1
|
Akoto T, Li JJ, Estes AJ, Karamichos D, Liu Y. The Underlying Relationship between Keratoconus and Down Syndrome. Int J Mol Sci 2022; 23:ijms231810796. [PMID: 36142709 PMCID: PMC9503764 DOI: 10.3390/ijms231810796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Keratoconus (KC) is one of the most significant corneal disorders worldwide, characterized by the progressive thinning and cone-shaped protrusion of the cornea, which can lead to severe visual impairment. The prevalence of KC varies greatly by ethnic groups and geographic regions and has been observed to be higher in recent years. Although studies reveal a possible link between KC and genetics, hormonal disturbances, environmental factors, and specific comorbidities such as Down Syndrome (DS), the exact cause of KC remains unknown. The incidence of KC ranges from 0% to 71% in DS patients, implying that as the worldwide population of DS patients grows, the number of KC patients may continue to rise significantly. As a result, this review aims to shed more light on the underlying relationship between KC and DS by examining the genetics relating to the cornea, central corneal thickness (CCT), and mechanical forces on the cornea, such as vigorous eye rubbing. Furthermore, this review discusses KC diagnostic and treatment strategies that may help detect KC in DS patients, as well as the available DS mouse models that could be used in modeling KC in DS patients. In summary, this review will provide improved clinical knowledge of KC in DS patients and promote additional KC-related research in these patients to enhance their eyesight and provide suitable treatment targets.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Jiemin J. Li
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Amy J. Estes
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-2015
| |
Collapse
|
2
|
Fu H, Zhang K, Yang X, Li L, Cui L. Slow progression of amyotrophic lateral sclerosis in a Chinese patient carrying SOD1 p.S135T mutation. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:143-145. [PMID: 33860706 DOI: 10.1080/21678421.2021.1912771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Most patients die of respiratory failure within 3 years of onset. In this study, we reported a female Chinese ALS patient with SOD1 c.404G > C, p.S135T mutation. The missense mutation was identified as "Likely pathogenic" according to the ACMG/AMP 2015 guideline. The patient presented with weakness and atrophy of lower limbs with slow progression. We reviewed two other reports on patients with the same SOD1 p.S135T mutation. These patients had lower extremity onset, negative Babinski sign, slow disease progression, and prolonged survival. This report indicates that specific phenotype-genotype correlations of SOD1 p.S135T mutation in ALS.
Collapse
Affiliation(s)
- Hanhui Fu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China and
| | - Kang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China and
| | - Libo Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China and
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China and
| |
Collapse
|
3
|
Rojas P, Ramírez AI, Fernández-Albarral JA, López-Cuenca I, Salobrar-García E, Cadena M, Elvira-Hurtado L, Salazar JJ, de Hoz R, Ramírez JM. Amyotrophic Lateral Sclerosis: A Neurodegenerative Motor Neuron Disease With Ocular Involvement. Front Neurosci 2020; 14:566858. [PMID: 33071739 PMCID: PMC7544921 DOI: 10.3389/fnins.2020.566858] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes degeneration of the lower and upper motor neurons and is the most prevalent motor neuron disease. This disease is characterized by muscle weakness, stiffness, and hyperreflexia. Patients survive for a short period from the onset of the disease. Most cases are sporadic, with only 10% of the cases being genetic. Many genes are now known to be involved in familial ALS cases, including some of the sporadic cases. It has also been observed that, in addition to genetic factors, there are numerous molecular mechanisms involved in these pathologies, such as excitotoxicity, mitochondrial disorders, alterations in axonal transport, oxidative stress, accumulation of misfolded proteins, and neuroinflammation. This pathology affects the motor neurons, the spinal cord, the cerebellum, and the brain, but recently, it has been shown that it also affects the visual system. This impact occurs not only at the level of the oculomotor system but also at the retinal level, which is why the retina is being proposed as a possible biomarker of this pathology. The current review discusses the main aspects mentioned above related to ALS, such as the main genes involved, the most important molecular mechanisms that affect this pathology, its ocular involvement, and the possible usefulness of the retina as a biomarker.
Collapse
Affiliation(s)
- Pilar Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,Hospital General Universitario Gregorio Marañón, Instituto Oftálmico de Madrid, Madrid, Spain
| | - Ana I Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - José A Fernández-Albarral
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Cadena
- Hospital General Universitario Gregorio Marañón, Instituto Oftálmico de Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan J Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - José M Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Abstract
Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
Collapse
|
5
|
Chadi G, Maximino JR, Jorge FMDH, Borba FCD, Gilio JM, Callegaro D, Lopes CG, Santos SND, Rebelo GNS. Genetic analysis of patients with familial and sporadic amyotrophic lateral sclerosis in a Brazilian Research Center. Amyotroph Lateral Scler Frontotemporal Degener 2016; 18:249-255. [DOI: 10.1080/21678421.2016.1254245] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gerson Chadi
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Jessica Ruivo Maximino
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Fabrício Castro de Borba
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Joyce Meire Gilio
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Dagoberto Callegaro
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Camila Galvão Lopes
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Samantha Nakamura Dos Santos
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
6
|
Jiang H, Shimizu H, Shiga A, Tanaka M, Onodera O, Kakita A, Takahashi H. Familial amyotrophic lateral sclerosis with an I104F mutation in the SOD1 gene: Multisystem degeneration with neurofilamentous aggregates and SOD1 inclusions. Neuropathology 2016; 37:69-77. [PMID: 27444855 DOI: 10.1111/neup.12324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/18/2016] [Accepted: 06/18/2016] [Indexed: 12/14/2022]
Abstract
We previously reported familial amyotrophic lateral sclerosis (FALS) of 11 years duration in a 57-year-old woman, who received artificial ventilation for 5 years prior to death and exhibited widespread multisystem degeneration and neurofilamentous aggregates, so-called conglomerate inclusions (CIs). In the present study, we re-evaluated this autopsied patient (proband) with further immunohistochemical observation as well as mutational analysis of the superoxide dismutase 1 (SOD1) gene. A review of the clinical features of the proband's family revealed five affected members (including the proband) over two successive generations who showed marked variability in clinical presentation, such as the age at onset. The proband was found to harbor a heterozygous missense mutation in exon 4 (I104F) of the SOD1 gene. In the brain and spinal cord, SOD1-positive neuronal cytoplasmic inclusions (NCIs) were found to be more widely distributed than CIs, the latter being weakly positive for SOD1. No Lewy body-like hyaline inclusions were found. This is considered to be the first description of an autopsy case of FALS with an I104F SOD1 gene mutation, suggesting that combination of marked intra-familial clinical variability and multisystem degeneration with occurrence of CIs and SOD1-positive NCIs is a characteristic feature of FALS with this SOD1 gene mutation.
Collapse
Affiliation(s)
- Haishan Jiang
- Departments of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan.,Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hiroshi Shimizu
- Departments of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Atsushi Shiga
- Departments of Molecular Neuroscience, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Masami Tanaka
- Departments of Neurology, Brain Research Institute, University of Niigata, Niigata, Japan.,Multiple Sclerosis Center, Utano National Hospital, Kyoto, Japan
| | - Osamu Onodera
- Departments of Molecular Neuroscience, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Akiyoshi Kakita
- Departments of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Hitoshi Takahashi
- Departments of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| |
Collapse
|
7
|
Keerthana SP, Kolandaivel P. Structural investigation on the electrostatic loop of native and mutated SOD1 and their interaction with therapeutic compounds. RSC Adv 2015. [DOI: 10.1039/c5ra00286a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electrostatic loop of the native and mutated SOD1 protein with single point mutation in the loop is subjected to MD simulation. The structure and electrostatic properties of the native and mutated loops before/after interacting with small compounds are compared.
Collapse
Affiliation(s)
- S. P. Keerthana
- Department of Physics
- Bharathiar University
- Coimbatore
- India-641 046
| | - P. Kolandaivel
- Department of Physics
- Bharathiar University
- Coimbatore
- India-641 046
| |
Collapse
|
8
|
Degenerative myelopathy in German Shepherd Dog: comparison of two molecular assays for the identification of the SOD1:c.118G>A mutation. Mol Biol Rep 2014; 41:665-70. [PMID: 24390315 DOI: 10.1007/s11033-013-2904-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
Degenerative myelopathy (DM) is a late-onset, slowly progressive degeneration of spinal cord white matter which is reported primarily in large breed dogs. The missense mutation SOD1:c.118G>A is associated with this pathology in several dog breeds, including the German Shepherd Dog (GSD). The aims of the present study were to develop a tool for the rapid screening of the SOD1 mutation site in dogs and to evaluate the association of the polymorphism with DM in the German Shepherd breed. Two different techniques were compared: a minisequencing test and a real-time pcr allelic discrimination assay. Both approaches resulted effective and efficient. A sample of 47 dogs were examined. Ten subjects presented the symptoms of the illness; for one of them the diagnosis was confirmed by postmortem investigations and it resulted to be an A/A homozygote. In another clinically suspected dog, heterozygote A/G, the histopathological examination of the medulla showed moderate axon and myelin degenerative changes. GSD shows a frequency of the mutant allele equal to 0.17, quite high being a high-risk allele. Because canine DM has a late onset in adulthood and homozygous mutant dogs are likely as fertile as other genotypes, the natural selection is mild and the mutant allele may reach high frequencies. A diagnostic test, easy to implement, may contribute to control the gene diffusion in populations. The SOD1:c.118G>A mutation could be a useful marker for breeding strategies intending to reduce the incidence of DM.
Collapse
|
9
|
Cui F, Cai W, Wang Z, Ren Y, Li M, Sun Z, Huang X. New mutation in the SOD1 (copper/zinc superoxide dismutase-1) gene in a Chinese amyotrophic lateral sclerosis (ALS) patient. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:635-7. [PMID: 23889606 DOI: 10.3109/21678421.2013.817589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. More than 160 mutations of the copper/ zinc superoxide dismutase-1 (SOD1) gene have been identified in ALS patients. In this study, a novel SOD1 mutation was identified in a female Chinese patient with ALS. A genetic analysis identified a heterozygous mutation in exon 5 of the SOD1 gene (c.404G> C), resulting in an amino acid substitution from serine to threonine at position 134 (p.S134T). The patient's other family members (including her deceased parents) do not have any symptoms of ALS and only her son carries the same point mutation.
Collapse
Affiliation(s)
- Fang Cui
- Department of Neurology, Chinese PLA General Hospital , Beijing
| | | | | | | | | | | | | |
Collapse
|
10
|
Holmes BB, Diamond MI. Amyotrophic lateral sclerosis and organ donation: is there risk of disease transmission? Ann Neurol 2013; 72:832-6. [PMID: 23280834 DOI: 10.1002/ana.23684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 12/31/2022]
Abstract
A new protocol suggests that patients with amyotrophic lateral sclerosis (ALS) are a viable source of tissue for organ transplantation. However, multiple lines of evidence suggest that many neurodegenerative diseases, including ALS, might progress due to transcellular propagation of protein aggregation among neurons. Transmission of the disease state from donor to host thus may be possible under the permissive circumstances of graft transplantation. We argue for careful patient selection and close longitudinal follow-up of recipients when harvesting organs from individuals with neurodegenerative disease, especially dominantly inherited forms.
Collapse
Affiliation(s)
- Brandon B Holmes
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St Louis, School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
11
|
Pratt AJ, Getzoff ED, Perry JJP. Amyotrophic lateral sclerosis: update and new developments. Degener Neurol Neuromuscul Dis 2012; 2012:1-14. [PMID: 23019386 PMCID: PMC3457793 DOI: 10.2147/dnnd.s19803] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease. It is typically characterized by adult-onset degeneration of the upper and lower motor neurons, and is usually fatal within a few years of onset. A subset of ALS patients has an inherited form of the disease, and a few of the known mutant genes identified in familial cases have also been found in sporadic forms of ALS. Precisely how the diverse ALS-linked gene products dictate the course of the disease, resulting in compromised voluntary muscular ability, is not entirely known. This review addresses the major advances that are being made in our understanding of the molecular mechanisms giving rise to the disease, which may eventually translate into new treatment options.
Collapse
Affiliation(s)
- Ashley J Pratt
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA,
| | - Elizabeth D Getzoff
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA,
| | - J Jefferson P Perry
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA,
- The School of Biotechnology, Amrita University, Kollam, Kerala 690525, India,
| |
Collapse
|
12
|
Visani M, de Biase D, Bartolomei I, Plasmati R, Morandi L, Cenacchi G, Salvi F, Pession A. A novel T137A SOD1 mutation in an Italian family with two subjects affected by amyotrophic lateral sclerosis. AMYOTROPHIC LATERAL SCLEROSIS : OFFICIAL PUBLICATION OF THE WORLD FEDERATION OF NEUROLOGY RESEARCH GROUP ON MOTOR NEURON DISEASES 2011; 12:385-388. [PMID: 21574856 DOI: 10.3109/17482968.2011.582648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutations in the superoxide dismutase-1 (SOD1) gene occur in some forms of familial amyotrophic lateral sclerosis (ALS). To date about 150 mutations are known to involve this gene. Here we describe a novel missense mutation in exon 5 of the SOD1 gene in an Italian family with two members affected by ALS. Sequencing of the SOD1 gene was performed on 11 members of the family and 75 healthy controls. Electron microscopy was also performed on one ALS patient. We identified a heterozygous mutation in codon 137 leading to substitution of threonine by alanine. Further studies are needed to clarify the role of this alteration in ALS aetiopathogensis; nevertheless, T137A seems to represent a new missense mutation of the SOD1 gene in ALS patients.
Collapse
Affiliation(s)
- Michela Visani
- Department of Experimental Pathology, University of Bologna
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Awano T, Johnson GS, Wade CM, Katz ML, Johnson GC, Taylor JF, Perloski M, Biagi T, Baranowska I, Long S, March PA, Olby NJ, Shelton GD, Khan S, O'Brien DP, Lindblad-Toh K, Coates JR. Genome-wide association analysis reveals a SOD1 mutation in canine degenerative myelopathy that resembles amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2009; 106:2794-9. [PMID: 19188595 PMCID: PMC2634802 DOI: 10.1073/pnas.0812297106] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Indexed: 11/18/2022] Open
Abstract
Canine degenerative myelopathy (DM) is a fatal neurodegenerative disease prevalent in several dog breeds. Typically, the initial progressive upper motor neuron spastic and general proprioceptive ataxia in the pelvic limbs occurs at 8 years of age or older. If euthanasia is delayed, the clinical signs will ascend, causing flaccid tetraparesis and other lower motor neuron signs. DNA samples from 38 DM-affected Pembroke Welsh corgi cases and 17 related clinically normal controls were used for genome-wide association mapping, which produced the strongest associations with markers on CFA31 in a region containing the canine SOD1 gene. SOD1 was considered a regional candidate gene because mutations in human SOD1 can cause amyotrophic lateral sclerosis (ALS), an adult-onset fatal paralytic neurodegenerative disease with both upper and lower motor neuron involvement. The resequencing of SOD1 in normal and affected dogs revealed a G to A transition, resulting in an E40K missense mutation. Homozygosity for the A allele was associated with DM in 5 dog breeds: Pembroke Welsh corgi, Boxer, Rhodesian ridgeback, German Shepherd dog, and Chesapeake Bay retriever. Microscopic examination of spinal cords from affected dogs revealed myelin and axon loss affecting the lateral white matter and neuronal cytoplasmic inclusions that bind anti-superoxide dismutase 1 antibodies. These inclusions are similar to those seen in spinal cord sections from ALS patients with SOD1 mutations. Our findings identify canine DM to be the first recognized spontaneously occurring animal model for ALS.
Collapse
Affiliation(s)
| | | | - Claire M. Wade
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge MA 02141
- Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Boston MA 02114
| | - Martin L. Katz
- Departments of Veterinary Pathobiology and
- Mason Eye Institute, and
| | | | - Jeremy F. Taylor
- Division of Animal Sciences, University of Missouri, Columbia MO 65211
| | - Michele Perloski
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge MA 02141
| | - Tara Biagi
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge MA 02141
| | - Izabella Baranowska
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Biomedical Center, Box 597, SE-751 24 Uppsala, Sweden
| | - Sam Long
- Section of Neurology and Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Philip A. March
- Department of Clinical Sciences, Tufts University, North Grafton, MA 01536
| | - Natasha J. Olby
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27606
| | - G. Diane Shelton
- Department of Pathology, University of California at San Diego, La Jolla, CA 92093; and
| | | | | | - Kerstin Lindblad-Toh
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge MA 02141
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 597, 751 24 Uppsala, Sweden
| | | |
Collapse
|