1
|
Bramlett SN, Fitzmaurice SM, Harbin NH, Yan W, Bandlamudi C, Van Doorn GE, Smith Y, Hepler JR. Regulator of G protein signalling 14 (RGS14) protein expression profile in the adult mouse brain. Eur J Neurosci 2024; 60:7058-7085. [PMID: 39557622 DOI: 10.1111/ejn.16592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 11/20/2024]
Abstract
Regulator of G protein signalling 14 (RGS14) is a multifunctional signalling protein that serves as a natural suppressor of synaptic plasticity in the mouse brain. Our previous studies showed that RGS14 is highly expressed in postsynaptic dendrites and spines of pyramidal neurons in hippocampal area CA2 of the developing mouse brain. However, our more recent work with monkey brain shows that RGS14 is found in multiple neuron populations throughout hippocampal area CA1 and CA2, caudate nucleus, putamen, globus pallidus, substantia nigra and amygdala. In the mouse brain, we also have observed RGS14 protein in discrete limbic regions linked to reward behaviour and addiction, including the central amygdala and the nucleus accumbens, but a comprehensive mapping of RGS14 protein expression in the adult mouse brain is lacking. Here, we report that RGS14 is more broadly expressed in mouse brain than previously known. Intense RGS14 staining is observed in specific neuron populations of the hippocampal formation, amygdala, septum, bed nucleus of stria terminalis and ventral striatum/nucleus accumbens. RGS14 is also observed in axon fibre tracts including the dorsal fornix, fimbria, stria terminalis and the ventrohippocampal commissure. Moderate RGS14 staining is observed in various other adjacent regions not previously reported. These findings show that RGS14 is expressed in brain regions that govern aspects of core cognitive functions such as sensory perception, emotion, memory, motivation and execution of actions and suggest that RGS14 may serve to suppress plasticity and filter inputs in these brain regions to set the overall tone on experience-to-action processes.
Collapse
Affiliation(s)
- Sara N Bramlett
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shana M Fitzmaurice
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicholas H Harbin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wuji Yan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Charan Bandlamudi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - G Emme Van Doorn
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yoland Smith
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Neurology, Emory University School of Medcine, Atlanta, Georgia, USA
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Wang W, Zhou E, Nie Z, Deng Z, Gong Q, Ma S, Kang L, Yao L, Cheng J, Liu Z. Exploring mechanisms of anhedonia in depression through neuroimaging and data-driven approaches. J Affect Disord 2024; 363:409-419. [PMID: 39038623 DOI: 10.1016/j.jad.2024.07.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Anhedonia is a core symptom of depression that is closely related to prognosis and treatment outcomes. However, accurate and efficient treatments for anhedonia are lacking, mandating a deeper understanding of the underlying mechanisms. METHODS A total of 303 patients diagnosed with depression and anhedonia were assessed by the Snaith-Hamilton Pleasure Scale (SHAPS) and magnetic resonance imaging (MRI). The patients were categorized into a low-anhedonia group and a high-anhedonia group using the K-means algorithm. A data-driven approach was used to explore the differences in brain structure and function with different degrees of anhedonia based on MATLAB. A random forest model was used exploratorily to test the predictive ability of differences in brain structure and function on anhedonia in depression. RESULTS Structural and functional differences were apparent in several brain regions of patients with depression and high-level anhedonia, including in the temporal lobe, paracingulate gyrus, superior frontal gyrus, inferior occipital gyrus, right insular gyrus, and superior parietal lobule. And changes in these brain regions were significantly correlated with scores of SHAPS. CONCLUSIONS These brain regions may be useful as biomarkers that provide a more objective assessment of anhedonia in depression, laying the foundation for precision medicine in this treatment-resistant, relatively poor prognosis group.
Collapse
Affiliation(s)
- Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Enqi Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaowen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zipeng Deng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Simeng Ma
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Cheng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Bramlett SN, Fitzmaurice SM, Harbin NH, Yan W, Bandlamudi C, Van Doorn GE, Smith Y, Hepler JR. Regulator of G Protein Signaling 14 protein expression profile in the adult mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600169. [PMID: 38979272 PMCID: PMC11230234 DOI: 10.1101/2024.06.22.600169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Regulator of G protein signaling 14 (RGS14) is a multifunctional signaling protein that serves as a natural suppressor of synaptic plasticity in the mouse brain. Our previous studies showed that RGS14 is highly expressed in postsynaptic dendrites and spines of pyramidal neurons in hippocampal area CA2 of the developing mouse brain. However, our more recent work with adult rhesus macaque brain shows that RGS14 is found in multiple neuron populations throughout hippocampal area CA1 and CA2, caudate nucleus, putamen, globus pallidus, substantia nigra, and amygdala in the adult rhesus monkey brain. In the mouse brain, we also have observed RGS14 protein in discrete limbic regions linked to reward behavior and addiction, including the central amygdala and the nucleus accumbens, but a comprehensive mapping of RGS14 protein expression in the adult mouse brain is lacking. Here, we report that RGS14 is more broadly expressed in mouse brain than previously known. Intense RGS14 staining is observed in specific neuron populations of the hippocampal formation, amygdala, septum, bed nucleus of stria terminalis and ventral striatum/nucleus accumbens. RGS14 is also observed in axon fiber tracts including the dorsal fornix, fimbria, stria terminalis, and the ventrohippocampal commissure. Moderate RGS14 staining is observed in various other adjacent regions not previously reported. These findings show that RGS14 is expressed in brain regions that govern aspects of core cognitive functions such as sensory perception, emotion, memory, motivation, and execution of actions, and suggests that RGS14 may serve to suppress plasticity and filter inputs in these brain regions to set the overall tone on experience-to-action processes.
Collapse
|
4
|
Ma L, Liu H, Xu Z, Yang M, Zhang Y. Application of the wholebrain calculation interactive framework to map whole-brain neural connectivity networks. J Chem Neuroanat 2023; 132:102304. [PMID: 37331669 DOI: 10.1016/j.jchemneu.2023.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The aim of this work was to develop a simple and feasible method of mapping the neural network topology of the mouse brain. Wild-type C57BL/6 J mice (n = 10) aged 8-10 weeks were injected with the cholera toxin subunit B (CTB) tracer in the anterior (NAcCA) and posterior (NAcCP) parts of the nucleus accumbens (NAc) core and in the medial (NAcSM) and lateral (NAcSL) parts of the NAc shell. The labeled neurons were reconstructed using the WholeBrain Calculation Interactive Framework. The NAcCA receives neuronal projections from the olfactory areas (OLF) and isocortex; the thalamus and isocortex project more fibers to the NAcSL, and the hypothalamus send more fiber projections to the NAcSM. Cell resolution can be automatically annotated, analyzed, and visualized using the WholeBrain Calculation Interactive Framework, making large-scale mapping of mouse brains at cellular and subcellular resolutions easier and more accurate.
Collapse
Affiliation(s)
- Liping Ma
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - He Liu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Ziyi Xu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Mengli Yang
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Yinghua Zhang
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
5
|
Bao W, Ding J, Jiang S, Yao Z, Qu W, Li W, Huang Z, Han Y. Selective Activation of NAc D1R-VP/LH Circuits Promotes Reanimation From Sevoflurane Anesthesia in Mice. Anesth Analg 2023; 137:87-97. [PMID: 36944111 DOI: 10.1213/ane.0000000000006436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Emerging evidence has uncovered a vital role of nucleus accumbens (NAc) neurons that express the dopamine D1 receptor (D1R) and its upstream neural circuit in general anesthesia (GA) regulation. However, the underlying downstream neural basis of the modulation of GA emergence by NAc D1R neurons remains unknown. In the present study, we explored the downstream neural mechanism of NAc D1R neurons in the modulation of emergence from sevoflurane GA. METHODS We traced the axonal projections of NAc D1R neurons using a cell type-specific anterograde tracing method and immunohistochemical techniques in D1R-Cre mice. Optogenetic stimulations combined with electroencephalogram/electromyogram recordings and behavioral tests were used to determine the effects of optogenetic activation of the axonal terminals of NAc D1R neurons on sevoflurane emergence during sevoflurane-induced continuous, steady-state general anesthesia (CSSGA) or burst-suppression oscillations. RESULTS Labeled efferent fibers of NAc D1R neurons were highly distributed in the ventral pallidum (VP), lateral hypothalamus (LH), and substantia nigra pars compacta. Optogenetic activation of the NAc D1R -VP circuit during CSSGA with sevoflurane induced cortical activation (mean ± standard deviation [SD]; delta power: prestimulation versus during stimulation, 48.7% ± 5.7% vs 35.1% ± 3.3%, P < .0001; beta power: 7.1% ± 2.7% vs 14.2% ± 3.3%, P = .0264) and behavioral emergence, and restored the righting reflex in 66.7% of ChR2 mice. Optogenetic stimulation of the NAc D1R -LH circuit also produced cortical activation (delta power: prestimulation versus during stimulation, 45.0% ± 6.5% vs 36.1% ± 4.6%, P = .0016) and behavioral emergence, and restored the righting reflex in 100% of the ChR2 mice during CSSGA with sevoflurane. Under a sevoflurane-induced burst-suppression state, NAc D1R -VP/LH circuit activation produced evidence of cortical activation (burst-suppression ratio [BSR]: NAc D1R -VP circuit, prestimulation versus during stimulation, 42.4% ± 4.0% vs 26.3% ± 6.0%, P = .0120; prestimulation versus poststimulation, 42.4% ± 4.0% vs 5.9% ± 5.6%, P = .0002; BSR: NAc D1R -LH circuit, prestimulation versus during stimulation, 33.3% ± 13.4% vs 5.1% ± 4.9%, P = .0177; prestimulation vs poststimulation, 33.3% ± 13.4% vs 3.2% ± 4.0%, P = .0105) and behavioral emergence. CONCLUSIONS Both NAc D1R -VP and NAc D1R -LH circuits are sufficient to promote reanimation from sevoflurane GA by simultaneously inducing cortical and behavioral emergence.
Collapse
Affiliation(s)
- Weiwei Bao
- From the Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiahui Ding
- From the Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Shan Jiang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Yao
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weimin Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenxian Li
- From the Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Zhili Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Han
- From the Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Pearce AL, Fuchs BA, Keller KL. The role of reinforcement learning and value-based decision-making frameworks in understanding food choice and eating behaviors. Front Nutr 2022; 9:1021868. [PMID: 36483928 PMCID: PMC9722736 DOI: 10.3389/fnut.2022.1021868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
The obesogenic food environment includes easy access to highly-palatable, energy-dense, "ultra-processed" foods that are heavily marketed to consumers; therefore, it is critical to understand the neurocognitive processes the underlie overeating in response to environmental food-cues (e.g., food images, food branding/advertisements). Eating habits are learned through reinforcement, which is the process through which environmental food cues become valued and influence behavior. This process is supported by multiple behavioral control systems (e.g., Pavlovian, Habitual, Goal-Directed). Therefore, using neurocognitive frameworks for reinforcement learning and value-based decision-making can improve our understanding of food-choice and eating behaviors. Specifically, the role of reinforcement learning in eating behaviors was considered using the frameworks of (1) Sign-versus Goal-Tracking Phenotypes; (2) Model-Free versus Model-Based; and (3) the Utility or Value-Based Model. The sign-and goal-tracking phenotypes may contribute a mechanistic insight on the role of food-cue incentive salience in two prevailing models of overconsumption-the Extended Behavioral Susceptibility Theory and the Reactivity to Embedded Food Cues in Advertising Model. Similarly, the model-free versus model-based framework may contribute insight to the Extended Behavioral Susceptibility Theory and the Healthy Food Promotion Model. Finally, the value-based model provides a framework for understanding how all three learning systems are integrated to influence food choice. Together, these frameworks can provide mechanistic insight to existing models of food choice and overconsumption and may contribute to the development of future prevention and treatment efforts.
Collapse
Affiliation(s)
- Alaina L. Pearce
- Social Science Research Institute, Pennsylvania State University, University Park, PA, United States
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Bari A. Fuchs
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Kathleen L. Keller
- Social Science Research Institute, Pennsylvania State University, University Park, PA, United States
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Food Science, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
7
|
Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110289. [PMID: 33631251 DOI: 10.1016/j.pnpbp.2021.110289] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Anhedonia is one of the core symptoms of major depressive disorder (MDD), which is often inadequately treated by traditional antidepressants. The modern framework of anhedonia extends the definition from impaired consummatory pleasure or interest in rewards to a broad spectrum of deficits that impact functions such as reward anticipation, approach motivation, effort expenditure, reward valuation, expectation, and reward-cue association learning. Substantial preclinical and clinical research has explored the neural basis of reward deficits in the context of depression, and has implicated mesocorticolimbic reward circuitry comprising the nucleus accumbens, ventral pallidum, ventral tegmental area, amygdala, hippocampus, anterior cingulate, insula, orbitofrontal cortex, and other prefrontal cortex regions. Dopamine modulates several reward facets including anticipation, motivation, effort, and learning. As well, serotonin, norepinephrine, opioids, glutamate, Gamma aminobutyric acid (GABA), and acetylcholine are also involved in anhedonia, and medications targeting these systems may also potentially normalize reward processing in depression. Unfortunately, whereas reward anticipation and reward outcome are extensively explored by both preclinical and clinical studies, translational gaps remain in reward motivation, effort, valuation, and learning, where clinical neuroimaging studies are in the early stages. This review aims to synthesize the neurobiological mechanisms underlying anhedonia in MDD uncovered by preclinical and clinical research. The translational difficulties in studying the neural basis of reward are also discussed.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Ontario, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Pribiag H, Shin S, Wang EHJ, Sun F, Datta P, Okamoto A, Guss H, Jain A, Wang XY, De Freitas B, Honma P, Pate S, Lilascharoen V, Li Y, Lim BK. Ventral pallidum DRD3 potentiates a pallido-habenular circuit driving accumbal dopamine release and cocaine seeking. Neuron 2021; 109:2165-2182.e10. [PMID: 34048697 PMCID: PMC9013317 DOI: 10.1016/j.neuron.2021.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/01/2021] [Accepted: 05/04/2021] [Indexed: 01/18/2023]
Abstract
Drugs of abuse induce persistent remodeling of reward circuit function, a process thought to underlie the emergence of drug craving and relapse to drug use. However, how circuit-specific, drug-induced molecular and cellular plasticity can have distributed effects on the mesolimbic dopamine reward system to facilitate relapse to drug use is not fully elucidated. Here, we demonstrate that dopamine receptor D3 (DRD3)-dependent plasticity in the ventral pallidum (VP) drives potentiation of dopamine release in the nucleus accumbens during relapse to cocaine seeking after abstinence. We show that two distinct VP DRD3+ neuronal populations projecting to either the lateral habenula (LHb) or the ventral tegmental area (VTA) display different patterns of activity during drug seeking following abstinence from cocaine self-administration and that selective suppression of elevated activity or DRD3 signaling in the LHb-projecting population reduces drug seeking. Together, our results uncover how circuit-specific DRD3-mediated plasticity contributes to the process of drug relapse.
Collapse
Affiliation(s)
- Horia Pribiag
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sora Shin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA 24016, USA; Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric Hou-Jen Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fangmiao Sun
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871 10 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China
| | - Paul Datta
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander Okamoto
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hayden Guss
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Akanksha Jain
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiao-Yun Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bruna De Freitas
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Patrick Honma
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefan Pate
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Varoth Lilascharoen
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871 10 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China
| | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Ma L, Chen W, Yu D, Han Y. Brain-Wide Mapping of Afferent Inputs to Accumbens Nucleus Core Subdomains and Accumbens Nucleus Subnuclei. Front Syst Neurosci 2020; 14:15. [PMID: 32317941 PMCID: PMC7150367 DOI: 10.3389/fnsys.2020.00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus accumbens (NAc) is the ventral part of the striatum and the interface between cognition, emotion, and action. It is composed of three major subnuclei: i.e., NAc core (NAcC), lateral shell (NAcLS), and medial shell (NAcMS), which exhibit functional heterogeneity. Thus, determining the synaptic inputs of the subregions of the NAc is important for understanding the circuit mechanisms involved in regulating different functions. Here, we simultaneously labeled subregions of the NAc with cholera toxin subunit B conjugated with multicolor Alexa Fluor, then imaged serial sections of the whole brain with a fully automated slide scanning system. Using the interactive WholeBrain framework, we characterized brain-wide inputs to the NAcC subdomains, including the rostral, caudal, dorsal, and ventral subdomains (i.e., rNAcC, cNAcC, dNAcC, and vNAcC, respectively) and the NAc subnuclei. We found diverse brain regions, distributed from the cerebrum to brain stem, projecting to the NAc. Of the 57 brain regions projecting to the NAcC, the anterior olfactory nucleus (AON) exhibited the greatest inputs. The input neurons of rNAcC and cNAcC are two distinct populations but share similar distribution over the same upstream brain regions, whereas the input neurons of dNAcC and vNAcC exhibit slightly different distributions over the same upstream regions. Of the 55 brain regions projecting to the NAcLS, the piriform area contributed most of the inputs. Of the 72 brain regions projecting to the NAcMS, the lateral septal nucleus contributed most of the inputs. The input neurons of NAcC and NAcLS share similar distributions, whereas the NAcMS exhibited brain-wide distinct distribution. Thus, the NAcC subdomains appeared to share the same upstream brain regions, although with distinct input neuron populations and slight differences in the input proportions, whereas the NAcMS subnuclei received distinct inputs from multiple upstream brain regions. These results lay an anatomical foundation for understanding the different functions of NAcC subdomains and NAc subnuclei.
Collapse
Affiliation(s)
- Liping Ma
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wenqi Chen
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Danfang Yu
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,Department of Neurology, Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Amaya KA, Stott JJ, Smith KS. Sign-tracking behavior is sensitive to outcome devaluation in a devaluation context-dependent manner: implications for analyzing habitual behavior. ACTA ACUST UNITED AC 2020; 27:136-149. [PMID: 32179656 PMCID: PMC7079568 DOI: 10.1101/lm.051144.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/31/2019] [Indexed: 01/23/2023]
Abstract
Motivationally attractive cues can draw in behavior in a phenomenon termed incentive salience. Incentive cue attraction is an important model for animal models of drug seeking and relapse. One question of interest is the extent to which the pursuit of motivationally attractive cues is related to the value of the paired outcome or can become unrelated and habitual. We studied this question using a sign-tracking (ST) paradigm in rats, in which a lever stimulus preceding food reward comes to elicit conditioned lever-interaction behavior. We asked whether reinforcer devaluation by means of conditioned taste aversion, a classic test of habitual behavior, can modify ST to incentive cues, and whether this depends upon the manner in which reinforcer devaluation takes place. In contrast to several recent reports, we conclude that ST is indeed sensitive to reinforcer devaluation. However, this effect depends critically upon the congruence between the context in which taste aversion is learned and the context in which it is tested. When the taste aversion successfully transfers to the testing context, outcome value strongly influences ST behavior, both when the outcome is withheld (in extinction) and when animals can learn from outcome feedback (reacquisition). When taste aversion does not transfer to the testing context, ST remains high. In total, the extent to which ST persists after outcome devaluation is closely related to the extent to which that outcome is truly devalued in the task context. We believe this effect of context on devaluation can reconcile contradictory findings about the flexibility/inflexibility of ST. We discuss this literature and relate our findings to the study of habits generally.
Collapse
Affiliation(s)
- Kenneth A Amaya
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Jeffrey J Stott
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Kyle S Smith
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
11
|
Farrell MR, Ruiz CM, Castillo E, Faget L, Khanbijian C, Liu S, Schoch H, Rojas G, Huerta MY, Hnasko TS, Mahler SV. Ventral pallidum is essential for cocaine relapse after voluntary abstinence in rats. Neuropsychopharmacology 2019; 44:2174-2185. [PMID: 31476762 PMCID: PMC6898676 DOI: 10.1038/s41386-019-0507-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/22/2022]
Abstract
Addiction is a chronic relapsing disorder, and during recovery many people experience several relapse events as they attempt to voluntarily abstain from drug. New preclinical relapse models have emerged that capture this common human experience, and mounting evidence indicates that resumption of drug seeking after voluntary abstinence recruits neural circuits distinct from those recruited during reinstatement after experimenter-imposed abstinence, or abstinence due to extinction training. Ventral pallidum (VP), a key limbic node involved in drug seeking, has well-established roles in conventional reinstatement models tested following extinction training, but it is unclear whether this region also participates in more translationally relevant models of relapse. Here we show that chemogenetic inhibition of VP neurons decreased cocaine-, context-, and cue-induced relapse tested after voluntary, punishment-induced abstinence. This effect was strongest in the most compulsive, punishment-resistant rats, and reinstatement was associated with neural activity in anatomically defined VP subregions. VP inhibition also attenuated the propensity of rats to display "abortive lever pressing," a species-typical risk assessment behavior seen here during punished drug taking, likely resulting from concurrent approach and avoidance motivations. These results indicate that VP, unlike other connected limbic brain regions, is essential for resumption of drug seeking after voluntary abstinence. Since VP inhibition effects were strongest in the most compulsively cocaine-seeking individuals, this may also indicate that VP plays a particularly important role in the most pathological, addiction-like behavior, making it an attractive target for future therapeutic interventions.
Collapse
Affiliation(s)
- Mitchell R Farrell
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Christina M Ruiz
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Erik Castillo
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Lauren Faget
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Christine Khanbijian
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Siyu Liu
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Hannah Schoch
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Gerardo Rojas
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Michelle Y Huerta
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- VASDHS Research Service, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Stephen V Mahler
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA.
| |
Collapse
|