1
|
The N-Terminal Part of the 1A Domain of Desmin Is a Hot Spot Region for Putative Pathogenic DES Mutations Affecting Filament Assembly. Cells 2022; 11:cells11233906. [PMID: 36497166 PMCID: PMC9738904 DOI: 10.3390/cells11233906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Desmin is the major intermediate filament protein of all three muscle cell types, and connects different cell organelles and multi-protein complexes such as the cardiac desmosomes. Several pathogenic mutations in the DES gene cause different skeletal and cardiac myopathies. However, the significance of the majority of DES missense variants is currently unknown, since functional data are lacking. To determine whether desmin missense mutations within the highly conserved 1A coil domain cause a filament assembly defect, we generated a set of variants with unknown significance and systematically analyzed the filament assembly using confocal microscopy in transfected SW-13, H9c2 cells and cardiomyocytes derived from induced pluripotent stem cells. We found that mutations in the N-terminal part of the 1A coil domain affect filament assembly, leading to cytoplasmic desmin aggregation. In contrast, mutant desmin in the C-terminal part of the 1A coil domain forms filamentous structures comparable to wild-type desmin. Our findings suggest that the N-terminal part of the 1A coil domain is a hot spot for pathogenic desmin mutations, which affect desmin filament assembly. This study may have relevance for the genetic counselling of patients carrying variants in the 1A coil domain of the DES gene.
Collapse
|
2
|
Brodehl A, Hain C, Flottmann F, Ratnavadivel S, Gaertner A, Klauke B, Kalinowski J, Körperich H, Gummert J, Paluszkiewicz L, Deutsch MA, Milting H. The Desmin Mutation DES-c.735G>C Causes Severe Restrictive Cardiomyopathy by Inducing In-Frame Skipping of Exon-3. Biomedicines 2021; 9:biomedicines9101400. [PMID: 34680517 PMCID: PMC8533191 DOI: 10.3390/biomedicines9101400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 02/02/2023] Open
Abstract
Currently, little is known about the genetic background of restrictive cardiomyopathy (RCM). Herein, we screened an index patient with RCM in combination with atrial fibrillation using a next generation sequencing (NGS) approach and identified the heterozygous mutation DES-c.735G>C. As DES-c.735G>C affects the last base pair of exon-3, it is unknown whether putative missense or splice site mutations are caused. Therefore, we applied nanopore amplicon sequencing revealing the expression of a transcript without exon-3 in the explanted myocardial tissue of the index patient. Western blot analysis verified this finding at the protein level. In addition, we performed cell culture experiments revealing an abnormal cytoplasmic aggregation of the truncated desmin form (p.D214-E245del) but not of the missense variant (p.E245D). In conclusion, we show that DES-c.735G>C causes a splicing defect leading to exon-3 skipping of the DES gene. DES-c.735G>C can be classified as a pathogenic mutation associated with RCM and atrial fibrillation. In the future, this finding might have relevance for the genetic understanding of similar cases.
Collapse
Affiliation(s)
- Andreas Brodehl
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
- Correspondence: (A.B.); (H.M.); Tel.: +49-(0)5731-973530 (A.B.); +49-(0)5731-973510 (H.M.)
| | - Carsten Hain
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, D-33615 Bielefeld, Germany; (C.H.); (J.K.)
| | - Franziska Flottmann
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
| | - Sandra Ratnavadivel
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
| | - Anna Gaertner
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
| | - Bärbel Klauke
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
- Clinic for General and Interventional Cardiology/Angiology, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, D-33615 Bielefeld, Germany; (C.H.); (J.K.)
| | - Hermann Körperich
- Heart and Diabetes Center NRW, Institute for Radiology, Nuclear Medicine and Molecular Imaging, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany;
| | - Jan Gummert
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
- Heart and Diabetes Center NRW, Department of Thoracic and Cardiovascular Surgery, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (L.P.); (M.-A.D.)
| | - Lech Paluszkiewicz
- Heart and Diabetes Center NRW, Department of Thoracic and Cardiovascular Surgery, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (L.P.); (M.-A.D.)
| | - Marcus-André Deutsch
- Heart and Diabetes Center NRW, Department of Thoracic and Cardiovascular Surgery, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (L.P.); (M.-A.D.)
| | - Hendrik Milting
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
- Correspondence: (A.B.); (H.M.); Tel.: +49-(0)5731-973530 (A.B.); +49-(0)5731-973510 (H.M.)
| |
Collapse
|
3
|
Skeletal Muscle Mitochondria Dysfunction in Genetic Neuromuscular Disorders with Cardiac Phenotype. Int J Mol Sci 2021; 22:ijms22147349. [PMID: 34298968 PMCID: PMC8307986 DOI: 10.3390/ijms22147349] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.
Collapse
|
4
|
Protonotarios A, Brodehl A, Asimaki A, Jager J, Quinn E, Stanasiuk C, Ratnavadivel S, Futema M, Akhtar MM, Gossios TD, Ashworth M, Savvatis K, Walhorn V, Anselmetti D, Elliott PM, Syrris P, Milting H, Lopes LR. The Novel Desmin Variant p.Leu115Ile Is Associated With a Unique Form of Biventricular Arrhythmogenic Cardiomyopathy. Can J Cardiol 2020; 37:857-866. [PMID: 33290826 DOI: 10.1016/j.cjca.2020.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/10/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (AC) is a heritable myocardial disorder and a major cause of sudden cardiac death. It is typically caused by mutations in desmosomal genes. Desmin gene (DES) variants have been previously reported in AC but with insufficient evidence to support their pathogenicity. METHODS We aimed to assess a large AC patient cohort for DES mutations and describe a unique phenotype associated with a recurring variant in three families. A cohort of 138 probands with a diagnosis of AC and no identifiable desmosomal gene mutations were prospectively screened by whole-exome sequencing. RESULTS A single DES variant (p.Leu115Ile, c.343C>A) was identified in 3 index patients (2%). We assessed the clinical phenotypes within their families and confirmed cosegregation. One carrier required heart transplantation, 2 died suddenly, and 1 died of noncardiac causes. All cases had right- and left-ventricular (LV) involvement. LV late gadolinium enhancement was present in all, and circumferential subepicardial distribution was confirmed on histology. A significant burden of ventricular arrhythmias was noted. Desmin aggregates were not observed macroscopically, but analysis of the desmin filament formation in transfected cardiomyocytes derived from induced pluripotent stem cells, and SW13 cells revealed cytoplasmic aggregation of mutant desmin. Atomic force microscopy revealed that the mutant form accumulates into short protofilaments and small fibrous aggregates. CONCLUSIONS DES p.Leu115Ile leads to disruption of the desmin filament network and causes a malignant biventricular form of AC, characterized by LV dysfunction and a circumferential subepicardial distribution of myocardial fibrosis.
Collapse
Affiliation(s)
- Alexandros Protonotarios
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Inherited Cardiovascular Disease Unit, St Bartholomew's Hospital, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Germany
| | - Angeliki Asimaki
- Cardiology Clinical Academic Group, St George's University of London, Cranmer Terrace, London, United Kingdom
| | - Joanna Jager
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Ellie Quinn
- Inherited Cardiovascular Disease Unit, St Bartholomew's Hospital, London, United Kingdom
| | - Caroline Stanasiuk
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Germany
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Germany
| | - Marta Futema
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Mohammed M Akhtar
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Inherited Cardiovascular Disease Unit, St Bartholomew's Hospital, London, United Kingdom
| | - Thomas D Gossios
- Inherited Cardiovascular Disease Unit, St Bartholomew's Hospital, London, United Kingdom
| | - Michael Ashworth
- Department of Pathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Konstantinos Savvatis
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Inherited Cardiovascular Disease Unit, St Bartholomew's Hospital, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Volker Walhorn
- Experimental Biophysics and Applied Nanoscience, Physics Department, Bielefeld Institute for Nanoscience (BINAS), Bielefeld University, Bielefeld, Germany
| | - Dario Anselmetti
- Experimental Biophysics and Applied Nanoscience, Physics Department, Bielefeld Institute for Nanoscience (BINAS), Bielefeld University, Bielefeld, Germany
| | - Perry M Elliott
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Inherited Cardiovascular Disease Unit, St Bartholomew's Hospital, London, United Kingdom
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Germany
| | - Luis R Lopes
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Inherited Cardiovascular Disease Unit, St Bartholomew's Hospital, London, United Kingdom
| |
Collapse
|
5
|
Smolina N, Khudiakov A, Knyazeva A, Zlotina A, Sukhareva K, Kondratov K, Gogvadze V, Zhivotovsky B, Sejersen T, Kostareva A. Desmin mutations result in mitochondrial dysfunction regardless of their aggregation properties. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165745. [PMID: 32105824 DOI: 10.1016/j.bbadis.2020.165745] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022]
Abstract
Desmin, being a major intermediate filament of muscle cells, contributes to stabilization and positioning of mitochondria. Desmin mutations have been reported in conjunction with skeletal myopathies accompanied by mitochondrial dysfunction. Depending on the ability to promote intracellular aggregates formation, mutations can be considered aggregate-prone or non-aggregate-prone. The aim of the present study was to describe how expression of different desmin mutant isoforms effects mitochondria and contributes to the development of myocyte dysfunction. To achieve this goal, two non-aggregate-prone (Des S12F and Des A213V) and four aggregate-prone (Des L345P, Des A357P, Des L370P, Des D399Y) desmin mutations were expressed in skeletal muscle cells. We showed that all evaluated mutations affected the morphology of mitochondrial network, suppressed parameters of mitochondrial respiration, diminished mitochondrial membrane potential, increased ADP/ATP ratio, and enhanced mitochondrial DNA (mtDNA) release. mtDNA was partially secreted through exosomes as demonstrated by GW4869 treatment. Dysfunction of mitochondria was observed regardless the type of mutation: aggregate-prone or non-aggregate-prone. However, expression of aggregate-prone mutations resulted in more prominent phenotype. Thus, in this comparative study of six pathogenic desmin mutations that cause skeletal myopathy development, we confirmed a role of mitochondrial dysfunction and mtDNA release in the pathogenesis of desmin myopathies, regardless of the aggregation capacity of the mutated desmin.
Collapse
Affiliation(s)
- Natalia Smolina
- Almazov National Medical Research Centre, Saint Petersburg, Russia; Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
| | | | | | - Anna Zlotina
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Kseniya Sukhareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia; University of Verona, Verona, Italy
| | - Kirill Kondratov
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Vladimir Gogvadze
- Faculty of medicine, Lomonosov Moscow State University, Moscow, Russia; Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Boris Zhivotovsky
- Faculty of medicine, Lomonosov Moscow State University, Moscow, Russia; Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Thomas Sejersen
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia; Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
A Novel DES L115F Mutation Identified by Whole Exome Sequencing is Associated with Inherited Cardiac Conduction Disease. Int J Mol Sci 2019; 20:ijms20246227. [PMID: 31835587 PMCID: PMC6940838 DOI: 10.3390/ijms20246227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 12/15/2022] Open
Abstract
Inherited cardiac conduction disease (CCD) is rare; it is caused by a large number of mutations in genes encoding cardiac ion channels and cytoskeletal proteins. Recently, whole-exome sequencing has been successfully used to identify causal mutations for rare monogenic Mendelian diseases. We used trio-based whole-exome sequencing to study a Chinese family with multiple family members affected by CCD, and identified a heterozygous missense mutation (c.343C>T, p.Leu115Phe) in the desmin (DES) gene as the most likely candidate causal mutation for the development of CCD in this family. The mutation is novel and is predicted to affect the conformation of the coiled-coil rod domain of DES according to structural model prediction. Its pathogenicity in desmin protein aggregation was further confirmed by expressing the mutation, both in a cellular model and a CRISPR/CAS9 knock-in mouse model. In conclusion, our results suggest that whole-exome sequencing is a feasible approach to identify candidate genes underlying inherited conduction diseases.
Collapse
|
7
|
Marakhonov AV, Brodehl A, Myasnikov RP, Sparber PA, Kiseleva AV, Kulikova OV, Meshkov AN, Zharikova AA, Koretsky SN, Kharlap MS, Stanasiuk C, Mershina EA, Sinitsyn VE, Shevchenko AO, Mozheyko NP, Drapkina OM, Boytsov SA, Milting H, Skoblov MY. Noncompaction cardiomyopathy is caused by a novel in-frame desmin (DES) deletion mutation within the 1A coiled-coil rod segment leading to a severe filament assembly defect. Hum Mutat 2019; 40:734-741. [PMID: 30908796 DOI: 10.1002/humu.23747] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 11/07/2022]
Abstract
Mutations in DES, encoding desmin protein, are associated with different kinds of skeletal and/or cardiac myopathies. However, it is unknown, whether DES mutations are associated with left ventricular hypertrabeculation (LVHT). Here, we performed a clinical examination and subsequent genetic analysis in a family, with two individuals presenting LVHT with conduction disease and skeletal myopathy. The genetic analysis revealed a novel small in-frame deletion within the DES gene, p.Q113_L115del, affecting the α-helical rod domain. Immunohistochemistry analysis of explanted myocardial tissue from the index patient revealed an abnormal cytoplasmic accumulation of desmin and a degraded sarcomeric structure. Cell transfection experiments with wild-type and mutant desmin verified the cytoplasmic aggregation and accumulation of mutant desmin. Cotransfection experiments were performed to model the heterozygous state of the patients and revealed a dominant negative effect of the mutant desmin on filament assembly. DES:p.Q113_L115del is classified as a pathogenic mutation associated with dilated cardiomyopathy with prominent LVHT.
Collapse
Affiliation(s)
- Andrey V Marakhonov
- Laboratory of Genetic Epidemiology, Research Centre for Medical Genetics (RCMG), Moscow, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Roman P Myasnikov
- Department of Clinical Cardiology and Molecular Genetics, Federal State Institution National Center for Preventive Medicine, Moscow, Russia
| | - Peter A Sparber
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Anna V Kiseleva
- Laboratory of Molecular Genetics, Federal State Institution National Center for Preventive Medicine, Moscow, Russia
| | - Olga V Kulikova
- Department of Clinical Cardiology and Molecular Genetics, Federal State Institution National Center for Preventive Medicine, Moscow, Russia
| | - Alexey N Meshkov
- Department of Molecular and Cellular Genetics, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Molecular Genetics, Federal State Institution National Center for Preventive Medicine, Moscow, Russia
| | - Anastasia A Zharikova
- M.V. Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Genetics, Federal State Institution National Center for Preventive Medicine, Moscow, Russia
| | - Serguey N Koretsky
- Department of Fundamental and Applied Aspects of Obesity, Federal State Institution National Center for Preventive Medicine, Moscow, Russia
| | - Maria S Kharlap
- Cardiac Arrhythmias Department, Federal State Institution National Center for Preventive Medicine, Moscow, Russia
| | - Caroline Stanasiuk
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Elena A Mershina
- M.V. Lomonosov Moscow State University, Moscow, Russia.,Radiology Department, Lomonosov Moscow State University Medical Research and Educational Center, Moscow, Russia
| | - Valentin E Sinitsyn
- M.V. Lomonosov Moscow State University, Moscow, Russia.,Radiology Department, Lomonosov Moscow State University Medical Research and Educational Center, Moscow, Russia
| | - Alexey O Shevchenko
- Department of Critical Care Translational Medicine, V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Natalia P Mozheyko
- Pathology Department, V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Oksana M Drapkina
- Department of Fundamental and Applied Aspects of Obesity, Federal State Institution National Center for Preventive Medicine, Moscow, Russia
| | | | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Mikhail Yu Skoblov
- Laboratory of Functional Genomics, Research Centre for Medical Genetics (RCMG), Moscow, Russia, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
8
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
9
|
Mutant desmin substantially perturbs mitochondrial morphology, function and maintenance in skeletal muscle tissue. Acta Neuropathol 2016; 132:453-73. [PMID: 27393313 PMCID: PMC4992032 DOI: 10.1007/s00401-016-1592-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/18/2022]
Abstract
Secondary mitochondrial dysfunction is a feature in a wide variety of human protein aggregate diseases caused by mutations in different proteins, both in the central nervous system and in striated muscle. The functional relationship between the expression of a mutated protein and mitochondrial dysfunction is largely unknown. In particular, the mechanism how this dysfunction drives the disease process is still elusive. To address this issue for protein aggregate myopathies, we performed a comprehensive, multi-level analysis of mitochondrial pathology in skeletal muscles of human patients with mutations in the intermediate filament protein desmin and in muscles of hetero- and homozygous knock-in mice carrying the R349P desmin mutation. We demonstrate that the expression of mutant desmin causes disruption of the extrasarcomeric desmin cytoskeleton and extensive mitochondrial abnormalities regarding subcellular distribution, number and shape. At the molecular level, we uncovered changes in the abundancy and assembly of the respiratory chain complexes and supercomplexes. In addition, we revealed a marked reduction of mtDNA- and nuclear DNA-encoded mitochondrial proteins in parallel with large-scale deletions in mtDNA and reduced mtDNA copy numbers. Hence, our data demonstrate that the expression of mutant desmin causes multi-level damage of mitochondria already in early stages of desminopathies.
Collapse
|
10
|
Jackson S, Schaefer J, Meinhardt M, Reichmann H. Mitochondrial abnormalities in the myofibrillar myopathies. Eur J Neurol 2015. [DOI: 10.1111/ene.12814] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- S. Jackson
- Department of Neurology; Technische Universität Dresden; Dresden Germany
| | - J. Schaefer
- Department of Neurology; Technische Universität Dresden; Dresden Germany
| | - M. Meinhardt
- Department of Pathology; Technische Universität Dresden; Dresden Germany
| | - H. Reichmann
- Department of Neurology; Technische Universität Dresden; Dresden Germany
| |
Collapse
|
11
|
Brodehl A, Dieding M, Klauke B, Dec E, Madaan S, Huang T, Gargus J, Fatima A, Saric T, Cakar H, Walhorn V, Tönsing K, Skrzipczyk T, Cebulla R, Gerdes D, Schulz U, Gummert J, Svendsen JH, Olesen MS, Anselmetti D, Christensen AH, Kimonis V, Milting H. The novel desmin mutant p.A120D impairs filament formation, prevents intercalated disk localization, and causes sudden cardiac death. ACTA ACUST UNITED AC 2013; 6:615-23. [PMID: 24200904 DOI: 10.1161/circgenetics.113.000103] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The intermediate filament protein desmin is encoded by the gene DES and contributes to the mechanical stabilization of the striated muscle sarcomere and cell contacts within the cardiac intercalated disk. DES mutations cause severe skeletal and cardiac muscle diseases with heterogeneous phenotypes. Recently, DES mutations were also found in patients with arrhythmogenic right ventricular cardiomyopathy. Currently, the cellular and molecular pathomechanisms of the DES mutations leading to this disease are not exactly known. METHODS AND RESULTS We identified the 2 novel variants DES-p.A120D (c.359C>A) and DES-p.H326R (c.977A>G), which were characterized by cell culture experiments and atomic force microscopy. Family analysis indicated a broad spectrum of cardiomyopathies with a striking frequency of arrhythmias and sudden cardiac deaths. The in vitro experiments of desmin-p.A120D reveal a severe intrinsic filament formation defect causing cytoplasmic aggregates in cell lines and of the isolated recombinant protein. Model variants of codon 120 indicated that ionic interactions contribute to this filament formation defect. Ex vivo analysis of ventricular tissue slices revealed a loss of desmin staining within the intercalated disk and severe cytoplasmic aggregate formation, whereas z-band localization was not affected. The functional experiments of desmin-p.H326R did not demonstrate any differences from wild type. CONCLUSIONS Because of the functional in vivo and in vitro characterization, DES-p.A120D has to be regarded as a pathogenic mutation and DES-p.H326R as a rare variant with unknown significance. Presumably, the loss of the desmin-p. A120D filament localization at the intercalated disk explains its clinical arrhythmogenic potential.
Collapse
|
12
|
Da YW, Wang M, Li Y, Lu Y, Jia JP. An unusual case with myotonia. Kaohsiung J Med Sci 2013; 29:172-5. [PMID: 23465422 DOI: 10.1016/j.kjms.2012.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 03/29/2012] [Indexed: 11/16/2022] Open
Abstract
We report an unusual case involving a patient with myotonia. A 57-year-old man had multisystemic symptoms including skeletal muscle weakness, atrophy and percussion myotonia, cataract, heart involved, gastrointestinal tract symptoms, and urinary incontinence. The electromyography revealed myotonic discharges. Muscle biopsy showed myopathic features and a striking number of ring fibers. It was genetically proven that the case was not myotonic dystrophy type 1 (DM1) or 2 (DM2). The case might be DM3 or an unusual case of unclassified myopathy with multisystemic damage.
Collapse
Affiliation(s)
- Yu-Wei Da
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.
| | | | | | | | | |
Collapse
|
13
|
Tse HF, Ho JCY, Choi SW, Lee YK, Butler AW, Ng KM, Siu CW, Simpson MA, Lai WH, Chan YC, Au KW, Zhang J, Lay KWJ, Esteban MA, Nicholls JM, Colman A, Sham PC. Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing. Hum Mol Genet 2013; 22:1395-403. [PMID: 23300193 DOI: 10.1093/hmg/dds556] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this paper, we report a novel heterozygous mutation of A285V codon conversion on exon 4 of the desmin (DES), using whole exome sequencing (WES) in an isolated proband with documented dilated cardiomyopathy (DCM). This mutation is predicted to cause three-dimensional structure changes of DES. Immunohistological and electron microscopy studies demonstrated diffuse abnormal DES aggregations in DCM-induced-pluripotent stem cell (iPSC)-derived cardiomyocytes, and control-iPSC-derived cardiomyocytes transduced with A285V-DES. DCM-iPSC-derived cardiomyocytes also exhibited functional abnormalities in vitro. This is the first demonstration that patient-specific iPSC-derived cardiomyocytes can be used to provide histological and functional confirmation of a suspected genetic basis for DCM identified by WES.
Collapse
Affiliation(s)
- Hung-Fat Tse
- Cardiology Division, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Harder A, Dieding M, Walhorn V, Degenhard S, Brodehl A, Wege C, Milting H, Anselmetti D. Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2013; 4:510-6. [PMID: 24062977 PMCID: PMC3778390 DOI: 10.3762/bjnano.4.60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/22/2013] [Indexed: 05/08/2023]
Abstract
Both fluorescence imaging and atomic force microscopy (AFM) are highly versatile and extensively used in applications ranging from nanotechnology to life sciences. In fluorescence microscopy luminescent dyes serve as position markers. Moreover, they can be used as active reporters of their local vicinity. The dipolar coupling of the tip with the incident light and the fluorophore give rise to a local field and fluorescence enhancement. AFM topographic imaging allows for resolutions down to the atomic scale. It can be operated in vacuum, under ambient conditions and in liquids. This makes it ideal for the investigation of a wide range of different samples. Furthermore an illuminated AFM cantilever tip apex exposes strongly confined non-propagating electromagnetic fields that can serve as a coupling agent for single dye molecules. Thus, combining both techniques by means of apertureless scanning near-field optical microscopy (aSNOM) enables concurrent high resolution topography and fluorescence imaging. Commonly, among the various (apertureless) SNOM approaches metallic or metallized probes are used. Here, we report on our custom-built aSNOM setup, which uses commercially available monolithic silicon AFM cantilevers. The field enhancement confined to the tip apex facilitates an optical resolution down to 20 nm. Furthermore, the use of standard mass-produced AFM cantilevers spares elaborate probe production or modification processes. We investigated tobacco mosaic viruses and the intermediate filament protein desmin. Both are mixed complexes of building blocks, which are fluorescently labeled to a low degree. The simultaneous recording of topography and fluorescence data allows for the exact localization of distinct building blocks within the superordinate structures.
Collapse
Affiliation(s)
- Alexander Harder
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Mareike Dieding
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Volker Walhorn
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Sven Degenhard
- Department of Molecular Biology and Plant Virology, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, Ruhr University Bochum, Georgstraße 11, D-32545 Bad Oeynhausen, Germany
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary, 3280 Hospital Drive NW, T2N4Z6, AB, Canada
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, Ruhr University Bochum, Georgstraße 11, D-32545 Bad Oeynhausen, Germany
| | - Dario Anselmetti
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
15
|
Desminopathies: pathology and mechanisms. Acta Neuropathol 2013; 125:47-75. [PMID: 23143191 PMCID: PMC3535371 DOI: 10.1007/s00401-012-1057-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 12/22/2022]
Abstract
The intermediate filament protein desmin is an essential component of the extra-sarcomeric cytoskeleton in muscle cells. This three-dimensional filamentous framework exerts central roles in the structural and functional alignment and anchorage of myofibrils, the positioning of cell organelles and signaling events. Mutations of the human desmin gene on chromosome 2q35 cause autosomal dominant, autosomal recessive, and sporadic myopathies and/or cardiomyopathies with marked phenotypic variability. The disease onset ranges from childhood to late adulthood. The clinical course is progressive and no specific treatment is currently available for this severely disabling disease. The muscle pathology is characterized by desmin-positive protein aggregates and degenerative changes of the myofibrillar apparatus. The molecular pathophysiology of desminopathies is a complex, multilevel issue. In addition to direct effects on the formation and maintenance of the extra-sarcomeric intermediate filament network, mutant desmin affects essential protein interactions, cell signaling cascades, mitochondrial functions, and protein quality control mechanisms. This review summarizes the currently available data on the epidemiology, clinical phenotypes, myopathology, and genetics of desminopathies. In addition, this work provides an overview on the expression, filament formation processes, biomechanical properties, post-translational modifications, interaction partners, subcellular localization, and functions of wild-type and mutant desmin as well as desmin-related cell and animal models.
Collapse
|
16
|
Maddison P, Damian MS, Sewry C, McGorrian C, Winer JB, Odgerel Z, Shatunov A, Lee HS, Goldfarb LG. Clinical and myopathological characteristics of desminopathy caused by a mutation in desmin tail domain. Eur Neurol 2012; 68:279-86. [PMID: 23051780 DOI: 10.1159/000341617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/01/2012] [Indexed: 01/04/2023]
Abstract
BACKGROUND Most of the previously described pathogenic mutations in desmin are located in highly conserved α-helical domains that play an important role in intermediate filament assembly. The role of the C-terminus non-α-helical 'tail' domain is much less investigated and until recently mutations in this domain have been implicated in only a few patients. The majority of reported desminopathy cases caused by the tail mutations were sporadic, creating a representation bias regarding the disease frequency and phenotypic characteristics. METHODS We performed detailed genotype-phenotype analysis of autosomal dominant desminopathy associated with tail domain mutations in a four-generation autosomal dominant family with 16 members affected by a progressive cardiac and/or skeletal myopathy caused by a c.1346A>C (p.Lys449Thr) mutation located in the tail domain of desmin. RESULTS Phenotypic features in patients with tail domain mutations are similar to those in patients with mutations localized in the 1B and 2B α-helical domains. CONCLUSION We recommend that the tail domain is searched for mutations as intensely as desmin coil domains which until recently were considered to be more 'functional'.
Collapse
Affiliation(s)
- Paul Maddison
- Department of Neurology, Nottingham University Hospitals, Queens Medical Centre, Nottingham, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Finsterer J. Stroke and Stroke-like Episodes in Muscle Disease. Open Neurol J 2012; 6:26-36. [PMID: 22715346 PMCID: PMC3377871 DOI: 10.2174/1874205x01206010026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/02/2012] [Accepted: 04/11/2012] [Indexed: 12/13/2022] Open
Abstract
Background: Though not obvious at a first glance, myopathies may be associated with ischemic stroke. Stroke-like episodes resemble ischemic stroke only to some extent but are a unique feature of certain mitochondrial disorders with a pathogenesis at variance from that of ischemic stroke. Only limited data are available about ischemic stroke in pri-mary myopathies and the management of stroke-like episodes in mitochondrial disorders. This review aims to summarize and discuss current knowledge about stroke in myopathies and to delineate stroke-like episodes from ischemic stroke. Methods: Literature review via PubMED using the search terms “stroke”, “cerebrovascular”, “ischemic event”, “stroke-like episode”, “stroke-mimic”, “mitochondrial disorder”. Results: Stroke in myopathies is most frequently cardioembolic due to atrial fibrillation or atrial flutter, dilated cardio-myopathy, or left-ventricular hypertrabeculation (noncompaction). The second most frequent cause of stroke in myopathies is angiopathy from atherosclerosis or vasculitis, which may be a feature of inflammatory myopathies. Athero-sclerosis may either result from classical risk factors, such as diabetes, arterial hypertension, hyperlpidemia, or smoking, associated with muscle disease, or may be an inherent feature of a mitochondrial disorder. In case of severe heart failure from cardiomyopathy as a manifestation of muscle disease low flow infarcts may occur. Thrombophilic stroke has been described in polymyositis and dermatomyositis in association with anti-phospholipid syndrome. Stroke-like episodes occur particularly in mitochondrial encephalopathy, lactacidosis and stroke-likeepisode syndrome but rarely also in Leigh-syndrome and other mitochondrial disorders. Stroke-like episodes are at variance from ischemic stroke, pathogenically, clinically and on imaging. They may be the manifestation of a vascular, metabolic or epileptic process and present with predominantly vasogenic but also cytotoxic edema on MRI. Differentiation between ischemic stroke and stroke-like episodes is essential in terms of management and prognosis. Management of ischemic stroke in patients with myopathy is not at variance from the treatment of ischemic stroke in non-myopathic patients. There is no standardized treatment of stroke-like episodes but there is increasing evidence that these patients profit from the administration of L-arginine and conse-quent antiepileptic treatment if associated with seizure activity. Conclusions: Ischemic stroke may be a complication of myopathy and needs to be delineated from stroke-like episodes, which are unique to mitochondrial disorders, particularly mitochondrial encephalopathy, lactacidosis and stroke-likeepisode syndrome. Ischemic stroke in myopathies is most frequently cardioembolic and treatment is not at variance from non-myopathic ischemic stroke. Treatment of stroke-like episodes is not standardized but seems to respond to L-arginine and adequate antiepileptic treatment.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Vienna, Danube University Krems, Austria
| |
Collapse
|
19
|
Brodehl A, Hedde PN, Dieding M, Fatima A, Walhorn V, Gayda S, Šarić T, Klauke B, Gummert J, Anselmetti D, Heilemann M, Nienhaus GU, Milting H. Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants. J Biol Chem 2012; 287:16047-57. [PMID: 22403400 PMCID: PMC3346104 DOI: 10.1074/jbc.m111.313841] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/27/2012] [Indexed: 11/06/2022] Open
Abstract
Mutations in the DES gene coding for the intermediate filament protein desmin may cause skeletal and cardiac myopathies, which are frequently characterized by cytoplasmic aggregates of desmin and associated proteins at the cellular level. By atomic force microscopy, we demonstrated filament formation defects of desmin mutants, associated with arrhythmogenic right ventricular cardiomyopathy. To understand the pathogenesis of this disease, it is essential to analyze desmin filament structures under conditions in which both healthy and mutant desmin are expressed at equimolar levels mimicking an in vivo situation. Here, we applied dual color photoactivation localization microscopy using photoactivatable fluorescent proteins genetically fused to desmin and characterized the heterozygous status in living cells lacking endogenous desmin. In addition, we applied fluorescence resonance energy transfer to unravel short distance structural patterns of desmin mutants in filaments. For the first time, we present consistent high resolution data on the structural effects of five heterozygous desmin mutations on filament formation in vitro and in living cells. Our results may contribute to the molecular understanding of the pathological filament formation defects of heterozygous DES mutations in cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- From the E. & H. Klessmann Institute for Cardiovascular Research & Development and
| | - Per Niklas Hedde
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Mareike Dieding
- the Experimental Biophysics and Applied Nanoscience, Faculty of Physics and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Bielefeld University, 33615 Bielefeld, Germany
| | - Azra Fatima
- the Institute for Neurophysiology, Medical Center, University of Cologne, 50931 Cologne, Germany
| | - Volker Walhorn
- the Experimental Biophysics and Applied Nanoscience, Faculty of Physics and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Bielefeld University, 33615 Bielefeld, Germany
| | - Susan Gayda
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Tomo Šarić
- the Institute for Neurophysiology, Medical Center, University of Cologne, 50931 Cologne, Germany
| | - Bärbel Klauke
- From the E. & H. Klessmann Institute for Cardiovascular Research & Development and
| | - Jan Gummert
- the Clinic of Cardio-Thoracic Surgery, Heart and Diabetes Center NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Dario Anselmetti
- the Experimental Biophysics and Applied Nanoscience, Faculty of Physics and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Bielefeld University, 33615 Bielefeld, Germany
| | - Mike Heilemann
- the Department of Biotechnology & Biophysics, Julius-Maximilians-University Würzburg, 97074 Würzburg, Germany, and
| | - Gerd Ulrich Nienhaus
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
- the Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Hendrik Milting
- From the E. & H. Klessmann Institute for Cardiovascular Research & Development and
| |
Collapse
|
20
|
Abstract
Protein aggregation in congenital myopathies may be encountered among different myofibrillar myopathies such as granulofilamentous myopathy, cytoplasmic body myopathy, or spheroid body myopathy, which are designated as αB crystallinopathy, desminopathy, and myotilinopathy, respectively, according to the respective mutant proteins. Caps in cap disease and reducing bodies in reducing body myopathy were disclosed to contain numerous proteins. The multitude of diverse proteins aggregating within muscle fibers suggests impaired extralysosomal degradation of proteins, a disturbance of catabolism. The lack of different proteins accruing, but the mutant ones at an early age of affected patients in actin filament aggregating myopathy (AFAM) and hyaline body myopathy (HBM), suggests defects in maturation of sarcomeres and failure to integrate the possible mutant proteins, sarcomeric actin and heavy chain myosin in AFAM and HBM, a disturbance of anabolic metabolism.
Collapse
|
21
|
Joanne P, Chourbagi O, Agbulut O. [Desmin filaments and their disorganization associated with myofibrillar myopathies]. Biol Aujourdhui 2011; 205:163-77. [PMID: 21982405 DOI: 10.1051/jbio/2011016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Indexed: 11/14/2022]
Abstract
Desmin, the muscle-specific intermediate filament protein, is one of the earliest markers expressed in all muscle tissues during development. It forms a three-dimensional scaffold around the myofibril Z-disc and connects the entire contractile apparatus to the subsarcolemmal cytoskeleton, the nuclei and other cytoplasmic organelles. Desmin is essential for tensile strength and muscle integrity. In humans, disorganization of the desmin network is associated with cardiac and/or skeletal myopathies characterized by accumulation of desmin-containing aggregates in the cells. Currently, 49 mutations have been identified in desmin gene. The majority of these mutations alter desmin filament assembly process through different molecular mechanisms and also its interaction with its protein partners. Here, we will give an overview of desmin network organization as well as the impact of desmin mutations on this process. Furthermore, we will discuss the different molecular mechanisms implicated in perturbation of the desmin filament assembly process.
Collapse
Affiliation(s)
- Pierre Joanne
- Université Paris Diderot, Sorbonne Paris Cité, France
| | | | | |
Collapse
|
22
|
Conover GM, Gregorio CC. The desmin coil 1B mutation K190A impairs nebulin Z-disc assembly and destabilizes actin thin filaments. J Cell Sci 2011; 124:3464-76. [PMID: 21984811 DOI: 10.1242/jcs.087080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Desmin intermediate filaments intimately surround myofibrils in vertebrate muscle forming a mesh-like filament network. Desmin attaches to sarcomeres through its high-affinity association with nebulin, a giant F-actin binding protein that co-extends along the length of actin thin filaments. Here, we further investigated the functional significance of the association of desmin and nebulin in cultured primary myocytes to address the hypothesis that this association is key in integrating myofibrils to the intermediate filament network. Surprisingly, we identified eight peptides along the length of desmin that are capable of binding to C-terminal modules 160-170 in nebulin. In this study, we identified a targeted mutation (K190A) in the desmin coil 1B region that results in its reduced binding with the nebulin C-terminal modules. Using immunofluorescence microscopy and quantitative analysis, we demonstrate that expression of the mutant desmin K190A in primary myocytes results in a significant reduction in assembled endogenous nebulin and desmin at the Z-disc. Non-uniform actin filaments were markedly prevalent in myocytes expressing GFP-tagged desmin K190A, suggesting that the near-crystalline organization of actin filaments in striated muscle depends on a stable interaction between desmin and nebulin. All together, these data are consistent with a model in which Z-disc-associated nebulin interacts with desmin through multiple sites to provide efficient stability to satisfy the dynamic contractile activity of myocytes.
Collapse
Affiliation(s)
- Gloria M Conover
- Department of Cellular and Molecular Medicine and the Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA.
| | | |
Collapse
|
23
|
Hong D, Wang Z, Zhang W, Xi J, Lu J, Luan X, Yuan Y. A series of Chinese patients with desminopathy associated with six novel and one reported mutations in the desmin gene. Neuropathol Appl Neurobiol 2011; 37:257-70. [DOI: 10.1111/j.1365-2990.2010.01112.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Klauke B, Kossmann S, Gaertner A, Brand K, Stork I, Brodehl A, Dieding M, Walhorn V, Anselmetti D, Gerdes D, Bohms B, Schulz U, Zu Knyphausen E, Vorgerd M, Gummert J, Milting H. De novo desmin-mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy. Hum Mol Genet 2010; 19:4595-607. [PMID: 20829228 DOI: 10.1093/hmg/ddq387] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease, frequently accompanied by sudden cardiac death and terminal heart failure. Genotyping of ARVC patients might be used for palliative treatment of the affected family. We genotyped a cohort of 22 ARVC patients referred to molecular genetic screening in our heart center for mutations in the desmosomal candidate genes JUP, DSG2, DSC2, DSP and PKP2 known to be associated with ARVC. In 43% of the cohort, we found disease-associated sequence variants. In addition, we screened for desmin mutations and found a novel desmin-mutation p.N116S in a patient with ARVC and terminal heart failure, which is located in segment 1A of the desmin rod domain. The mutation leads to the aggresome formation in cardiac and skeletal muscle without signs of an overt clinical myopathy. Cardiac aggresomes appear to be prominent, especially in the right ventricle of the heart. Viscosimetry and atomic force microscopy of the desmin wild-type and N116S mutant isolated from recombinant Escherichia coli revealed severe impairment of the filament formation, which was supported by transfections in SW13 cells. Thus, the gene coding for desmin appears to be a novel ARVC gene, which should be included in molecular genetic screening of ARVC patients.
Collapse
Affiliation(s)
- Baerbel Klauke
- Herz- & Diabeteszentrum NRW, Klinik f. Thorax- und Kardiovaskularchirurgie, Erich und Hanna Klessmann-Institutfür Kardiovaskulaere Forschung und Entwicklung/Klinik fuer angeborene Herzfehler, Georgstrasse 11, Bad Oeynhausen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
van Spaendonck-Zwarts KY, van Hessem L, Jongbloed JDH, de Walle HEK, Capetanaki Y, van der Kooi AJ, van Langen IM, van den Berg MP, van Tintelen JP. Desmin-related myopathy. Clin Genet 2010; 80:354-66. [PMID: 20718792 DOI: 10.1111/j.1399-0004.2010.01512.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Desmin-related myopathy (DRM) is an autosomally inherited skeletal and cardiac myopathy, mainly caused by dominant mutations in the desmin gene (DES). We provide (i) a literature review on DRM, including clinical manifestations, inheritance, molecular genetics, myopathology and management and (ii) a meta-analysis of reported DES mutation carriers, focusing on their clinical characteristics and potential genotype-phenotype correlations. Meta-analysis: DES mutation carriers (n = 159) with 40 different mutations were included. Neurological signs were present in 74% and cardiological signs in 74% of carriers (both neurological and cardiological signs in 49%, isolated neurological signs in 22%, and isolated cardiological signs in 22%). More than 70% of carriers exhibited myopathy or muscular weakness, with normal creatine kinase levels present in one third of them. Up to 50% of carriers had cardiomyopathy and around 60% had cardiac conduction disease or arrhythmias, with atrioventricular block as an important hallmark. Symptoms generally started during the 30s; a quarter of carriers died at a mean age of 49 years. Sudden cardiac death occurred in two patients with a pacemaker, suggesting a ventricular tachyarrhythmia as cause of death. The majority of DES mutations were missense mutations, mostly located in the 2B domain. Mutations in the 2B domain were predominant in patients with an isolated neurological phenotype, whereas head and tail domain mutations were predominant in patients with an isolated cardiological phenotype.
Collapse
Affiliation(s)
- K Y van Spaendonck-Zwarts
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|