1
|
Eguchi GU, Palumbo MIP, Cerri FM, Basso RM, de Oliveira-Filho JP, Caramalac SM, Borges AS. Case report: A CLCN1 complex variant mutation in exon 15 in a mixed-breed dog with hereditary myotonia. Front Vet Sci 2024; 11:1485454. [PMID: 39559538 PMCID: PMC11571544 DOI: 10.3389/fvets.2024.1485454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
At 4 months of age, a male dog was presented with a complaint of a stiff gait following a startle response. Neurological examination revealed no deficits, but clinical myotonia was easily induced upon requesting the patient to jump. Additionally, myotonia of the upper lip muscles was observed upon manipulation. Hereditary myotonia was suspected, and electromyography confirmed the presence of myotonic potentials. Genetic testing of the myotonic patient identified a complex of mutations, including c.[1636_1639 delins AACGGG] and c.[1644 A>T], both located in exon 15 of the CLCN1 gene leading to the formation of a premature stop codon. Genetic investigations of the mother and four littermates revealed that, except for one littermate who was wild type, all others carried a copy of the mutated gene. To the best of the authors' knowledge, these mutations have not been previously reported.
Collapse
Affiliation(s)
- Gabriel Utida Eguchi
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Mariana Isa Poci Palumbo
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Fabrício Moreira Cerri
- Department of Veterinary Clinical Science, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - Roberta Martins Basso
- Department of Veterinary Clinical Science, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - José Paes de Oliveira-Filho
- Department of Veterinary Clinical Science, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - Silvana Marques Caramalac
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Alexandre Secorun Borges
- Department of Veterinary Clinical Science, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, SP, Brazil
| |
Collapse
|
2
|
Marinakis NM, Svingou M, Papadimas GK, Papadopoulos C, Chroni E, Pons R, Pavlou E, Sarmas I, Kosma K, Apostolou P, Sofocleous C, Traeger-Synodinos J, Kekou K. Myotonia congenita in a Greek cohort: Genotype spectrum and impact of the CLCN1:c.501C > G variant as a genetic modifier. Muscle Nerve 2024; 70:240-247. [PMID: 38855810 DOI: 10.1002/mus.28180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION/AIMS Myotonia congenita (MC) is the most common hereditary channelopathy in humans. Characterized by muscle stiffness, MC may be transmitted as either an autosomal dominant (Thomsen) or a recessive (Becker) disorder. MC is caused by variants in the voltage-gated chloride channel 1 (CLCN1) gene, important for the normal repolarization of the muscle action potential. More than 250 disease-causing variants in the CLCN1 gene have been reported. This study provides an MC genotype-phenotype spectrum in a large cohort of Greek patients and focuses on novel variants and disease epidemiology, including additional insights for the variant CLCN1:c.501C > G. METHODS Sanger sequencing for the entire coding region of the CLCN1 gene was performed. Targeted segregation analysis of likely candidate variants in additional family members was performed. Variant classification was based on American College of Medical Genetics (ACMG) guidelines. RESULTS Sixty-one patients from 47 unrelated families were identified, consisting of 51 probands with Becker MC (84%) and 10 with Thomsen MC (16%). Among the different variants detected, 11 were novel and 16 were previously reported. The three most prevalent variants were c.501C > G, c.2680C > T, and c.1649C > G. Additionally, c.501C > G was detected in seven Becker cases in-cis with the c.1649C > G. DISCUSSION The large number of patients in whom a diagnosis was established allowed the characterization of genotype-phenotype correlations with respect to both previously reported and novel findings. For the c.501C > G (p.Phe167Leu) variant a likely nonpathogenic property is suggested, as it only seems to act as an aggravating modifying factor in cases in which a pathogenic variant triggers phenotypic expression.
Collapse
Affiliation(s)
- Nikolaos M Marinakis
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Svingou
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Giorgos-Konstantinos Papadimas
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Papadopoulos
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Rio-Patras, Greece
| | - Roser Pons
- First Department of Pediatrics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Pavlou
- Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, University General Hospital AHEPA, Thessaloniki, Greece
| | - Ioannis Sarmas
- Department of Neurology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Konstantina Kosma
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Apostolou
- Human Molecular Genetics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyriaki Kekou
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Zhao X, Ning H, Liu L, Zhu C, Zhang Y, Sun G, Ren H, Kong X. Genetic analysis of 37 cases with primary periodic paralysis in Chinese patients. Orphanet J Rare Dis 2024; 19:160. [PMID: 38609989 PMCID: PMC11015673 DOI: 10.1186/s13023-024-03170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Primary periodic paralysis (PPP) is an inherited disorders of ion channel dysfunction characterized by recurrent episodes of flaccid muscle weakness, which can classified as hypokalemic (HypoPP), normokalemic (NormoPP), or hyperkalemic (HyperPP) according to the potassium level during the paralytic attacks. However, PPP is charactered by remarkable clinical and genetic heterogeneity, and the diagnosis of suspected patients is based on the characteristic clinical presentation then confirmed by genetic testing. At present, there are only limited cohort studies on PPP in the Chinese population. RESULTS We included 37 patients with a clinical diagnosis of PPP. Eleven (29.7%) patients were tested using a specific gene panel and 26 (70.3%) by the whole-exome sequencing (WES). Twenty-two cases had a genetic variant identified, representing a diagnostic rate of 59.5% (22/37). All the identified mutations were either in the SCN4A or the CACNA1S gene. The overall detection rate was comparable between the panel (54.5%: 6/11) and WES (61.5%: 16/26). The remaining patients unresolved through panel sequencing were further analyzed by WES, without the detection of any mutation. The novel atypical splicing variant c.2020-5G > A affects the normal splicing of the SCN4A mRNA, which was confirmed by minigene splicing assay. Among 21 patients with HypoPP, 15 patients were classified as HypoPP-2 with SCN4A variants, and 6 HypoPP-1 patients had CACNA1S variants. CONCLUSIONS Our results suggest that SCN4A alleles are the main cause in our cohort, with the remainder caused by CACNA1S alleles, which are the predominant cause in Europe and the United States. Additionally, this study identified 3 novel SCN4A and 2 novel CACNA1S variants, broadening the mutation spectrum of genes associated with PPP.
Collapse
Affiliation(s)
- Xuechao Zhao
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, 450052, Zhengzhou, Henan, China
| | - Haofeng Ning
- Obstetrics and Gynaecology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No 628 Zhenyuan Road Guangming District, 518107, Shenzhen, PR China
| | - Lina Liu
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, 450052, Zhengzhou, Henan, China
| | - Chaofeng Zhu
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, 450052, Zhengzhou, Henan, China
| | - Yinghui Zhang
- The Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, 450052, Zhengzhou, Henan, China
| | - Guifang Sun
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, 450052, Zhengzhou, Henan, China
| | - Huanan Ren
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, 450052, Zhengzhou, Henan, China
| | - Xiangdong Kong
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Kalyta K, Stelmaszczyk W, Szczęśniak D, Kotuła L, Dobosz P, Mroczek M. The Spectrum of the Heterozygous Effect in Biallelic Mendelian Diseases-The Symptomatic Heterozygote Issue. Genes (Basel) 2023; 14:1562. [PMID: 37628614 PMCID: PMC10454578 DOI: 10.3390/genes14081562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Heterozygous carriers of pathogenic/likely pathogenic variants in autosomal recessive disorders seem to be asymptomatic. However, in recent years, an increasing number of case reports have suggested that mild and unspecific symptoms can occur in some heterozygotes, as symptomatic heterozygotes have been identified across different disease types, including neurological, neuromuscular, hematological, and pulmonary diseases. The symptoms are usually milder in heterozygotes than in biallelic variants and occur "later in life". The status of symptomatic heterozygotes as separate entities is often disputed, and alternative diagnoses are considered. Indeed, often only a thin line exists between dual, dominant, and recessive modes of inheritance and symptomatic heterozygosity. Interestingly, recent population studies have found global disease effects in heterozygous carriers of some genetic variants. What makes the few heterozygotes symptomatic, while the majority show no symptoms? The molecular basis of this phenomenon is still unknown. Possible explanations include undiscovered deep-splicing variants, genetic and environmental modifiers, digenic/oligogenic inheritance, skewed methylation patterns, and mutational burden. Symptomatic heterozygotes are rarely reported in the literature, mainly because most did not undergo the complete diagnostic procedure, so alternative diagnoses could not be conclusively excluded. However, despite the increasing accessibility to high-throughput technologies, there still seems to be a small group of patients with mild symptoms and just one variant of autosomes in biallelic diseases. Here, we present some examples, the current state of knowledge, and possible explanations for this phenomenon, and thus argue against the existing dominant/recessive classification.
Collapse
Affiliation(s)
- Kateryna Kalyta
- School of Life Sciences, FHNW—University of Applied Sciences, 4132 Muttenz, Switzerland;
| | - Weronika Stelmaszczyk
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Dominika Szczęśniak
- Institute of Psychiatry and Neurology in Warsaw, Genetics Department, 02-957 Warsaw, Poland;
| | - Lidia Kotuła
- Department of Genetics, Medical University, 20-080 Lublin, Poland;
| | - Paula Dobosz
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland;
| | - Magdalena Mroczek
- University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
5
|
Öz Tunçer G, Sanri A, Aydin S, Hergüner ÖM, Özgün N, Kömür M, İçağasioğlu DF, Toker RT, Yilmaz S, Arslan EA, Güngör M, Kutluk G, Erol İ, Mert GG, Polat BG, Aksoy A. Clinical and Genetic Spectrum of Myotonia Congenita in Turkish Children. J Neuromuscul Dis 2023; 10:915-924. [PMID: 37355912 PMCID: PMC10578252 DOI: 10.3233/jnd-230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Myotonia congenita is the most common form of nondystrophic myotonia and is caused by Mendelian inherited mutations in the CLCN1 gene encoding the voltage-gated chloride channel of skeletal muscle. OBJECTIVE The study aimed to describe the clinical and genetic spectrum of Myotonia congenita in a large pediatric cohort. METHODS Demographic, genetic, and clinical data of the patients aged under 18 years at time of first clinical attendance from 11 centers in different geographical regions of Türkiye were retrospectively investigated. RESULTS Fifty-four patients (mean age:15.2 years (±5.5), 76% males, with 85% Becker, 15% Thomsen form) from 40 families were included. Consanguineous marriage rate was 67%. 70.5% of patients had a family member with Myotonia congenita. The mean age of disease onset was 5.7 (±4.9) years. Overall 23 different mutations (2/23 were novel) were detected in 52 patients, and large exon deletions were identified in two siblings. Thomsen and Becker forms were observed concomitantly in one family. Carbamazepine (46.3%), mexiletine (27.8%), phenytoin (9.3%) were preferred for treatment. CONCLUSIONS The clinical and genetic heterogeneity, as well as the limited response to current treatment options, constitutes an ongoing challenge. In our cohort, recessive Myotonia congenita was more frequent and novel mutations will contribute to the literature.
Collapse
Affiliation(s)
- Gökçen Öz Tunçer
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Türkiye
| | - Aslıhan Sanri
- Department of Pediatric Genetics, University of Health Sciences, Samsun Training and Research Hospital, Samsun, Türkiye
| | - Seren Aydin
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Türkiye
| | - Özlem M. Hergüner
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Nezir Özgün
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Artuklu University, Mardin, Türkiye
| | - Mustafa Kömür
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | - Dilara F. İçağasioğlu
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Türkiye
| | - Rabia Tütüncü Toker
- Department of Pediatric Neurology, University of Health Sciences, Bursa City Hospital, Bursa, Türkiye
| | - Sanem Yilmaz
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Elif Acar Arslan
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Mesut Güngör
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Kocaeli University, Kocaeli, Türkiye
| | - Gültekin Kutluk
- Department of Pediatric Neurolgy, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Türkiye
| | - İlknur Erol
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Başkent University, Adana, Türkiye
| | - Gülen Gül Mert
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Burçin Gönüllü Polat
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | - Ayşe Aksoy
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Türkiye
| |
Collapse
|
6
|
Pagliarani S, Meola G, Filareti M, Comi GP, Lucchiari S. Case report: Sodium and chloride muscle channelopathy coexistence: A complicated phenotype and a challenging diagnosis. Front Neurol 2022; 13:845383. [PMID: 36081873 PMCID: PMC9447429 DOI: 10.3389/fneur.2022.845383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Non-dystrophic myotonias (NDM) encompass chloride and sodium channelopathy. Mutations in CLCN1 lead to either the autosomal dominant form or the recessive form of myotonia congenita (MC). The main symptom is stiffness worsening after rest and improving by physical exercise. Patients with recessive mutations often show muscle hypertrophy, and transient weakness mostly in their lower limbs. Mutations in SCN4A can lead to Hyper-, Hypo- or Normo-kalemic Periodic Paralysis or to different forms of myotonia (Paramyotonia Congenita-PMC and Sodium Channel Myotonia-SCM and severe neonatal episodic laryngospasm-SNEL). SCM often presents facial muscle stiffness, cold sensitivity, and muscle pain, whereas myotonia worsens in PMC patients with the repetition of the muscle activity and cold. Patients affected by chloride or sodium channelopathies may show similar phenotypes and symptoms, making the diagnosis more difficult to reach. Herein we present a woman in whom sodium and chloride channelopathies coexist yielding a complex phenotype with features typical of both MC and PMC. Disease onset was in the second decade with asthenia, weakness, warm up and limb stiffness, and her symptoms had been worsening through the years leading to frequent heavy retrosternal compression, tachycardia, stiffness, and symmetrical pain in her lower limbs. She presented severe lid lag myotonia, a hypertrophic appearance at four limbs and myotonic discharges at EMG. Her symptoms have been triggered by exposure to cold and her daily life was impaired. All together, clinical signs and instrumental data led to the hypothesis of PMC and to the administration of mexiletine, then replaced by acetazolamide because of gastrointestinal side effects. Analysis of SCN4A revealed a new variant, p.Glu1607del. Nonetheless the severity of myotonia in the lower limbs and her general stiffness led to hypothesize that the impairment of sodium channel, Nav1.4, alone could not satisfactorily explain the phenotype and a second genetic “factor” was hypothesized. CLCN1 was targeted, and p.Met485Val was detected in homozygosity. This case highlights that proper identification of signs and symptoms by an expert neurologist is crucial to target a successful genetic diagnosis and appropriate therapy.
Collapse
Affiliation(s)
- Serena Pagliarani
- Department of Neurological Sciences, Dino Ferrari Centre, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
- Department of Neurorehabilitation Sciences Casa di Cura del Policlinico, Milan, Italy
| | - Melania Filareti
- Department of Neurorehabilitation Sciences Casa di Cura del Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Department of Neurological Sciences, Dino Ferrari Centre, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Sabrina Lucchiari
- Department of Neurological Sciences, Dino Ferrari Centre, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- *Correspondence: Sabrina Lucchiari
| |
Collapse
|
7
|
Suetterlin K, Matthews E, Sud R, McCall S, Fialho D, Burge J, Jayaseelan D, Haworth A, Sweeney MG, Kullmann DM, Schorge S, Hanna MG, Männikkö R. Translating genetic and functional data into clinical practice: a series of 223 families with myotonia. Brain 2022; 145:607-620. [PMID: 34529042 PMCID: PMC9014745 DOI: 10.1093/brain/awab344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 08/05/2021] [Indexed: 11/14/2022] Open
Abstract
High-throughput DNA sequencing is increasingly employed to diagnose single gene neurological and neuromuscular disorders. Large volumes of data present new challenges in data interpretation and its useful translation into clinical and genetic counselling for families. Even when a plausible gene is identified with confidence, interpretation of the clinical significance and inheritance pattern of variants can be challenging. We report our approach to evaluating variants in the skeletal muscle chloride channel ClC-1 identified in 223 probands with myotonia congenita as an example of these challenges. Sequencing of CLCN1, the gene that encodes CLC-1, is central to the diagnosis of myotonia congenita. However, interpreting the pathogenicity and inheritance pattern of novel variants is notoriously difficult as both dominant and recessive mutations are reported throughout the channel sequence, ClC-1 structure-function is poorly understood and significant intra- and interfamilial variability in phenotype is reported. Heterologous expression systems to study functional consequences of CIC-1 variants are widely reported to aid the assessment of pathogenicity and inheritance pattern. However, heterogeneity of reported analyses does not allow for the systematic correlation of available functional and genetic data. We report the systematic evaluation of 95 CIC-1 variants in 223 probands, the largest reported patient cohort, in which we apply standardized functional analyses and correlate this with clinical assessment and inheritance pattern. Such correlation is important to determine whether functional data improves the accuracy of variant interpretation and likely mode of inheritance. Our data provide an evidence-based approach that functional characterization of ClC-1 variants improves clinical interpretation of their pathogenicity and inheritance pattern, and serve as reference for 34 previously unreported and 28 previously uncharacterized CLCN1 variants. In addition, we identify novel pathogenic mechanisms and find that variants that alter voltage dependence of activation cluster in the first half of the transmembrane domains and variants that yield no currents cluster in the second half of the transmembrane domain. None of the variants in the intracellular domains were associated with dominant functional features or dominant inheritance pattern of myotonia congenita. Our data help provide an initial estimate of the anticipated inheritance pattern based on the location of a novel variant and shows that systematic functional characterization can significantly refine the assessment of risk of an associated inheritance pattern and consequently the clinical and genetic counselling.
Collapse
Affiliation(s)
- Karen Suetterlin
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- AGE Research Group, NIHR Newcastle Biomedical Research Centre, Newcastle-upon-Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle-upon-Tyne, UK
| | - Emma Matthews
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- Atkinson Morley Neuromuscular Centre, Department of Neurology, St Georges University Hospitals NHS Foundation Trust, London, UK
| | - Richa Sud
- Neurogenetics Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Samuel McCall
- Neurogenetics Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Doreen Fialho
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical Neurophysiology, King’s College Hospital, London, UK
| | - James Burge
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical Neurophysiology, King’s College Hospital, London, UK
| | - Dipa Jayaseelan
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Haworth
- Neurogenetics Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Mary G Sweeney
- Neurogenetics Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Department of Pharmacology, UCL School of Pharmacy, London, UK
| | - Michael G Hanna
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Roope Männikkö
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
8
|
Kinetic Alterations in Resurgent Sodium Currents of Mutant Nav1.4 Channel in Two Patients Affected by Paramyotonia Congenita. BIOLOGY 2022; 11:biology11040613. [PMID: 35453812 PMCID: PMC9031228 DOI: 10.3390/biology11040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Paramyotonia congenita (PMC) is a rare muscle disorder that causes myotonia and weakness of facial and limb muscles. The electromyography in PMC shows continual spontaneous, high-frequency spike potentials in skeletal muscles. Genetic mutations in the Nav1.4 channel that cause hyperexcitability of muscle fibers are responsible for PMC. However, the genotype–phenotype relationship is highly diversified, and the molecular pathology remains unclear. Here, we investigated the electrophysiology in the Nav1.4 channel with mutations, p.V781I and p.A1737T, which were found in two Taiwanese patients. We identified the distinct changes in gating mechanisms altered by mutations which may underlie the clinical phenotype. Abstract Paramyotonia congenita (PMC) is a rare skeletal muscle disorder characterized by muscle stiffness upon repetitive exercise and cold exposure. PMC was reported to be caused by dominant mutations in the SCN4A gene encoding the α subunit of the Nav1.4 channel. Recently, we identified two missense mutations of the SCN4A gene, p.V781I and p.A1737T, in two PMC families. To evaluate the changes in electrophysiological properties caused by the mutations, both mutant and wild-type (WT) SCN4A genes were expressed in CHO-K1 and HEK-293T cells. Then, whole-cell patch-clamp recording was employed to study the altered gating of mutant channels. The activation curve of transient current showed a hyperpolarizing shift in both mutant Nav1.4 channels as compared to the WT channel, whereas there was a depolarizing shift in the fast inactivation curve. These changes confer to an increase in window current in the mutant channels. Further investigations demonstrated that the mutated channel proteins generate significantly larger resurgent currents as compared to the WT channel and take longer to attain the peak of resurgent current than the WT channel. In conclusion, the current study demonstrates that p.V781I and p.A1737T mutations in the Nav1.4 channel increase both the sustained and the resurgent Na+ current, leading to membrane hyperexcitability with a lower firing threshold, which may influence the clinical phenotype.
Collapse
|
9
|
Cannabidiol Selectively Binds to the Voltage-Gated Sodium Channel Na v1.4 in Its Slow-Inactivated State and Inhibits Sodium Current. Biomedicines 2021; 9:biomedicines9091141. [PMID: 34572327 PMCID: PMC8465134 DOI: 10.3390/biomedicines9091141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
Cannabidiol (CBD), one of the cannabinoids from the cannabis plant, can relieve the myotonia resulting from sodium channelopathy, which manifests as repetitive discharges of muscle membrane. We investigated the binding kinetics of CBD to Nav1.4 channels on the muscle membrane. The binding affinity of CBD to the channel was evaluated using whole-cell recording. The CDOCKER program was employed to model CBD docking onto the Nav1.4 channel to determine its binding sites. Our results revealed no differential inhibition of sodium current by CBD when the channels were in activation or fast inactivation status. However, differential inhibition was observed with a dose-dependent manner after a prolonged period of depolarization, leaving the channel in a slow-inactivated state. Moreover, CBD binds selectively to the slow-inactivated state with a significantly faster binding kinetics (>64,000 M−1 s−1) and a higher affinity (Kd of fast inactivation vs. slow-inactivation: >117.42 μM vs. 51.48 μM), compared to the fast inactivation state. Five proposed CBD binding sites in a bundle crossing region of the Nav1.4 channels pore was identified as Val793, Leu794, Phe797, and Cys759 in domain I/S6, and Ile1279 in domain II/S6. Our findings imply that CBD favorably binds to the Nav1.4 channel in its slow-inactivated state.
Collapse
|
10
|
Souza LS, Calyjur P, Ribeiro AF, Gurgel-Giannetti J, Pavanello RCM, Zatz M, Vainzof M. Association of Three Different Mutations in the CLCN1 Gene Modulating the Phenotype in a Consanguineous Family with Myotonia Congenita. J Mol Neurosci 2021; 71:2275-2280. [PMID: 33464536 DOI: 10.1007/s12031-020-01785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/25/2020] [Indexed: 11/29/2022]
Abstract
Myotonia congenita is a genetic disease caused by mutations in the CLCN1 gene, which encodes for the major chloride skeletal channel ClC-1, involved in the normal repolarization of muscle action potentials and consequent relaxation of the muscle after contraction. Two allelic forms are recognized, depending on the phenotype and the inheritance pattern: the autosomal dominant Thomsen disease with milder symptoms and the autosomal recessive Becker disorder with a severe phenotype. Before the recent advances of molecular testing, the diagnosis and genetic counseling of families was a challenge due to the large number of mutations in the CLCN1 gene, found both in homozygous or in heterozygous state. Here, we studied a consanguineous family in which three members presented a variable phenotype of myotonia, associated to a combination of three different mutations in the CLCN1 gene. A pathogenic splicing site mutation which causes the skipping of exon 17 was present in homozygosis in one very severely affected son. This mutation was present in compound heterozygosis in the consanguineous parents, but interestingly it was associated to a different second variant in the other allele: c.1453 A > G in the mother and c.1842 G > C in the father. Both displayed variable, but less severe phenotypes than their homozygous son. These results highlight the importance of analyzing the combination of different variants in the same gene in particular in families with patients displaying different phenotypes. This approach may improve the diagnosis, prognosis, and genetic counseling of the involved families.
Collapse
Affiliation(s)
- Lucas Santos Souza
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Priscila Calyjur
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Antonio Fernando Ribeiro
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Juliana Gurgel-Giannetti
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Pediatrics Department, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mayana Zatz
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mariz Vainzof
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Changes in Resurgent Sodium Current Contribute to the Hyperexcitability of Muscles in Patients with Paramyotonia Congenita. Biomedicines 2021; 9:biomedicines9010051. [PMID: 33430134 PMCID: PMC7826575 DOI: 10.3390/biomedicines9010051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/01/2021] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
Paramyotonia congenita (PMC) is a rare hereditary skeletal muscle disorder. The major symptom, muscle stiffness, is frequently induced by cold exposure and repetitive exercise. Mutations in human SCN4A gene, which encodes the α-subunit of Nav1.4 channel, are responsible for PMC. Mutation screening of SCN4A gene from two PMC families identified two missense mutations, p.T1313M and p.R1448H. To elucidate the electrophysiological abnormalities caused by the mutations, the p.T1313M, p.R1448H, and wild-type (WT) SCN4A genes were transient expressed on Chinese hamster ovary (CHO-K1) cells. The detailed study on the gating defects of the mutant channels using the whole-cell patch clamping technique was performed. The mutant Nav1.4 channels impaired the basic gating properties with increasing sustained and window currents during membrane depolarization and facilitated the genesis of resurgent currents during repolarization. The mutations caused a hyperpolarization shift in the fast inactivation and slightly enhanced the slow inactivation with an increase in half-maximal inactivation voltage. No differences were found in the decay kinetics of the tail current between mutant and WT channels. In addition to generating the larger resurgent sodium current, the time to peak in the mutant channels was longer than that in the WT channels. In conclusion, our results demonstrated that the mutations p.T1313M and p.R1448H in Nav1.4 channels can enhance fast inactivation, slow inactivation, and resurgent current, revealing that subtle changes in gating processes can influence the clinical phenotype.
Collapse
|
12
|
Hu C, Shi Y, Zhao L, Zhou S, Li X. Myotonia Congenita: Clinical Characteristic and Mutation Spectrum of CLCN1 in Chinese Patients. Front Pediatr 2021; 9:759505. [PMID: 34790634 PMCID: PMC8591224 DOI: 10.3389/fped.2021.759505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/28/2021] [Indexed: 12/03/2022] Open
Abstract
Background: CLCN1-related myotonia congenita (MC) is one of the most common forms of non-dystrophic myotonia, in which muscle relaxation is delayed after voluntary or evoked contraction. However, there is limited data of clinical and molecular spectrum of MC patients in China. Patients and Methods: Five patients with myotonia congenita due to mutations in CLCN1 gene were enrolled, which were identified through trio-whole-exome sequencing or panel-based next-generation sequencing test. The clinical presentation, laboratory data, electrophysiological tests, muscular pathology feature, and genetic results were collected and reviewed. We also searched all previously reported cases of MC patients with genetic diagnosis in Chinese populations, and their data were reviewed. Results: The median onset age of five patients was 3.0 years old, ranging from 1.0 to 5.0 years old, while the median age of admit was 5.0 years old, ranging from 3.5 to 8.8 years old. Five patients complained of muscle stiffness when rising from chairs or starting to climb stairs (5/5, 100.0%), four patients complained of delayed relaxation of their hands after forceful grip (4/5, 80.0%), all of which improved with exercise (warm-up phenomenon) (5/5, 100%). Electromyogram was conducted in five patients, which all revealed myotonic change (100%). Genetic tests revealed nine potential disease-causing variants in CLCN1 gene, including two novel variants: c.962T>A (p.V321E) and c.1250A>T (p.E417V). Literature review showed that 43 MC Chinese patients with genetic diagnosis have been reported till now (including our five patients). Forty-seven variants in CLCN1 gene were found, which consisted of 33 missense variants, 6 nonsense variants, 5 frame-shift variants, and 3 splicing variants. Variants in exon 8, 15, 12, and 16 were most prevalent, while the most common variants were c.892G>A (p.A298T) (n = 9), c.139C>T (p.R47W) (n = 3), c.1205C>T(p.A402V) (n = 3), c.1657A>T (p.I553F) (n = 3), c.1679T>C (p.M560T) (n = 3), c.350A>G (p.D117G) (n = 2), c.762C>G (p.C254W) (n = 2), c.782A>G (P.Y261C) (n = 2), and c.1277C>A (p.T426N) (n = 2). Conclusion: Our results reported five CLCN1-related MC patients, which expanded the clinical and genetic spectrum of MC patients in China. Based on literature review, 43MC Chinese patients with genetic diagnosis have been reported till now, and variants in exon eight were most prevalent in Chinese MC patients while c.892G>A (p.A298T) was probably a founder mutation.
Collapse
Affiliation(s)
- Chaoping Hu
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Yiyun Shi
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
13
|
Non-dystrophic myotonias: clinical and mutation spectrum of 70 German patients. J Neurol 2020; 268:1708-1720. [PMID: 33263785 PMCID: PMC8068660 DOI: 10.1007/s00415-020-10328-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Introduction Non-dystrophic myotonias (NDM) are heterogeneous diseases caused by mutations in CLCN1 and SCN4A. The study aimed to describe the clinical and genetic spectrum of NDM in a large German cohort. Methods We retrospectively identified all patients with genetically confirmed NDM diagnosed in our center. The following data were analyzed: demographics, family history, muscular features, cardiac involvement, CK, EMG, genotype, other tested genes, treatment perceived efficacy. Results 70 patients (age 40.2 years ± 14.9; 52.8% males) were included in our study (48 NDM-CLCN1, 22 NDM-SCN4A). The most frequent presenting symptoms were myotonia (NDM-CLCN1 83.3%, NDM-SCN4A 72.2%) and myalgia (NDM-CLCN1 57.4%, NDM-SCN4A 52.6%). Besides a more prominent facial involvement in NDM-SCN4A and cold-sensitivity in NDM-CLCN1, no other significant differences were observed between groups. Cardiac arrhythmia or conduction defects were documented in sixNDM-CLCN1 patients (three of them requiring a pacemaker) and one patient with NDM-SCN4A. CK was normal in 40% of patients. Myotonic runs in EMG were detected in 89.1% of CLCN1 and 78.9% of SCN4A. 50% of NDM-CLCN1 patients had the classic c.2680C>T (p.Arg894*) mutation. 12 new genetic variants are reported. About 50% of patients were not taking any anti-myotonic drug at the last follow-up. The anti-myotonic drugs with the best patient’s perceived efficacy were mexiletine and lamotrigine. Conclusion This study highlights the relevant clinical overlap between NDM-CLCN1 and NDM-SCN4A patients and warrants the use of early and broad genetic investigation for the precise identification of the NDM subtype. Besides the clinical and genetic heterogeneity, the limited response to current anti-myotonic drugs constitutes a continuing challenge. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-020-10328-1.
Collapse
|
14
|
Altamura C, Ivanova EA, Imbrici P, Conte E, Camerino GM, Dadali EL, Polyakov AV, Kurbatov SA, Girolamo F, Carratù MR, Desaphy JF. Pathomechanisms of a CLCN1 Mutation Found in a Russian Family Suffering From Becker's Myotonia. Front Neurol 2020; 11:1019. [PMID: 33013670 PMCID: PMC7500137 DOI: 10.3389/fneur.2020.01019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/04/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: Myotonia congenita (MC) is a rare muscle disease characterized by sarcolemma over-excitability inducing skeletal muscle stiffness. It can be inherited either as an autosomal dominant (Thomsen's disease) or an autosomal recessive (Becker's disease) trait. Both types are caused by loss-of-function mutations in the CLCN1 gene, encoding for ClC-1 chloride channel. We found a ClC-1 mutation, p.G411C, identified in Russian patients who suffered from a severe form of Becker's disease. The purpose of this study was to provide a solid correlation between G411C dysfunction and clinical symptoms in the affected patient. Methods: We provide clinical and genetic information of the proband kindred. Functional studies include patch-clamp electrophysiology, biotinylation assay, western blot analysis, and confocal imaging of G411C and wild-type ClC-1 channels expressed in HEK293T cells. Results: The G411C mutation dramatically abolished chloride currents in transfected HEK cells. Biochemical experiments revealed that the majority of G411C mutant channels did not reach the plasma membrane but remained trapped in the cytoplasm. Treatment with the proteasome inhibitor MG132 reduced the degradation rate of G411C mutant channels, leading to their expression at the plasma membrane. However, despite an increase in cell surface expression, no significant chloride current was recorded in the G411C-transfected cell treated with MG132, suggesting that this mutation produces non-functional ClC-1 chloride channels. Conclusion: These results suggest that the molecular pathophysiology of G411C is linked to a reduced plasma membrane expression and biophysical dysfunction of mutant channels, likely due to a misfolding defect. Chloride current abolition confirms that the mutation is responsible for the clinical phenotype.
Collapse
Affiliation(s)
- Concetta Altamura
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Evgeniya A Ivanova
- N.P. Bochkov's Research Centre for Medical Genetics, Federal State Budgetary Scientific Institution, Moscow, Russia
| | - Paola Imbrici
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elena L Dadali
- N.P. Bochkov's Research Centre for Medical Genetics, Federal State Budgetary Scientific Institution, Moscow, Russia
| | - Alexander V Polyakov
- N.P. Bochkov's Research Centre for Medical Genetics, Federal State Budgetary Scientific Institution, Moscow, Russia
| | | | - Francesco Girolamo
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience, and Sense Organs, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Maria Rosaria Carratù
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Jean-François Desaphy
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
15
|
Avila-Smirnow D, Vargas Leal CP, Beytía Reyes MDLA, Cortés Zepeda R, Escobar RG, Kleinsteuber Saa K, Lagos Lucero M, Avaria Benapres MDLA, Padilla Pérez O, Casar Leturia JC, Mellado Sagredo C, Sternberg D. Non-dystrophic myotonia Chilean cohort with predominance of the SCN4A Gly1306Glu variant. Neuromuscul Disord 2020; 30:554-561. [DOI: 10.1016/j.nmd.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 01/31/2023]
|
16
|
Altamura C, Desaphy JF, Conte D, De Luca A, Imbrici P. Skeletal muscle ClC-1 chloride channels in health and diseases. Pflugers Arch 2020; 472:961-975. [PMID: 32361781 DOI: 10.1007/s00424-020-02376-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
In 1970, the study of the pathomechanisms underlying myotonia in muscle fibers isolated from myotonic goats highlighted the importance of chloride conductance for skeletal muscle function; 20 years later, the human ClC-1 chloride channel has been cloned; last year, the crystal structure of human protein has been solved. Over the years, the efforts of many researchers led to significant advances in acknowledging the role of ClC-1 in skeletal muscle physiology and the mechanisms through which ClC-1 dysfunctions lead to impaired muscle function. The wide spectrum of pathophysiological conditions associated with modification of ClC-1 activity, either as the primary cause, such as in myotonia congenita, or as a secondary adaptive mechanism in other neuromuscular diseases, supports the idea that ClC-1 is relevant to preserve not only for skeletal muscle excitability, but also for skeletal muscle adaptation to physiological or harmful events. Improving this understanding could open promising avenues toward the development of selective and safe drugs targeting ClC-1, with the aim to restore normal muscle function. This review summarizes the most relevant research on ClC-1 channel physiology, associated diseases, and pharmacology.
Collapse
Affiliation(s)
- Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Diana Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
17
|
Palma Milla C, Prior De Castro C, Gómez-González C, Martínez-Montero P, I. Pascual Pascual S, Molano Mateos J. Myotonia congenita: mutation spectrum of CLCN1 in Spanish patients. J Genet 2019. [DOI: 10.1007/s12041-019-1115-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
19
|
Altamura C, Mangiatordi GF, Nicolotti O, Sahbani D, Farinato A, Leonetti F, Carratù MR, Conte D, Desaphy JF, Imbrici P. Mapping ligand binding pockets in chloride ClC-1 channels through an integrated in silico and experimental approach using anthracene-9-carboxylic acid and niflumic acid. Br J Pharmacol 2018; 175:1770-1780. [PMID: 29500929 DOI: 10.1111/bph.14192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Although chloride channels are involved in several physiological processes and acquired diseases, the availability of compounds selectively targeting CLC proteins is limited. ClC-1 channels are responsible for sarcolemma repolarization after an action potential in skeletal muscle and have been associated with myotonia congenita and myotonic dystrophy as well as with other muscular physiopathological conditions. To date only a few ClC-1 blockers have been discovered, such as anthracene-9-carboxylic acid (9-AC) and niflumic acid (NFA), whereas no activator exists. The absence of a ClC-1 structure and the limited information regarding the binding pockets in CLC channels hamper the identification of improved modulators. EXPERIMENTAL APPROACH Here we provide an in-depth characterization of drug binding pockets in ClC-1 through an integrated in silico and experimental approach. We first searched putative cavities in a homology model of ClC-1 built upon an eukaryotic CLC crystal structure, and then validated in silico data by measuring the blocking ability of 9-AC and NFA on mutant ClC-1 channels expressed in HEK 293 cells. KEY RESULTS We identified four putative binding cavities in ClC-1. 9-AC appears to interact with residues K231, R421 and F484 within the channel pore. We also identified one preferential binding cavity for NFA and propose R421 and F484 as critical residues. CONCLUSIONS AND IMPLICATIONS This study represents the first effort to delineate the binding sites of ClC-1. This information is fundamental to discover compounds useful in the treatment of ClC-1-associated dysfunctions and might represent a starting point for specifically targeting other CLC proteins.
Collapse
Affiliation(s)
- C Altamura
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - G F Mangiatordi
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - O Nicolotti
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - D Sahbani
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - A Farinato
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - F Leonetti
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - M R Carratù
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - D Conte
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - J-F Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - P Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
20
|
Maggi L, Ravaglia S, Farinato A, Brugnoni R, Altamura C, Imbrici P, Camerino DC, Padovani A, Mantegazza R, Bernasconi P, Desaphy JF, Filosto M. Coexistence of CLCN1 and SCN4A mutations in one family suffering from myotonia. Neurogenetics 2017; 18:219-225. [PMID: 28993909 DOI: 10.1007/s10048-017-0525-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/01/2017] [Indexed: 01/28/2023]
Abstract
Non-dystrophic myotonias are characterized by clinical overlap making it challenging to establish genotype-phenotype correlations. We report clinical and electrophysiological findings in a girl and her father concomitantly harbouring single heterozygous mutations in SCN4A and CLCN1 genes. Functional characterization of N1297S hNav1.4 mutant was performed by patch clamp. The patients displayed a mild phenotype, mostly resembling a sodium channel myotonia. The CLCN1 c.501C>G (p.F167L) mutation has been already described in recessive pedigrees, whereas the SCN4A c.3890A>G (p.N1297S) variation is novel. Patch clamp experiments showed impairment of fast and slow inactivation of the mutated Nav1.4 sodium channel. The present findings suggest that analysis of both SCN4A and CLCN1 genes should be considered in myotonic patients with atypical clinical and neurophysiological features.
Collapse
Affiliation(s)
- Lorenzo Maggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy.
| | | | - Alessandro Farinato
- Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Raffaella Brugnoni
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy
| | - Concetta Altamura
- Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Diana Conte Camerino
- Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Padovani
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology ASST "Spedali Civili", University of Brescia, Brescia, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy
| | - Pia Bernasconi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Massimiliano Filosto
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology ASST "Spedali Civili", University of Brescia, Brescia, Italy
| |
Collapse
|
21
|
Impaired surface membrane insertion of homo- and heterodimeric human muscle chloride channels carrying amino-terminal myotonia-causing mutations. Sci Rep 2015; 5:15382. [PMID: 26502825 PMCID: PMC4621517 DOI: 10.1038/srep15382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/23/2015] [Indexed: 12/03/2022] Open
Abstract
Mutations in the muscle chloride channel gene (CLCN1) cause myotonia congenita, an inherited condition characterized by muscle stiffness upon sudden forceful movement. We here studied the functional consequences of four disease-causing mutations that predict amino acid substitutions Q43R, S70L, Y137D and Q160H. Wild-type (WT) and mutant hClC-1 channels were heterologously expressed as YFP or CFP fusion protein in HEK293T cells and analyzed by whole-cell patch clamp and fluorescence recordings on individual cells. Q43R, Y137D and Q160H, but not S70L reduced macroscopic current amplitudes, but left channel gating and unitary current amplitudes unaffected. We developed a novel assay combining electrophysiological and fluorescence measurements at the single-cell level in order to measure the probability of ion channel surface membrane insertion. With the exception of S70L, all tested mutations significantly reduced the relative number of homodimeric hClC-1 channels in the surface membrane. The strongest effect was seen for Q43R that reduced the surface insertion probability by more than 99% in Q43R homodimeric channels and by 92 ± 3% in heterodimeric WT/Q43R channels compared to homodimeric WT channels. The new method offers a sensitive approach to investigate mutations that were reported to cause channelopathies, but display only minor changes in ion channel function.
Collapse
|
22
|
Liu XL, Huang XJ, Shen JY, Zhou HY, Luan XH, Wang T, Chen SD, Wang Y, Tang HD, Cao L. Myotonia congenita: novel mutations in CLCN1 gene. Channels (Austin) 2015; 9:292-8. [PMID: 26260254 DOI: 10.1080/19336950.2015.1075676] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Myotonia congenita belongs to the group of non-dystrophic myotonia caused by mutations of CLCN1gene, which encodes human skeletal muscle chloride channel 1. It can be inherited either in autosomal dominant (Thomsen disease) or recessive (Becker disease) forms. Here we have sequenced all 23 exons and exon-intron boundaries of the CLCN1 gene, in a panel of 5 unrelated Chinese patients with myotonia congenita (2 with dominant and 3 with recessive form). In addition, detailed clinical analysis was performed in these patients to summarize their clinical characteristics in relation to their genotypes. Mutational analyses revealed 7 different point mutations. Of these, we have found 3 novel mutations including 2 missense (R47W, V229M), one splicing (IVS19+2T>C), and 4 known mutations (Y261C,G523D, M560T, G859D). Our data expand the spectrum of CLCN1 mutations and provide insights for genotype-phenotype correlations of myotonia congenita in the Chinese population.
Collapse
Affiliation(s)
- Xiao-Li Liu
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Xiao-Jun Huang
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Jun-Yi Shen
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Hai-Yan Zhou
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Xing-Hua Luan
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Tian Wang
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Sheng-Di Chen
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Ying Wang
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Hui-Dong Tang
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Li Cao
- a Department of Neurology ; Rui Jin Hospital and Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| |
Collapse
|
23
|
Imbrici P, Maggi L, Mangiatordi GF, Dinardo MM, Altamura C, Brugnoni R, Alberga D, Pinter GL, Ricci G, Siciliano G, Micheli R, Annicchiarico G, Lattanzi G, Nicolotti O, Morandi L, Bernasconi P, Desaphy JF, Mantegazza R, Camerino DC. ClC-1 mutations in myotonia congenita patients: insights into molecular gating mechanisms and genotype-phenotype correlation. J Physiol 2015; 593:4181-99. [PMID: 26096614 DOI: 10.1113/jp270358] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/04/2015] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Loss-of-function mutations of the skeletal muscle ClC-1 channel cause myotonia congenita with variable phenotypes. Using patch clamp we show that F484L, located in the conducting pore, probably induces mild dominant myotonia by right-shifting the slow gating of ClC-1 channel, without exerting a dominant-negative effect on the wild-type (WT) subunit. Molecular dynamics simulations suggest that F484L affects the slow gate by increasing the frequency and the stability of H-bond formation between E232 in helix F and Y578 in helix R. Three other myotonic ClC-1 mutations are shown to produce distinct effects on channel function: L198P shifts the slow gate to positive potentials, V640G reduces channel activity, while L628P displays a WT-like behaviour (electrophysiology data only). Our results provide novel insight into the molecular mechanisms underlying normal and altered ClC-1 function. ABSTRACT Myotonia congenita is an inherited disease caused by loss-of-function mutations of the skeletal muscle ClC-1 chloride channel, characterized by impaired muscle relaxation after contraction and stiffness. In the present study, we provided an in-depth characterization of F484L, a mutation previously identified in dominant myotonia, in order to define the genotype-phenotype correlation, and to elucidate the contribution of this pore residue to the mechanisms of ClC-1 gating. Patch-clamp recordings showed that F484L reduced chloride currents at every tested potential and dramatically right-shifted the voltage dependence of slow gating, thus contributing to the mild clinical phenotype of affected heterozygote carriers. Unlike dominant mutations located at the dimer interface, no dominant-negative effect was observed when F484L mutant subunits were co-expressed with wild type. Molecular dynamics simulations further revealed that F484L affected the slow gate by increasing the frequency and stability of the H-bond formation between the pore residue E232 and the R helix residue Y578. In addition, using patch-clamp electrophysiology, we characterized three other myotonic ClC-1 mutations. We proved that the dominant L198P mutation in the channel pore also right-shifted the voltage dependence of slow gating, recapitulating mild myotonia. The recessive V640G mutant drastically reduced channel function, which probably accounts for myotonia. In contrast, the recessive L628P mutant produced currents very similar to wild type, suggesting that the occurrence of the compound truncating mutation (Q812X) or other muscle-specific mechanisms accounted for the severe symptoms observed in this family. Our results provide novel insight into the molecular mechanisms underlying normal and altered ClC-1 function.
Collapse
Affiliation(s)
- P Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari, Bari, Italy
| | - L Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', Milano, Italy
| | - G F Mangiatordi
- Department of Pharmacy - Drug Sciences, University of Bari, Bari, Italy
| | - M M Dinardo
- Department of Pharmacy - Drug Sciences, University of Bari, Bari, Italy
| | - C Altamura
- Department of Pharmacy - Drug Sciences, University of Bari, Bari, Italy
| | - R Brugnoni
- Neuroimmunology and Neuromuscular Diseases Unit, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', Milano, Italy
| | - D Alberga
- Department of Physics 'M. Merlin', INFN and TIRES, University of Bari, Bari, Italy
| | - G Lauria Pinter
- Neuroalgology and Headache Unit, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', Milano, Italy
| | - G Ricci
- Department of Clinical and Experimental Medicine, Section of Neurology, University of Pisa, Pisa, Italy
| | - G Siciliano
- Department of Clinical and Experimental Medicine, Section of Neurology, University of Pisa, Pisa, Italy
| | - R Micheli
- Unit of Child Neurology and Psychiatry, Spedali Civili, Brescia, Italy
| | - G Annicchiarico
- Regional Coordination for Rare Diseases, A. Re. S. Puglia, Bari, Italy
| | - G Lattanzi
- Department of Physics 'M. Merlin', INFN and TIRES, University of Bari, Bari, Italy
| | - O Nicolotti
- Department of Pharmacy - Drug Sciences, University of Bari, Bari, Italy
| | - L Morandi
- Neuroimmunology and Neuromuscular Diseases Unit, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', Milano, Italy
| | - P Bernasconi
- Neuroimmunology and Neuromuscular Diseases Unit, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', Milano, Italy
| | - J-F Desaphy
- Department of Pharmacy - Drug Sciences, University of Bari, Bari, Italy
| | - R Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, IRCCS Fondazione Istituto Neurologico 'Carlo Besta', Milano, Italy
| | - D Conte Camerino
- Department of Pharmacy - Drug Sciences, University of Bari, Bari, Italy
| |
Collapse
|
24
|
Clinical, Molecular, and Functional Characterization of CLCN1 Mutations in Three Families with Recessive Myotonia Congenita. Neuromolecular Med 2015; 17:285-96. [PMID: 26007199 PMCID: PMC4534513 DOI: 10.1007/s12017-015-8356-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023]
Abstract
Myotonia congenita (MC) is an inherited muscle disease characterized by impaired muscle relaxation after contraction, resulting in muscle stiffness. Both recessive (Becker’s disease) or dominant (Thomsen’s disease) MC are caused by mutations in the CLCN1 gene encoding the voltage-dependent chloride ClC-1 channel, which is quite exclusively expressed in skeletal muscle. More than 200 CLCN1 mutations have been associated with MC. We provide herein a detailed clinical, molecular, and functional evaluation of four patients with recessive MC belonging to three different families. Four CLCN1 variants were identified, three of which have never been characterized. The c.244A>G (p.T82A) and c.1357C>T (p.R453W) variants were each associated in compound heterozygosity with c.568GG>TC (p.G190S), for which pathogenicity is already known. The new c.809G>T (p.G270V) variant was found in the homozygous state. Patch-clamp studies of ClC-1 mutants expressed in tsA201 cells confirmed the pathogenicity of p.G270V, which greatly shifts the voltage dependence of channel activation toward positive potentials. Conversely, the mechanisms by which p.T82A and p.R453W cause the disease remained elusive, as the mutated channels behave similarly to WT. The results also suggest that p.G190S does not exert dominant-negative effects on other mutated ClC-1 subunits. Moreover, we performed a RT-PCR quantification of selected ion channels transcripts in muscle biopsies of two patients. The results suggest gene expression alteration of sodium and potassium channel subunits in myotonic muscles; if confirmed, such analysis may pave the way toward a better understanding of disease phenotype and a possible identification of new therapeutic options.
Collapse
|
25
|
Imbrici P, Altamura C, Pessia M, Mantegazza R, Desaphy JF, Camerino DC. ClC-1 chloride channels: state-of-the-art research and future challenges. Front Cell Neurosci 2015; 9:156. [PMID: 25964741 PMCID: PMC4410605 DOI: 10.3389/fncel.2015.00156] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/08/2015] [Indexed: 01/06/2023] Open
Abstract
The voltage-dependent ClC-1 chloride channel belongs to the CLC channel/transporter family. It is a homodimer comprising two individual pores which can operate independently or simultaneously according to two gating modes, the fast and the slow gate of the channel. ClC-1 is preferentially expressed in the skeletal muscle fibers where the presence of an efficient Cl(-) homeostasis is crucial for the correct membrane repolarization and propagation of action potential. As a consequence, mutations in the CLCN1 gene cause dominant and recessive forms of myotonia congenita (MC), a rare skeletal muscle channelopathy caused by abnormal membrane excitation, and clinically characterized by muscle stiffness and various degrees of transitory weakness. Elucidation of the mechanistic link between the genetic defects and the disease pathogenesis is still incomplete and, at this time, there is no specific treatment for MC. Still controversial is the subcellular localization pattern of ClC-1 channels in skeletal muscle as well as its modulation by some intracellular factors. The expression of ClC-1 in other tissues such as in brain and heart and the possible assembly of ClC-1/ClC-2 heterodimers further expand the physiological properties of ClC-1 and its involvement in diseases. A recent de novo CLCN1 truncation mutation in a patient with generalized epilepsy indeed postulates an unexpected role of this channel in the control of neuronal network excitability. This review summarizes the most relevant and state-of-the-art research on ClC-1 chloride channels physiology and associated diseases.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari “Aldo Moro”,Bari, Italy
| | - Concetta Altamura
- Department of Pharmacy - Drug Sciences, University of Bari “Aldo Moro”,Bari, Italy
| | - Mauro Pessia
- Department of Pharmacy - Drug Sciences, University of Bari “Aldo Moro”,Bari, Italy
| | - Renato Mantegazza
- Department of Pharmacy - Drug Sciences, University of Bari “Aldo Moro”,Bari, Italy
| | | | - Diana Conte Camerino
- Department of Pharmacy - Drug Sciences, University of Bari “Aldo Moro”,Bari, Italy
| |
Collapse
|
26
|
Cao L, Li X, Hong D. Normokalemic periodic paralysis with involuntary movements and generalized epilepsy associated with two novel mutations in SCN4A gene. Seizure 2014; 24:134-6. [PMID: 25193600 DOI: 10.1016/j.seizure.2014.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 11/17/2022] Open
Affiliation(s)
- Lingling Cao
- Department of Internal Medicine, The First Hospital of Jiujiang City, Jiujiang, China; Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaobin Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
27
|
Skálová D, Zídková J, Voháňka S, Mazanec R, Mušová Z, Vondráček P, Mrázová L, Kraus J, Réblová K, Fajkusová L. CLCN1 mutations in Czech patients with myotonia congenita, in silico analysis of novel and known mutations in the human dimeric skeletal muscle chloride channel. PLoS One 2013; 8:e82549. [PMID: 24349310 PMCID: PMC3859631 DOI: 10.1371/journal.pone.0082549] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/26/2013] [Indexed: 11/18/2022] Open
Abstract
Myotonia congenita (MC) is a genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1) encoding the skeletal muscle chloride channel (ClC-1). Mutations of CLCN1 result in either autosomal dominant MC (Thomsen disease) or autosomal recessive MC (Becker disease). The ClC-1 protein is a homodimer with a separate ion pore within each monomer. Mutations causing recessive myotonia most likely affect properties of only the mutant monomer in the heterodimer, leaving the wild type monomer unaffected, while mutations causing dominant myotonia affect properties of both subunits in the heterodimer. Our study addresses two points: 1) molecular genetic diagnostics of MC by analysis of the CLCN1 gene and 2) structural analysis of mutations in the homology model of the human dimeric ClC-1 protein. In the first part, 34 different types of CLCN1 mutations were identified in 51 MC probands (14 mutations were new). In the second part, on the basis of the homology model we identified the amino acids which forming the dimer interface and those which form the Cl(-) ion pathway. In the literature, we searched for mutations of these amino acids for which functional analyses were performed to assess the correlation between localisation of a mutation and occurrence of a dominant-negative effect (corresponding to dominant MC). This revealed that both types of mutations, with and without a dominant-negative effect, are localised at the dimer interface while solely mutations without a dominant-negative effect occur inside the chloride channel. This work is complemented by structural analysis of the homology model which provides elucidation of the effects of mutations, including a description of impacts of newly detected missense mutations.
Collapse
Affiliation(s)
- Daniela Skálová
- Centre of Molecular Biology and Gene Therapy, University Hospital, Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jana Zídková
- Centre of Molecular Biology and Gene Therapy, University Hospital, Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Stanislav Voháňka
- Department of Neurology, University Hospital Brno, Brno, Czech Republic
| | - Radim Mazanec
- Department of Neurology, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Zuzana Mušová
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Petr Vondráček
- Department of Child Neurology, University Hospital Brno, Brno, Czech Republic
| | - Lenka Mrázová
- Department of Child Neurology, University Hospital Brno, Brno, Czech Republic
| | - Josef Kraus
- Department of Child Neurology, Second School of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Kamila Réblová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail: (KR); (LF)
| | - Lenka Fajkusová
- Centre of Molecular Biology and Gene Therapy, University Hospital, Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail: (KR); (LF)
| |
Collapse
|
28
|
Ivanova EA, Polyakov AV. Frequency and causes of prevalence of p.Arg894* mutation in CLCN1 gene responsible for development of thomsen’s and becker’s myotonias in russian population. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413090044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
A large cohort of myotonia congenita probands: novel mutations and a high-frequency mutation region in exons 4 and 5 of the CLCN1 gene. J Hum Genet 2013; 58:581-7. [DOI: 10.1038/jhg.2013.58] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 11/08/2022]
|
30
|
Ratbi I, Elalaoui SC, Escudero A, Kriouile Y, Molano J, Sefiani A. Moroccan consanguineous family with Becker myotonia and review. Ann Indian Acad Neurol 2012; 14:307-9. [PMID: 22346025 PMCID: PMC3271475 DOI: 10.4103/0972-2327.91963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 11/05/2010] [Accepted: 12/02/2010] [Indexed: 11/23/2022] Open
Abstract
Myotonia congenita is a genetic muscle disorder characterized by clinical and electrical myotonia, muscle hypertrophy, and stiffness. It is inherited as either autosomal-dominant or –recessive, known as Thomsen and Becker diseases, respectively. These diseases are distinguished by the severity of their symptoms and their patterns of inheritance. Becker disease usually appears later in childhood than Thomsen disease and causes more severe muscle stiffness and pain. Mutations in the muscular voltage-dependent chloride channel gene (CLCN1), located at 7q35, have been found in both types. We report here the case of a Moroccan consanguineous family with a myotonic autosomal-recessive condition in two children. The molecular studies showed that the patients reported here are homozygous for mutation p.Gly482Arg in the CLCN1 gene. The parents were heterozygote carriers for mutation p.Gly482Arg. This diagnosis allowed us to provide an appropriate management to the patients and to make a genetic counselling to their family.
Collapse
Affiliation(s)
- Ilham Ratbi
- Human Genomic Center, Faculty of medicine and pharmacy, University Mohammed V Souissi, Rabat, Morocco
| | | | | | | | | | | |
Collapse
|