1
|
Núñez-Carpintero I, Rigau M, Bosio M, O'Connor E, Spendiff S, Azuma Y, Topf A, Thompson R, 't Hoen PAC, Chamova T, Tournev I, Guergueltcheva V, Laurie S, Beltran S, Capella-Gutiérrez S, Cirillo D, Lochmüller H, Valencia A. Rare disease research workflow using multilayer networks elucidates the molecular determinants of severity in Congenital Myasthenic Syndromes. Nat Commun 2024; 15:1227. [PMID: 38418480 PMCID: PMC10902324 DOI: 10.1038/s41467-024-45099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/15/2024] [Indexed: 03/01/2024] Open
Abstract
Exploring the molecular basis of disease severity in rare disease scenarios is a challenging task provided the limitations on data availability. Causative genes have been described for Congenital Myasthenic Syndromes (CMS), a group of diverse minority neuromuscular junction (NMJ) disorders; yet a molecular explanation for the phenotypic severity differences remains unclear. Here, we present a workflow to explore the functional relationships between CMS causal genes and altered genes from each patient, based on multilayer network community detection analysis of complementary biomedical information provided by relevant data sources, namely protein-protein interactions, pathways and metabolomics. Our results show that CMS severity can be ascribed to the personalized impairment of extracellular matrix components and postsynaptic modulators of acetylcholine receptor (AChR) clustering. This work showcases how coupling multilayer network analysis with personalized -omics information provides molecular explanations to the varying severity of rare diseases; paving the way for sorting out similar cases in other rare diseases.
Collapse
Affiliation(s)
- Iker Núñez-Carpintero
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
| | - Maria Rigau
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mattia Bosio
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
| | - Emily O'Connor
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Ana Topf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Peter A C 't Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Teodora Chamova
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, Alexandrovska University Hospital, Medical University-Sofia, Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, Alexandrovska University Hospital, Medical University-Sofia, Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, 1618, Bulgaria
| | - Velina Guergueltcheva
- Clinic of Neurology, University Hospital Sofiamed, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Salvador Capella-Gutiérrez
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
| | - Davide Cirillo
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
2
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
3
|
Natera-de Benito D, Bestué M, Vilchez JJ, Evangelista T, Töpf A, García-Ribes A, Trujillo-Tiebas MJ, García-Hoyos M, Ortez C, Camacho A, Jiménez E, Dusl M, Abicht A, Lochmüller H, Colomer J, Nascimento A. Long-term follow-up in patients with congenital myasthenic syndrome due to RAPSN mutations. Neuromuscul Disord 2015; 26:153-9. [PMID: 26782015 DOI: 10.1016/j.nmd.2015.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022]
Abstract
Rapsyn (RAPSN) mutations are a common cause of postsynaptic congenital myasthenic syndromes. We present a comprehensive description of the clinical and molecular findings of ten patients with CMS due to mutations in RAPSN, mostly with a long-term follow-up. Two patients were homozygous and eight were heterozygous for the common p.Asn88Lys mutation. In three of the heterozygous patients we have identified three novel mutations (c.869T > C; p.Leu290Pro, c.1185delG; p.Thr396Profs*12, and c.358delC; p.Gln120Serfs*8). In our cohort, the RAPSN mutations lead to a relatively homogeneous phenotype, characterized by fluctuating ptosis, occasional bulbar symptoms, neck muscle weakness, and mild proximal muscle weakness with exacerbations precipitated by minor infections. Interestingly, episodic exacerbations continue to occur during adulthood. These were characterized by proximal limb girdle weakness and ptosis, and not so much by respiratory insufficiency after age 6. All patients presented during neonatal period and responded to cholinergic agonists. In most of the affected patients, additional use of 3,4-diaminopyridine resulted in significant clinical benefit. The disease course is stable except for intermittent worsening.
Collapse
Affiliation(s)
- D Natera-de Benito
- Department of Pediatrics, Hospital Universitario de Fuenlabrada, Madrid, Spain.
| | - M Bestué
- Department of Neurology, Hospital General San Jorge, Huesca, Spain
| | - J J Vilchez
- Department of Neurology, Hospital Universitari La Fe, Valencia, Spain
| | - T Evangelista
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - A Töpf
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - A García-Ribes
- Department of Pediatrics, Hospital Universitario Cruces, Bilbao, Spain
| | - M J Trujillo-Tiebas
- Department of Genetics, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - M García-Hoyos
- Department of Genetics, Instituto de Medicina Genómica, Valencia, Spain
| | - C Ortez
- Department of Neuromuscular Diseases, Hospital Sant Joan de Déu, Barcelona, Spain
| | - A Camacho
- Department of Pediatric Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - E Jiménez
- Department of Pediatrics, Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | - M Dusl
- Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich 80336,Germany
| | - A Abicht
- Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich 80336,Germany; Medical Genetics Center, Munich, Germany
| | - H Lochmüller
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - J Colomer
- Department of Neuromuscular Diseases, Hospital Sant Joan de Déu, Barcelona, Spain
| | - A Nascimento
- Department of Neuromuscular Diseases, Hospital Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
4
|
Abstract
The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, and is critical for control of muscle contraction. Its formation requires neuronal agrin that acts by binding to LRP4 to stimulate MuSK. Mutations have been identified in agrin, MuSK, and LRP4 in patients with congenital myasthenic syndrome, and patients with myasthenia gravis develop antibodies against agrin, LRP4, and MuSK. However, it remains unclear whether the agrin signaling pathway is critical for NMJ maintenance because null mutation of any of the three genes is perinatal lethal. In this study, we generated imKO mice, a mutant strain whose LRP4 gene can be deleted in muscles by doxycycline (Dox) treatment. Ablation of the LRP4 gene in adult muscle enabled studies of its role in NMJ maintenance. We demonstrate that Dox treatment of P30 mice reduced muscle strength and compound muscle action potentials. AChR clusters became fragmented with diminished junctional folds and synaptic vesicles. The amplitude and frequency of miniature endplate potentials were reduced, indicating impaired neuromuscular transmission and providing cellular mechanisms of adult LRP4 deficiency. We showed that LRP4 ablation led to the loss of synaptic agrin and the 90 kDa fragments, which occurred ahead of other prejunctional and postjunctional components, suggesting that LRP4 may regulate the stability of synaptic agrin. These observations demonstrate that LRP4 is essential for maintaining the structural and functional integrity of the NMJ and that loss of muscle LRP4 in adulthood alone is sufficient to cause myasthenic symptoms.
Collapse
|
5
|
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders caused by genetic defects affecting neuromuscular transmission and leading to muscle weakness accentuated by exertion. The characterization of CMS comprises two complementary steps: establishing the diagnosis and identifying the pathophysiological type of CMS. The combination of clinical, electrophysiological, and morphological studies allows the physician to refer a given CMS to mutation(s) in one of the 18 causative genes discovered to date and, in turn, to classify the CMS according to the location of the mutated proteins at the neuromuscular junction into presynaptic compartment, synaptic basal lamina, and postsynaptic compartment CMS. This complete characterization is essential for counseling and therapy of the patient, depending on the molecular background of the respective CMS. Despite comprehensive characterization, the phenotypic expression of one given gene involved is variable, and the etiology of many CMS remains to be discovered.
Collapse
Affiliation(s)
- Bruno Eymard
- Reference Center for Neuromuscular Diseases, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | | | | |
Collapse
|
6
|
Engel AG. Current status of the congenital myasthenic syndromes. Neuromuscul Disord 2012; 22:99-111. [PMID: 22104196 PMCID: PMC3269564 DOI: 10.1016/j.nmd.2011.10.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 01/04/2023]
Abstract
Congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. Clinical, electrophysiologic, and morphologic studies have paved the way for detecting CMS-related mutations in proteins residing in the nerve terminal, the synaptic basal lamina, and in the postsynaptic region of the motor endplate. The disease proteins identified to date include choline acetyltransferase (ChAT), the endplate species of acetylcholinesterase (AChE), β2-laminin, the acetylcholine receptor (AChR), rapsyn, plectin, Na(v)1.4, the muscle specific protein kinase (MuSK), agrin, downstream of tyrosine kinase 7 (Dok-7), and glutamine-fructose-6-phosphate transaminase 1 (GFPT1). Myasthenic syndromes associated with centronuclear myopathies were recently recognized. Analysis of properties of expressed mutant proteins contributed to finding improved therapy for most CMS. Despite these advances, the molecular basis of some phenotypically characterized CMS remains elusive. Moreover, other types of CMS and disease genes likely exist and await discovery.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
7
|
Barišić N, Chaouch A, Müller JS, Lochmüller H. Genetic heterogeneity and pathophysiological mechanisms in congenital myasthenic syndromes. Eur J Paediatr Neurol 2011; 15:189-96. [PMID: 21498094 DOI: 10.1016/j.ejpn.2011.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/20/2011] [Indexed: 10/18/2022]
Abstract
Congenital myasthenic syndromes (CMS) are a rare heterogeneous group of inherited neuromuscular disorders associated with distinctive clinical, electrophysiological, ultrastructural and genetic abnormalities. These genetic defects either impair neuromuscular transmission directly or result in secondary impairments, which eventually compromise the safety margin of neuromuscular transmission. In this report we will explore the significant progress made in understanding the molecular pathogenesis of CMS, which is important for both patients and clinicians in terms of reaching a definite diagnosis and selecting the most appropriate treatment.
Collapse
Affiliation(s)
- Nina Barišić
- Department of Pediatrics, Medical School, University of Zagreb, 10000 Zagreb, Rebro, Kišpatićeva 12, Zagreb, Croatia.
| | | | | | | |
Collapse
|
8
|
Milone M, Shen XM, Selcen D, Ohno K, Brengman J, Iannaccone ST, Harper CM, Engel AG. Myasthenic syndrome due to defects in rapsyn: Clinical and molecular findings in 39 patients. Neurology 2009; 73:228-35. [PMID: 19620612 PMCID: PMC2715575 DOI: 10.1212/wnl.0b013e3181ae7cbc] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Pathogenic mutations in rapsyn result in endplate acetylcholine receptor (AChR) deficiency and are a common cause of postsynaptic congenital myasthenic syndromes. METHODS Clinical, electrophysiologic, pathologic, and molecular studies were done in 39 patients. RESULTS In all but one patient, the disease presented in the first 2 years of life. In 9 patients, the myasthenic symptoms included constant or episodic ophthalmoparesis, and 1 patient had a pure limb-girdle phenotype. More than one-half of the patients experienced intermittent exacerbations. Long-term follow-up was available in 25 patients after start of cholinergic therapy: 21 became stable or were improved and 2 of these became asymptomatic; 3 had a progressive course; and 1 died in infancy. In 7 patients who had endplate studies, the average counts of AChR per endplate and the synaptic response to ACh were less reduced than in patients harboring low AChR expressor mutations. Eight patients were homozygous and 23 heterozygous for the common p.N88K mutation. Six mutations, comprising 3 missense mutations, an in-frame deletion, a splice-site mutation, and a nonsense mutation, are novel. Homozygosity for p.N88K was associated with varying grades of severity. No genotype-phenotype correlations were observed except in 8 Near-Eastern patients homozygous for the promoter mutation (c.-38A>G), who had a mild course. CONCLUSIONS All but 1 patient presented early in life and most responded to cholinergic agonists. With early diagnosis and therapy, rapsyn deficiency has a benign course in most patients. There was no consistent phenotype-genotype correlation except for an E-box mutation associated with jaw deformities.
Collapse
Affiliation(s)
- M Milone
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kinali M, Beeson D, Pitt MC, Jungbluth H, Simonds AK, Aloysius A, Cockerill H, Davis T, Palace J, Manzur AY, Jimenez-Mallebrera C, Sewry C, Muntoni F, Robb SA. Congenital myasthenic syndromes in childhood: diagnostic and management challenges. J Neuroimmunol 2008; 201-202:6-12. [PMID: 18707767 DOI: 10.1016/j.jneuroim.2008.06.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/07/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
The Congenital Myasthenic Syndromes (CMS), a group of heterogeneous genetic disorders of neuromuscular transmission, are often misdiagnosed as congenital muscular dystrophy (CMD) or myopathies and present particular management problems. We present our experience of 46 children with CMS, referred to us between 1992-2007 with provisional diagnoses of congenital myopathy (22/46), CMS or limb-girdle myasthenia (9/46), central hypotonia or neurometabolic disease (5/46), myasthenia gravis (4/46), limb-girdle or congenital muscular dystrophy (4/46) and SMA (2/46). Diagnosis was often considerably delayed (up to 18y4 m), despite the early symptoms in most cases. Diagnostic clues in the neonates were feeding difficulties (29/46), hypotonia with or without limb weakness (21/46), ptosis (19/46), respiratory insufficiency (12/46), contractures (4/46) and stridor (6/46). Twenty-five children had delayed motor milestones. Fatigability developed in 43 and a variable degree of ptosis was eventually present in 40. Over the period of the study, the mainstay of EMG diagnosis evolved from repetitive nerve stimulation to stimulation single fibre EMG. The patients were studied by several different operators. 66 EMGs were performed in 40 children, 29 showed a neuromuscular junction abnormality, 7 were myopathic, 2 had possible neurogenic changes and 28 were normal or inconclusive. A repetitive CMAP was detected in only one of seven children with a COLQ mutation and neither of the two children with Slow Channel Syndrome mutations. Mutations have been identified so far in 32/46 children: 10 RAPSN, 7 COLQ, 6 CHRNE, 7 DOK7, 1 CHRNA1 and 1 CHAT. 24 of 25 muscle biopsies showed myopathic changes with fibre size variation; 14 had type-1 fibre predominance. Three cases showed small type-1 fibres resembling fibre type disproportion, and four showed core-like lesions. No specific myopathic features were associated with any of the genes. Twenty children responded to Pyridostigmine treatment alone, 11 to Pyridostigmine with either 3, 4 DAP or Ephedrine and five to Ephedrine alone. Twenty one children required acute or chronic respiratory support, with tracheostomy in 4 and nocturnal or emergency non-invasive ventilation in 9. Eight children had gastrostomy. Another 11 were underweight for height indicative of failure to thrive and required dietetic input. A high index of clinical suspicion, repeat EMG by an experienced electromyographer and, if necessary, a therapeutic trial of Pyridostigmine facilitates the diagnosis of CMS with subsequent molecular genetic confirmation. This guides rational therapy and multidisciplinary management, which may be crucial for survival, particularly in pedigrees where previous deaths have occurred in infancy.
Collapse
Affiliation(s)
- M Kinali
- The Dubowitz Neuromuscular Centre, Great Ormond Street Hospital and Institute of Child Health, University College, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Denning L, Anderson JA, Davis R, Gregg JP, Kuzdenyi J, Maselli RA. High throughput genetic analysis of congenital myasthenic syndromes using resequencing microarrays. PLoS One 2007; 2:e918. [PMID: 17878953 PMCID: PMC1975473 DOI: 10.1371/journal.pone.0000918] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/22/2007] [Indexed: 11/19/2022] Open
Abstract
Background The use of resequencing microarrays for screening multiple, candidate disease loci is a promising alternative to conventional capillary sequencing. We describe the performance of a custom resequencing microarray for mutational analysis of Congenital Myasthenic Syndromes (CMSs), a group of disorders in which the normal process of neuromuscular transmission is impaired. Methodology/Principal Findings Our microarray was designed to assay the exons and flanking intronic regions of 8 genes linked to CMSs. A total of 31 microarrays were hybridized with genomic DNA from either individuals with known CMS mutations or from healthy controls. We estimated an overall microarray call rate of 93.61%, and we found the percentage agreement between the microarray and capillary sequencing techniques to be 99.95%. In addition, our microarray exhibited 100% specificity and 99.99% reproducibility. Finally, the microarray detected 22 out of the 23 known missense mutations, but it failed to detect all 7 known insertion and deletion (indels) mutations, indicating an overall sensitivity of 73.33% and a sensitivity with respect to missense mutations of 95.65%. Conclusions/Significance Overall, our microarray prototype exhibited strong performance and proved highly efficient for screening genes associated with CMSs. Until indels can be efficiently assayed with this technology, however, we recommend using resequencing microarrays for screening CMS mutations after common indels have been first assayed by capillary sequencing.
Collapse
Affiliation(s)
- Lisa Denning
- Department of Neurology, University of California at Davis, Davis, California, United States of America
| | - Jennifer A. Anderson
- Department of Neurology, University of California at Davis, Davis, California, United States of America
| | - Ryan Davis
- Department of Pathology, Medical Investigation of Neurodevelopmental Disorders Institute, University of California at Davis, Davis, California, United States of America
| | - Jeffrey P. Gregg
- Department of Pathology, Medical Investigation of Neurodevelopmental Disorders Institute, University of California at Davis, Davis, California, United States of America
| | - Jennifer Kuzdenyi
- Department of Neurology, University of California at Davis, Davis, California, United States of America
| | - Ricardo A. Maselli
- Department of Neurology, University of California at Davis, Davis, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Maselli RA, Dris H, Schnier J, Cockrell JL, Wollmann RL. Congenital myasthenic syndrome caused by two non-N88K rapsyn mutations. Clin Genet 2007; 72:63-5. [PMID: 17594401 DOI: 10.1111/j.1399-0004.2007.00824.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
von der Hagen M, Schallner J, Kaindl AM, Koehler K, Mitzscherling P, Abicht A, Grieben U, Korinthenberg R, Kress W, von Moers A, Müller JS, Schara U, Vorgerd M, Walter MC, Müller-Reible C, Hübner C, Lochmüller H, Huebner A. Facing the genetic heterogeneity in neuromuscular disorders: Linkage analysis as an economic diagnostic approach towards the molecular diagnosis. Neuromuscul Disord 2006; 16:4-13. [PMID: 16378727 DOI: 10.1016/j.nmd.2005.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/20/2005] [Accepted: 10/05/2005] [Indexed: 02/08/2023]
Abstract
The identification of an ever increasing number of gene defects in patients with neuromuscular disorders has disclosed both marked phenotype and genotype variability and considerable disease overlap. In order to offer an economic strategy to characterise the molecular defect in patients with unclassified neuromuscular disorders, we designed DNA marker sets for linkage analysis of 62 distinct neuromuscular disorders gene loci, including all known muscular dystrophies, congenital myopathies, congenital myasthenic syndromes and myotonias. Genotyping of marker loci of 140 clinically well-characterised families with unclassified neuromuscular disorders reduced the number of candidates to one or two genes in 49 % of the families. Subsequent mutation analysis and genome-wide scans enabled the determination of the genetic defect in 31 % of the families including the identification of a new gene and a new mutation in an unexpected candidate gene. This highlights the effective application of this approach both for diagnostic strategies as well as for the identification of new loci and genes.
Collapse
Affiliation(s)
- M von der Hagen
- Department of Neuropaediatrics, Technical University, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Beeson D, Hantaï D, Lochmüller H, Engel AG. 126th International Workshop: congenital myasthenic syndromes, 24-26 September 2004, Naarden, the Netherlands. Neuromuscul Disord 2005; 15:498-512. [PMID: 15951177 DOI: 10.1016/j.nmd.2005.05.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Indexed: 11/16/2022]
Affiliation(s)
- David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliff, Oxford, UK
| | | | | | | |
Collapse
|