1
|
Rashed HR, Milone M. The spectrum of rippling muscle disease. Muscle Nerve 2025; 71:9-21. [PMID: 39370631 DOI: 10.1002/mus.28270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Rippling muscle disease (RMD) is a rare disorder of muscle hyperexcitability. It is characterized by rippling wave-like muscle contractions induced by mechanical stretch or voluntary contraction followed by sudden stretch, painful muscle stiffness, percussion-induced rapid muscle contraction (PIRC), and percussion-induced muscle mounding (PIMM). RMD can be hereditary (hRMD) or immune-mediated (iRMD). hRMD is caused by pathogenic variants in caveolin-3 (CAV3) or caveolae-associated protein 1/ polymerase I and transcript release factor (CAVIN1/PTRF). CAV3 pathogenic variants are autosomal dominant or less frequently recessive while CAVIN1/PTRF pathogenic variants are autosomal recessive. CAV3-RMD manifests with a wide spectrum of clinical phenotypes, ranging from asymptomatic creatine kinase elevation to severe muscle weakness. Overlapping phenotypes are common. Muscle caveolin-3 immunoreactivity is often absent or diffusely reduced in CAV3-RMD. CAVIN1/PTRF-RMD is characterized by congenital generalized lipodystrophy (CGL, type 4) and often accompanied by several extra-skeletal muscle manifestations. Muscle cavin-1/PTRF immunoreactivity is absent or reduced while caveolin-3 immunoreactivity is reduced, often in a patchy way, in CAVIN1/PTRF-RMD. iRMD is often accompanied by other autoimmune disorders, including myasthenia gravis. Anti-cavin-4 antibodies are the serological marker while the mosaic expression of caveolin-3 and cavin-4 is the pathological feature of iRMD. Most patients with iRMD respond to immunotherapy. Rippling, PIRC, and PIMM are usually electrically silent. Different pathogenic mechanisms have been postulated to explain the disease mechanisms. In this article, we review the spectrum of hRMD and iRMD, including clinical phenotypes, electrophysiological characteristics, myopathological findings, and pathogenesis.
Collapse
|
2
|
González-Mera L, Ravenscroft G, Cabrera-Serrano M, Ermolova N, Domínguez-González C, Arteche-López A, Soltanzadeh P, Evesson F, Navas C, Mavillard F, Clayton J, Rodrigo P, Servián-Morilla E, Cooper ST, Waddell L, Reardon K, Corbett A, Hernandez-Laín A, Sanchez A, Esteban Perez J, Paradas-Lopez C, Rivas-Infante E, Spencer M, Laing N, Olivé M. Heterozygous CAPN3 missense variants causing autosomal-dominant calpainopathy in seven unrelated families. Neuropathol Appl Neurobiol 2020; 47:283-296. [PMID: 32896923 DOI: 10.1111/nan.12663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/03/2020] [Accepted: 08/22/2020] [Indexed: 01/05/2023]
Abstract
AIMS Recessive variants in CAPN3 gene are the cause of the commonest form of autosomal recessive limb girdle muscle dystrophy. However, two distinct in-frame deletions in CAPN3 (NM_000070.3:c.643_663del21 and c.598_621del15) and more recently, Gly445Arg and Arg572Pro substitutions have been linked to autosomal dominant (AD) forms of calpainopathy. We report 21 affected individuals from seven unrelated families presenting with an autosomal dominant form of muscular dystrophy associated with five different heterozygous missense variants in CAPN. METHODS We have used massively parallel gene sequencing (MPS) to determine the genetic basis of a dominant form of limb girdle muscular dystrophy in affected individuals from seven unrelated families. RESULTS The c.700G> A, [p.(Gly234Arg)], c.1327T> C [p.(Ser443Pro], c.1333G> A [p.(Gly445Arg)], c.1661A> C [p.(Tyr554Ser)] and c.1706T> C [p.(Phe569Ser)] CAPN3 variants were identified. Affected individuals presented in young adulthood with progressive proximal and axial weakness, waddling walking and scapular winging or with isolated hyperCKaemia. Muscle imaging showed fatty replacement of paraspinal muscles, variable degrees of involvement of the gluteal muscles, and the posterior compartment of the thigh and minor changes at the mid-leg level. Muscle biopsies revealed mild myopathic changes. Western blot analysis revealed a clear reduction in calpain 3 in skeletal muscle relative to controls. Protein modelling of these variants on the predicted structure of calpain 3 revealed that all variants are located in proximity to the calmodulin-binding site and are predicted to interfere with proteolytic activation. CONCLUSIONS We expand the genotypic spectrum of CAPN3-associated muscular dystrophy due to autosomal dominant missense variants.
Collapse
Affiliation(s)
- L González-Mera
- Neuropathology Unit, Department of Pathology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - G Ravenscroft
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - M Cabrera-Serrano
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,Neurology Department, Hospital Universitario Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - N Ermolova
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - C Domínguez-González
- Neuromuscular Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Research Institute imas12, Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - A Arteche-López
- Department of Genetic, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - P Soltanzadeh
- Departments of Neurology and Physiology, David Geffen School of Medicine, UCLA, University of California, Los Angeles, CA, USA
| | - F Evesson
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW, Australia.,The Children's Medical Research Institute, Westmead, NSW, Australia
| | - C Navas
- Neuropathology Unit, Department of Pathology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - F Mavillard
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - J Clayton
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - P Rodrigo
- Neuropathology Unit, Department of Pathology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - E Servián-Morilla
- Neurology Department, Hospital Universitario Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - S T Cooper
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW, Australia.,The Children's Medical Research Institute, Westmead, NSW, Australia.,Discipline of Child and Adolescent Health, Faculty of Health and Medicine, University of Sydney, Westmead, NSW, Australia
| | - L Waddell
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW, Australia.,Discipline of Child and Adolescent Health, Faculty of Health and Medicine, University of Sydney, Westmead, NSW, Australia
| | - K Reardon
- St. Vincent's Melbourne Neuromuscular Diagnostic Laboratory, Department of Clinical Neurosciences and Neurological Research, St Vincent's Hospital, Melbourne, VIC, Australia
| | - A Corbett
- Department of Neurology, Concord General Repatriation Hospital, Sydney, NSW, Australia
| | - A Hernandez-Laín
- Department of Pathology, Neuropathology Unit. Hospital Universitario 12 de Octubre, Madrid, Spain
| | - A Sanchez
- Institut de Diagnòstic per la imatge (IDI), IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - J Esteban Perez
- Neuromuscular Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Research Institute imas12, Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - C Paradas-Lopez
- Neurology Department, Hospital Universitario Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - E Rivas-Infante
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neuropathology, Hospital U. Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - M Spencer
- Department of Neurology, Neuromuscular Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - N Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - M Olivé
- Neuropathology Unit, Department of Pathology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
3
|
Seemann E, Sun M, Krueger S, Tröger J, Hou W, Haag N, Schüler S, Westermann M, Huebner CA, Romeike B, Kessels MM, Qualmann B. Deciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination. eLife 2017; 6. [PMID: 29202928 PMCID: PMC5716666 DOI: 10.7554/elife.29854] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Several human diseases are associated with a lack of caveolae. Yet, the functions of caveolae and the molecular mechanisms critical for shaping them still are debated. We show that muscle cells of syndapin III KO mice show severe reductions of caveolae reminiscent of human caveolinopathies. Yet, different from other mouse models, the levels of the plasma membrane-associated caveolar coat proteins caveolin3 and cavin1 were both not reduced upon syndapin III KO. This allowed for dissecting bona fide caveolar functions from those supported by mere caveolin presence and also demonstrated that neither caveolin3 nor caveolin3 and cavin1 are sufficient to form caveolae. The membrane-shaping protein syndapin III is crucial for caveolar invagination and KO rendered the cells sensitive to membrane tensions. Consistent with this physiological role of caveolae in counterpoising membrane tensions, syndapin III KO skeletal muscles showed pathological parameters upon physical exercise that are also found in CAVEOLIN3 mutation-associated muscle diseases.
Collapse
Affiliation(s)
- Eric Seemann
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Minxuan Sun
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Sarah Krueger
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Jessica Tröger
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Wenya Hou
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Natja Haag
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Susann Schüler
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Christian A Huebner
- Institute for Human Genetics, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Bernd Romeike
- Institute of Pathology, Division of Neuropathology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Michael M Kessels
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
4
|
Chitranshi N, Dheer Y, Wall RV, Gupta V, Abbasi M, Graham SL, Gupta V. Computational analysis unravels novel destructive single nucleotide polymorphisms in the non-synonymous region of human caveolin gene. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Macias A, Gambin T, Szafranski P, Jhangiani SN, Kolasa A, Obersztyn E, Lupski JR, Stankiewicz P, Kaminska A. CAV3 mutation in a patient with transient hyperCKemia and myalgia. Neurol Neurochir Pol 2016; 50:468-473. [DOI: 10.1016/j.pjnns.2016.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/11/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
6
|
Méndez-Giménez L, Rodríguez A, Balaguer I, Frühbeck G. Role of aquaglyceroporins and caveolins in energy and metabolic homeostasis. Mol Cell Endocrinol 2014; 397:78-92. [PMID: 25008241 DOI: 10.1016/j.mce.2014.06.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 12/23/2022]
Abstract
Aquaglyceroporins and caveolins are submicroscopic integral membrane proteins that are particularly abundant in many mammalian cells. Aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) encompass a subfamily of aquaporins that allow the movement of water, but also of small solutes, such as glycerol, across cell membranes. Glycerol constitutes an important metabolite as a substrate for de novo synthesis of triacylglycerols and glucose as well as an energy substrate to produce ATP via the mitochondrial oxidative phosphorylation. In this sense, the control of glycerol influx/efflux in metabolic organs by aquaglyceroporins plays a crucial role with the dysregulation of these glycerol channels being associated with metabolic diseases, such as obesity, insulin resistance, non-alcoholic fatty liver disease and cardiac hypertrophy. On the other hand, caveolae have emerged as relevant plasma membrane sensors implicated in a wide range of cellular functions, including endocytosis, apoptosis, cholesterol homeostasis, proliferation and signal transduction. Caveolae-coating proteins, namely caveolins and cavins, can act as scaffolding proteins within caveolae by concentrating signaling molecules involved in free fatty acid and cholesterol uptake, proliferation, insulin signaling or vasorelaxation, among others. The importance of caveolae in whole-body homeostasis is highlighted by the link between homozygous mutations in genes encoding caveolins and cavins with metabolic diseases, such as lipodystrophy, dyslipidemia, muscular dystrophy and insulin resistance in rodents and humans. The present review focuses on the role of aquaglyceroporins and caveolins on lipid and glucose metabolism, insulin secretion and signaling, energy production and cardiovascular homeostasis, outlining their potential relevance in the development and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Leire Méndez-Giménez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain.
| | - Inmaculada Balaguer
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
7
|
Silvestri NJ, Wolfe GI. Asymptomatic/pauci-symptomatic creatine kinase elevations (hyperckemia). Muscle Nerve 2013; 47:805-15. [DOI: 10.1002/mus.23755] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Nicholas J. Silvestri
- Department of Neurology; University at Buffalo, Buffalo General Medical Center; 100 High Street Buffalo New York 14203-1126 USA
| | - Gil I. Wolfe
- Department of Neurology; University at Buffalo, Buffalo General Medical Center; 100 High Street Buffalo New York 14203-1126 USA
| |
Collapse
|
8
|
Milone M, Mcevoy KM, Sorenson EJ, Daube JR. Myotonia associated with caveolin-3 mutation. Muscle Nerve 2012; 45:897-900. [DOI: 10.1002/mus.23270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Arias Gómez M, Alberte-Woodwar M, Arias-Rivas S, Dapena D, Pintos E, Navarro C. Unilateral calf atrophy secondary to a de novo mutation of the caveolin-3 gene. Muscle Nerve 2011; 44:126-8. [DOI: 10.1002/mus.22079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2011] [Indexed: 11/12/2022]
|
10
|
Gazzerro E, Bonetto A, Minetti C. Caveolinopathies: translational implications of caveolin-3 in skeletal and cardiac muscle disorders. HANDBOOK OF CLINICAL NEUROLOGY 2011; 101:135-142. [PMID: 21496630 DOI: 10.1016/b978-0-08-045031-5.00010-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Caveolae are specialized lipid rafts localized on the cytoplasmic surface of the sarcolemmal membrane. Caveolae contribute to the maintenance of plasma membrane integrity, constitute specific macromolecular complexes that provide highly localized regulation of ion channels, and regulate vesicular trafficking and signal transduction. In skeletal muscle, the main structural assembly of caveolae is mediated by caveolin-3. Another family of adapter proteins, the cavins, is involved in the regulation of caveolae function and in the trafficking of caveolin-derived structures. Caveolin-3 defects lead to four distinct skeletal muscle disease phenotypes: limb-girdle muscular dystrophy, rippling muscle disease, distal myopathy, and hyperCKemia. Many patients show an overlap of these symptoms, and the same mutation can be linked to different clinical phenotypes. An ever-growing interest is also focused on the association between caveolin-3 mutations and heart disorders. Indeed, caveolin-3 mutants have been described in a patient with hypertrophic cardiomyopathy and two patients with dilated cardiomyopathy, and mutations in the caveolin-3 gene (CAV3) have been identified in patients affected by congenital long QT syndrome. Although caveolin-3 deficiency represents the primary event, multiple secondary molecular mechanisms lead to muscle tissue damage. Among these, sarcolemmal membrane alterations, disorganization of skeletal muscle T-tubule network, and disruption of distinct cell signaling pathways have been determined.
Collapse
Affiliation(s)
- E Gazzerro
- Unit of Muscular and Neurodegenerative Diseases, G. Gaslini Institute, Genova, Italy
| | | | | |
Collapse
|
11
|
Abstract
In muscle tissue the protein caveolin-3 forms caveolae--flask-shaped invaginations localized on the cytoplasmic surface of the sarcolemmal membrane. Caveolae have a key role in the maintenance of plasma membrane integrity and in the processes of vesicular trafficking and signal transduction. Mutations in the caveolin-3 gene lead to skeletal muscle pathology through multiple pathogenetic mechanisms. Indeed, caveolin-3 deficiency is associated to sarcolemmal membrane alterations, disorganization of skeletal muscle T-tubule network and disruption of distinct cell-signaling pathways. To date, there have been 30 caveolin-3 mutations identified in the human population. Caveolin-3 defects lead to four distinct skeletal muscle disease phenotypes: limb girdle muscular dystrophy, rippling muscle disease, distal myopathy, and hyperCKemia. In addition, one caveolin-3 mutant has been described in a case of hypertrophic cardiomyopathy. Many patients show an overlap of these symptoms and the same mutation can be linked to different clinical phenotypes. This variability can be related to additional genetic or environmental factors. This review will address caveolin-3 biological functions in muscle cells and will describe the muscle and heart disease phenotypes associated with caveolin-3 mutations.
Collapse
|
12
|
Lorenzoni PJ, Scola RH, Vieira N, Vainzof M, Carsten ALM, Werneck LC. A novel missense mutation in the caveolin-3 gene in rippling muscle disease. Muscle Nerve 2007; 36:258-60. [PMID: 17405141 DOI: 10.1002/mus.20781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rippling muscle disease (RMD) is a benign myopathy with symptoms and signs of muscular hyperirritability. We report a 17-year-old patient who presented with muscular hypertrophy, local mounding on percussion, and a rippling phenomenon. Needle electromyography showed electrical silence during the rippling phenomenon. Muscle protein immunohistochemical analysis showed a partial deficiency of caveolin-3. Molecular analysis revealed a novel heterozygous A>C transition at nucleotide position 140 in exon 2 of the caveolin-3 gene. We associated this novel mutation with RMD.
Collapse
Affiliation(s)
- Paulo J Lorenzoni
- Neuromuscular/Neurology Division, Internal Medicine Department, Hospital de Clínicas, Universidade Federal do Paraná, Rua General Carneiro 181, Curitiba PR 80060-900, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Capasso M, De Angelis MV, Di Muzio A, Scarciolla O, Pace M, Stuppia L, Comi GP, Uncini A. Familial idiopathic hyper-CK-emia: an underrecognized condition. Muscle Nerve 2006; 33:760-5. [PMID: 16502425 DOI: 10.1002/mus.20525] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Persistent elevation of serum creatine kinase (CK) in individuals with normal neurological and laboratory examinations has been called idiopathic hyperCKemia (IH). IH has been reported in rare families and was recently ascribed to caveolin-3 gene mutations. We retrospectively found that IH was familial in 13 of 28 subjects in whom serum CK was measured in relatives. These 13 families had a total of 41 subjects with IH, including six over 60 years of age. In eight families there was male-to-male transmission and a higher prevalence of males with hyperCKemia. Muscle biopsy in one member of all families was normal or showed minimal, nonspecific changes. Morphometric examination disclosed different patterns of changes in fiber size and distribution. Caveolin-3 expression was normal and in five families molecular genetics excluded caveolin-3 gene mutations. Our findings suggest that IH is familial in 46% of cases. Familial IH is a benign genetically heterogeneous condition that is autosomal-dominant in at least 60% of cases, with a higher penetrance in men.
Collapse
Affiliation(s)
- Margherita Capasso
- Neuromuscular Diseases Unit, Center for Excellence on Aging, G. d'Annunzio University Foundation, Via Colle dell'Ara, I-66013 Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The heterogeneous childhood limb-girdle muscular dystrophies have originally been defined as a group of autosomal recessive and dominant diseases with progressive weakness and wasting of shoulder and pelvic-girdle muscles. Over the last 12 years, the underlying genetic defects for many of the diseases have been identified and insight into pathomechanisms of disease has been gained. At the same time, improved diagnostic techniques have allowed to extend the phenotypic spectrum for many of these devastating conditions, which showed that clinical symptoms and pathological findings are not restricted to skeletal muscles. Childhood limb-girdle muscular dystrophies are systemic diseases that often affect the musculoskeletal, respiratory, and cardiovascular system and that can go along with central nervous system involvement and gastrointestinal symptoms. The systemic nature of the diseases requires adequate management strategies that improve symptoms, longevity, and quality of life of the patients. As we are entering an era of translational research the need for precise molecular diagnoses, a thorough understanding of the natural history of the diseases and guidelines for standardized assessments of the patients become even more relevant. In this review, the best characterized childhood limb-girdle muscular dystrophies are discussed and their management aspects highlighted.
Collapse
Affiliation(s)
- Volker Straub
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
15
|
Nixon SJ, Wegner J, Ferguson C, Méry PF, Hancock JF, Currie PD, Key B, Westerfield M, Parton RG. Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning. Hum Mol Genet 2005; 14:1727-43. [PMID: 15888488 DOI: 10.1093/hmg/ddi179] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Caveolae are an abundant feature of many animal cells. However, the exact function of caveolae remains unclear. We have used the zebrafish, Danio rerio, as a system to understand caveolae function focusing on the muscle-specific caveolar protein, caveolin-3 (Cav3). We have identified caveolin-1 (alpha and beta), caveolin-2 and Cav3 in the zebrafish. Zebrafish Cav3 has 72% identity to human CAV3, and the amino acids altered in human muscle diseases are conserved in the zebrafish protein. During embryonic development, cav3 expression is apparent by early segmentation stages in the first differentiating muscle precursors, the adaxial cells and slightly later in the notochord. cav3 expression appears in the somites during mid-segmentation stages and then later in the pectoral fins and facial muscles. Cav3 and caveolae are located along the entire sarcolemma of late stage embryonic muscle fibers, whereas beta-dystroglycan is restricted to the muscle fiber ends. Down-regulation of Cav3 expression causes gross muscle abnormalities and uncoordinated movement. Ultrastructural analysis of isolated muscle fibers reveals defects in myoblast fusion and disorganized myofibril and membrane systems. Expression of the zebrafish equivalent to a human muscular dystrophy mutant, CAV3P104L, causes severe disruption of muscle differentiation. In addition, knockdown of Cav3 resulted in a dramatic up-regulation of eng1a expression resulting in an increase in the number of muscle pioneer-like cells adjacent to the notochord. These studies provide new insights into the role of Cav3 in muscle development and demonstrate its requirement for correct intracellular organization and myoblast fusion.
Collapse
Affiliation(s)
- Susan J Nixon
- Institute for Molecular Bioscience, Universitky of Queensland, Brisbane 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sugie K, Murayama K, Noguchi S, Murakami N, Mochizuki M, Hayashi YK, Nonaka I, Nishino I. Two novel CAV3 gene mutations in Japanese families. Neuromuscul Disord 2005; 14:810-4. [PMID: 15564037 DOI: 10.1016/j.nmd.2004.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 08/16/2004] [Accepted: 08/27/2004] [Indexed: 11/22/2022]
Abstract
Caveolin-3 deficiency is a rare, autosomal dominant, muscle disorder caused by caveolin-3 gene (CAV3) mutations and consists of four clinical phenotypes: limb-girdle muscular dystrophy type 1C (LGMD-1C), rippling muscle disease, distal myopathy, and familial hyperCKemia. So far, only 13 mutations have been reported. We here report two novel heterozygous mutations, 96C>G (N32K) and 128T>A (V43E), in the CAV3 gene in two unrelated Japanese families with LGMD-1C. Both probands presented with elevated serum CK level with calf muscle hypertrophy in their childhood but without apparent muscle weakness. However, their mothers showed mild limb-girdle weakness in addition to high CK level. Caveolin-3 was deficient and caveolae were lacking in muscles from both patients. Our data confirm that caveolin-3 deficiency causes LGMD-1C and expand the variability in CAV3 gene mutations.
Collapse
MESH Headings
- Adult
- Caveolin 3
- Caveolins/deficiency
- Caveolins/genetics
- Child
- Child, Preschool
- Creatine Kinase/metabolism
- DNA Mutational Analysis
- Dysferlin
- Dystrophin/metabolism
- Family Health
- Female
- Genes, Dominant
- Genetic Predisposition to Disease/genetics
- Genetic Testing
- Genetic Variation/genetics
- Humans
- Hypertrophy/genetics
- Hypertrophy/pathology
- Japan
- Male
- Membrane Proteins/metabolism
- Microscopy, Electron, Transmission
- Middle Aged
- Muscle Proteins/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Muscular Dystrophies, Limb-Girdle/genetics
- Muscular Dystrophies, Limb-Girdle/metabolism
- Muscular Dystrophies, Limb-Girdle/pathology
- Mutation, Missense/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Kazuma Sugie
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|