological intervention studies have confirmed that prediction error (PE) during reactivation is a necessary condition in memory destabilization, the role of PE in retrieval extinction has remained under debate; furthermore, the neural mechanisms underlying the process are largely unknown. In this study, we isolated two forms of novelty: PE and stimulus novelty without PE during reactivation to compare their role in memory lability. Skin conductance responses (SCR) and functional magnetic resonance imaging (fMRI) were used to clarify their role at the behavioural and neural mechanism levels. A total of 54 healthy adults were tested in a three-day retrieval extinction protocol. The results showed that PE, the novelty of CS-US combinations, was a critical condition to destabilize memory. The novelty of the stimulus itself with the absence of PE was insufficient for retrieving the memory. The neural mechanisms that distinguished standard extinction from retrieval extinction were that the latter was associated with a diminished recruitment of the inferior temporal cortex (IT) and dorsolateral prefrontal cortex (dlPFC) and decreased functional connectivity of the dlPFC-anterior cingulate cortex (ACC) and IT-dlPFC. Possible interpretations were discussed.
Collapse
Affiliation(s)
- Li Junjiao
- School of Psychology, South China Normal University, Guangzhou, China; School of Teacher Education, Guangdong University of Education, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Chen Wei
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Caoyang Jingwen
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Hu Yanjian
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yang Yong
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xu Liang
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jie Jing
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Zheng Xifu
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
33
|
Class IIa HDACs regulate learning and memory through dynamic experience-dependent repression of transcription. Nat Commun 2019; 10:3469. [PMID: 31375688 PMCID: PMC6677776 DOI: 10.1038/s41467-019-11409-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023] Open
Abstract
The formation of new memories requires transcription. However, the mechanisms that limit signaling of relevant gene programs in space and time for precision of information coding remain poorly understood. We found that, during learning, the cellular patterns of expression of early response genes (ERGs) are regulated by class IIa HDACs 4 and 5, transcriptional repressors that transiently enter neuronal nuclei from cytoplasm after sensory input. Mice lacking these repressors in the forebrain have abnormally broad experience-dependent expression of ERGs, altered synaptic architecture and function, elevated anxiety, and severely impaired memory. By acutely manipulating the nuclear activity of class IIa HDACs in behaving animals using a chemical-genetic technique, we further demonstrate that rapid induction of transcriptional programs is critical for memory acquisition but these programs may become dispensable when a stable memory is formed. These results provide new insights into the molecular basis of memory storage. The molecular mechanisms of memory storage remain poorly understood. In this study, authors describe a new mechanism that regulates the cellular patterns of early response gene signaling during learning via the recruitment of two functionally redundant nuclear repressors, class IIa histone deacetylases (HDACs) 4 and 5
Collapse
|
34
|
Opposing roles for amygdala and vmPFC in the return of appetitive conditioned responses in humans. Transl Psychiatry 2019; 9:148. [PMID: 31113931 PMCID: PMC6529434 DOI: 10.1038/s41398-019-0482-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Learning accounts of addiction and obesity emphasize the persistent power of Pavlovian reward cues to trigger craving and increase relapse risk. While extinction can reduce conditioned responding, Pavlovian relapse phenomena-the return of conditioned responding following successful extinction-challenge the long-term success of extinction-based treatments. Translational laboratory models of Pavlovian relapse could therefore represent a valuable tool to investigate the mechanisms mediating relapse, although so far human research has mostly focused on return of fear phenomena. To this end we developed an appetitive conditioning paradigm with liquid food rewards in combination with a 3-day design to investigate the return of appetitive Pavlovian responses and the involved neural structures in healthy subjects. Pavlovian conditioning (day 1) was assessed in 62 participants, and a subsample (n = 33) further completed extinction (day 2) and a reinstatement test (day 3). Conditioned responding was assessed on explicit (pleasantness ratings) and implicit measures (reaction time, skin conductance, heart rate, startle response) and reinstatement effects were further evaluated using fMRI. We observed a return of conditioned responding during the reinstatement test, evident by enhanced skin conductance responses, accompanied by enhanced BOLD responses in the amygdala. On an individual level, psychophysiological reinstatement intensity was significantly anticorrelated with ventromedial prefrontal cortex (vmPFC) activation, and marginally anticorrelated with enhanced amygdala-vmPFC connectivity during late reinstatement. Our results extend evidence from return of fear phenomena to the appetitive domain, and highlight the role of the vmPFC and its functional connection with the amygdala in regulating appetitive Pavlovian relapse.
Collapse
|
35
|
Zimmermann KS, Richardson R, Baker KD. Maturational Changes in Prefrontal and Amygdala Circuits in Adolescence: Implications for Understanding Fear Inhibition during a Vulnerable Period of Development. Brain Sci 2019; 9:E65. [PMID: 30889864 PMCID: PMC6468701 DOI: 10.3390/brainsci9030065] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022] Open
Abstract
Anxiety disorders that develop in adolescence represent a significant burden and are particularly challenging to treat, due in no small part to the high occurrence of relapse in this age group following exposure therapy. This pattern of persistent fear is preserved across species; relative to those younger and older, adolescents consistently show poorer extinction, a key process underpinning exposure therapy. This suggests that the neural processes underlying fear extinction are temporarily but profoundly compromised during adolescence. The formation, retrieval, and modification of fear- and extinction-associated memories are regulated by a forebrain network consisting of the prefrontal cortex (PFC), the amygdala, and the hippocampus. These regions undergo robust maturational changes in early life, with unique alterations in structure and function occurring throughout adolescence. In this review, we focus primarily on two of these regions-the PFC and the amygdala-and discuss how changes in plasticity, synaptic transmission, inhibition/excitation, and connectivity (including modulation by hippocampal afferents to the PFC) may contribute to transient deficits in extinction retention. We end with a brief consideration of how exposure to stress during this adolescent window of vulnerability can permanently disrupt neurodevelopment, leading to lasting impairments in pathways of emotional regulation.
Collapse
Affiliation(s)
- Kelsey S Zimmermann
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Rick Richardson
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Kathryn D Baker
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
36
|
Abstract
The measurement of Pavlovian forms of fear extinction offers a relatively simple behavioral preparation that is nonetheless tractable, from a translational perspective, as an approach to study mechanisms of exposure therapy and biological underpinnings of anxiety and trauma-related disorders such as post-traumatic stress disorder (PTSD). Deficient fear extinction is considered a robust clinical endophenotype for these disorders and, as such, has particular significance in the current "age of RDoC (research domain criteria)." Various rodent models of impaired extinction have thus been generated with the objective of approximating this clinical, relapse prone aberrant extinction learning. These models have helped to reveal neurobiological correlates of extinction circuitry failure, gene variants, and other mechanisms underlying deficient fear extinction. In addition, they are increasingly serving as tools to investigate ways to therapeutically overcome poor extinction to support long-term retention of extinction memory and thus protection against various forms of fear relapse; modeled in the laboratory by measuring spontaneous recovery, reinstatement and renewal of fear. In the current article, we review models of impaired extinction built around (1) experimentally induced brain region and neural circuit disruptions (2) spontaneously-arising and laboratory-induced genetic modifications, or (3) exposure to environmental insults, including stress, drugs of abuse, and unhealthy diet. Collectively, these models have been instrumental in advancing in our understanding of extinction failure and underlying susceptibilities at the neural, genetic, molecular, and neurochemical levels; generating renewed interest in developing novel, targeted and effective therapeutic treatments for anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| |
Collapse
|
37
|
N-Methyl D-aspartate receptor subunit signaling in fear extinction. Psychopharmacology (Berl) 2019; 236:239-250. [PMID: 30238131 PMCID: PMC6374191 DOI: 10.1007/s00213-018-5022-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/03/2018] [Indexed: 01/13/2023]
Abstract
N-Methyl D-aspartate receptors (NMDAR) are central mediators of glutamate actions underlying learning and memory processes including those required for extinction of fear and fear-related behaviors. Consistent with this view, in animal models, antagonists of NMDAR typically impair fear extinction, whereas partial agonists have facilitating effects. Promoting NMDAR function has thus been recognized as a promising strategy towards reduction of fear symptoms in patients suffering from anxiety disorders and post-traumatic disorder (PTSD). Nevertheless, application of these drugs in clinical trials has proved of limited utility. Here we summarize recent advances in our knowledge of NMDAR pharmacology relevant for fear extinction, focusing on molecular, cellular, and circuit aspects of NMDAR function as they relate to fear extinction at the level of behavior and cognition. We also discuss how these advances from animal models might help to understand and overcome the limitations of existing approaches in human anxiety disorders and how novel, more specific, and personalized approaches might help advance future therapeutic strategies.
Collapse
|