1
|
Sun A, Liu S, Yin F, Li Z, Liu Z. Circulating inflammatory cytokines and sarcopenia-related traits: a mendelian randomization analysis. Front Med (Lausanne) 2024; 11:1351376. [PMID: 39193020 PMCID: PMC11347448 DOI: 10.3389/fmed.2024.1351376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Objective To explore the causal relationships between 91 circulating inflammatory cytokines and sarcopenia-related traits (low hand grip strength, appendicular lean mass, and usual walking pace) by Mendelian randomized analysis. Methods Independent genetic variations of inflammatory cytokines and sarcopenia-related traits were selected as instrumental variables from publicly available genome-wide association studies (GWAS). The MR analysis was primarily conducted using the inverse variance-weighted (IVW) method. Sensitivity analyses included Steiger filtering and MR PRESSO, with additional assessments for heterogeneity and pleiotropy. Results The IVW method indicated a causal relationship between Vascular Endothelial Growth Factor A (VEGF-A) and low hand grip strength (OR = 1.05654, 95% CI: 1.02453 to 1.08956, P = 0.00046). Additionally, Tumor Necrosis Factor-beta (TNF-β) was found to have a causal relationship with appendicular lean mass (ALM) (β = 0.04255, 95% CI: 0.02838 to 0.05672, P = 3.96E-09). There was no evidence suggesting a significant causal relationship between inflammatory cytokines and usual walking pace. Conclusion Our research substantiated the causal association between inflammatory cytokines, such as VEGF-A and TNF-β, and sarcopenia. This finding may provide new avenues for future clinical treatments.
Collapse
Affiliation(s)
- Aochuan Sun
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Saiya Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fen Yin
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuangzhuang Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengtang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Associations between inflammatory markers and muscle strength in older adults according to the presence or absence of obesity. Exp Gerontol 2021; 151:111409. [PMID: 34022276 DOI: 10.1016/j.exger.2021.111409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND We investigated the association between inflammatory markers and muscle strength in older adults according to the presence or absence of obesity. Dynapenia is the age-related decline in muscle strength and results in negative outcomes to older adults. Accordingly, obesity is more prevalent throughout aging and is associated with comorbidities, such as type 2 diabetes, dyslipidemia and cardiovascular diseases. Both dynapenia and obesity are strongly linked to chronic inflammation, sharing common signaling pathways. METHODS We recruited 247 older adults aged 60 or older and collected sociodemographic, anthropometric and metabolic data. Dynapenia was diagnosed according to the European Working Group on Sarcopenia in Older People 2 (EWGSOP2) criteria. Circulating inflammatory cytokines were measured in plasma using a multiplex panel kit. Anthropometric, sociodemographic, lipid profile, and fasting blood glucose were also assessed. RESULTS Dynapenic participants were predominantly males (74.4%), had insufficiently active lifestyle and higher IL-10 plasma levels (0.95 pg/mL; 0.40-2.12). The prevalence of obesity was higher among non-dynapenic participants (45.3%; 95% CI, 37.7-53). In dynapenic older adults, obesity was predominant in males (53.6%) and subjects with normal muscle strength had higher serum levels of TNF-β (0.63 pg/mL; 0.30-1.30) and lower hand-grip strength (24 kg; 20.00-28.00). Using a multivariate quantile regression analysis, we found a strong and negative association between IL-10 and muscle strength. CONCLUSIONS This study can help to understand the association of inflammation, obesity and muscle strength to promote interventions in order to avoid or delay the negative outcomes associated with dynapenia and sarcopenia in older adults.
Collapse
|
3
|
De Paepe B, Zschüntzsch J, Šokčević T, Weis J, Schmidt J, De Bleecker JL. Induction of Osmolyte Pathways in Skeletal Muscle Inflammation: Novel Biomarkers for Myositis. Front Neurol 2018; 9:846. [PMID: 30364257 PMCID: PMC6193116 DOI: 10.3389/fneur.2018.00846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/20/2018] [Indexed: 12/28/2022] Open
Abstract
We recently identified osmolyte accumulators as novel biomarkers for chronic skeletal muscle inflammation and weakness, but their precise involvement in inflammatory myopathies remains elusive. In the current study, we demonstrate in vitro that, in myoblasts and myotubes exposed to pro-inflammatory cytokines or increased salt concentration, mRNA levels of the osmolyte carriers SLC5A3, SLC6A6, SLC6A12, and AKR1B1 enzyme can be upregulated. Induction of SLC6A12 and AKR1B1 was confirmed at the protein level using immunofluorescence and Western blotting. Gene silencing by specific siRNAs revealed that these factors were vital for muscle cells under hyperosmotic conditions. Pro-inflammatory cytokines activated mitogen-activated protein kinases, nuclear factor κB as well as nuclear factor of activated T-cells 5 mRNA expression. In muscle biopsies from patients with polymyositis or sporadic inclusion body myositis, osmolyte pathway activation was observed in regenerating muscle fibers. In addition, the osmolyte carriers SLC5A3 and SLC6A12 localized to subsets of immune cells, most notably to the endomysial macrophages and T-cells. Collectively, this study unveiled that muscle cells respond to osmotic and inflammatory stress by osmolyte pathway activation, likely orchestrating general protection of the tissue. Moreover, pro-inflammatory properties are attributed to SLC5A3 and SLC6A12 in auto-aggressive macrophages and T-cells in inflamed skeletal muscle.
Collapse
Affiliation(s)
- Boel De Paepe
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Tea Šokčević
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Joachim Weis
- Institute for Neuropathology, Reinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan L De Bleecker
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
4
|
Herbelet S, De Vlieghere E, Gonçalves A, De Paepe B, Schmidt K, Nys E, Weynants L, Weis J, Van Peer G, Vandesompele J, Schmidt J, De Wever O, De Bleecker JL. Localization and Expression of Nuclear Factor of Activated T-Cells 5 in Myoblasts Exposed to Pro-inflammatory Cytokines or Hyperosmolar Stress and in Biopsies from Myositis Patients. Front Physiol 2018. [PMID: 29515464 PMCID: PMC5826317 DOI: 10.3389/fphys.2018.00126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aims: Regeneration in skeletal muscle relies on regulated myoblast migration and differentiation, in which the transcription factor nuclear factor of activated T-cells 5 (NFAT5) participates. Impaired muscle regeneration and chronic inflammation are prevalent in myositis. Little is known about the impact of inflammation on NFAT5 localization and expression in this group of diseases. The goal of this study was to investigate NFAT5 physiology in unaffected myoblasts exposed to cytokine or hyperosmolar stress and in myositis. Methods: NFAT5 intracellular localization and expression were studied in vitro using a cell culture model of myositis. Myoblasts were exposed to DMEM solutions enriched with pro-inflammatory cytokines IFN-γ with IL-1β or hyperosmolar DMEM obtained by NaCl supplementation. NFAT5 localization was visualized using immunohistochemistry (IHC) and Western blotting (WB) in fractionated cell lysates. NFAT5 expression was assessed by WB and RT-qPCR. In vivo localization and expression of NFAT5 were studied in muscle biopsies of patients diagnosed with polymyositis (n = 6), dermatomyositis (n = 10), inclusion body myositis (n = 11) and were compared to NFAT5 localization and expression in non-myopathic controls (n = 13). Muscle biopsies were studied by means of quantitative IHC and WB of total protein extracts. Results: In unaffected myoblasts, hyperosmolar stress ensues in NFAT5 nuclear translocation and increased NFAT5 mRNA and protein expression. In contrast, pro-inflammatory cytokines did not lead to NFAT5 nuclear translocation nor increased expression. Cytokines IL-1β with IFN-γ induced colocalization of NFAT5 with histone deacetylase 6 (HDAC6), involved in cell motility. In muscle biopsies from dermatomyositis and polymyositis patients, NFAT5 colocalized with HDAC6, while in IBM, this was often absent. Conclusions: Our data suggest impaired NFAT5 localization and expression in unaffected myoblasts in response to inflammation. This disturbed myogenic NFAT5 physiology could possibly explain deleterious effects on muscle regeneration in myositis.
Collapse
Affiliation(s)
- Sandrine Herbelet
- Department of Neurology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Elly De Vlieghere
- Cancer Research Institute Ghent and Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Amanda Gonçalves
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB Bio Imaging Core Gent, Ghent, Belgium
| | - Boel De Paepe
- Department of Neurology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Karsten Schmidt
- Department of Neurology and Department of Experimental and Clinical Neuroimmunology, University of Göttingen, Göttingen, Germany
| | - Eline Nys
- Department of Neurology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Laurens Weynants
- Department of Neurology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen Medical School, Aachen, Germany
| | - Gert Van Peer
- Center for Medical Genetics and Cancer Research Institute Ghent, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics and Cancer Research Institute Ghent, Ghent, Belgium
| | - Jens Schmidt
- Department of Neurology and Department of Experimental and Clinical Neuroimmunology, University of Göttingen, Göttingen, Germany
| | - Olivier De Wever
- Cancer Research Institute Ghent and Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Jan L De Bleecker
- Department of Neurology, Ghent University and Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
5
|
De Paepe B. A recipe for myositis: nuclear factor κB and nuclear factor of activated T-cells transcription factor pathways spiced up by cytokines. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.1.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Kieckens E, Rybarczyk J, Li RW, Vanrompay D, Cox E. Potential immunosuppressive effects of Escherichia coli O157:H7 experimental infection on the bovine host. BMC Genomics 2016; 17:1049. [PMID: 28003017 PMCID: PMC5178093 DOI: 10.1186/s12864-016-3374-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Enterohaemorrhagic Escherichia coli (EHEC), like E. coli O157:H7 are frequently detected in bovine faecal samples at slaughter. Cattle do not show clinical symptoms upon infection, but for humans the consequences after consuming contaminated beef can be severe. The immune response against EHEC in cattle cannot always clear the infection as persistent colonization and shedding in infected animals over a period of months often occurs. In previous infection trials, we observed a primary immune response after infection which was unable to protect cattle from re-infection. These results may reflect a suppression of certain immune pathways, making cattle more prone to persistent colonization after re-infection. To test this, RNA-Seq was used for transcriptome analysis of recto-anal junction tissue and ileal Peyer's patches in nine Holstein-Friesian calves in response to a primary and secondary Escherichia coli O157:H7 infection with the Shiga toxin (Stx) negative NCTC12900 strain. Non-infected calves served as controls. RESULTS In tissue of the recto-anal junction, only 15 genes were found to be significantly affected by a first infection compared to 1159 genes in the ileal Peyer's patches. Whereas, re-infection significantly changed the expression of 10 and 17 genes in the recto-anal junction tissue and the Peyer's patches, respectively. A significant downregulation of 69 immunostimulatory genes and a significant upregulation of seven immune suppressing genes was observed. CONCLUSIONS Although the recto-anal junction is a major site of colonization, this area does not seem to be modulated upon infection to the same extent as ileal Peyer's patches as the changes in gene expression were remarkably higher in the ileal Peyer's patches than in the recto-anal junction during a primary but not a secondary infection. We can conclude that the main effect on the transcriptome was immunosuppression by E. coli O157:H7 (Stx-) due to an upregulation of immune suppressive effects (7/12 genes) or a downregulation of immunostimulatory effects (69/94 genes) in the ileal Peyer's patches. These data might indicate that a primary infection promotes a re-infection with EHEC by suppressing the immune function.
Collapse
Affiliation(s)
- E. Kieckens
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - J. Rybarczyk
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - R. W. Li
- USDA-ARS, Bovine Functional Genomics Laboratory, Beltsville, MD USA
| | - D. Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - E. Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
7
|
De Paepe B, Martin JJ, Herbelet S, Jimenez-Mallebrera C, Iglesias E, Jou C, Weis J, De Bleecker JL. Activation of osmolyte pathways in inflammatory myopathy and Duchenne muscular dystrophy points to osmoregulation as a contributing pathogenic mechanism. J Transl Med 2016; 96:872-84. [PMID: 27322952 DOI: 10.1038/labinvest.2016.68] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/25/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022] Open
Abstract
Alongside well-known nuclear factor κB (NFκB) and its associated cytokine networks, nuclear factor of activated T cells 5 (NFAT5), the master regulator of cellular osmoprotective programs, comes forward as an inflammatory regulator. To gain insight into its yet unexplored role in muscle disease, we studied the expression of NFAT5 target proteins involved in osmolyte accumulation: aldose reductase (AR), taurine transporter (TauT), and sodium myo-inositol co-transporter (SMIT). We analyzed idiopathic inflammatory myopathy and Duchenne muscular dystrophy muscle biopsies and myotubes in culture, using immunohistochemistry, immunofluorescence, and western blotting. We report that the level of constitutive AR was upregulated in patients, most strongly so in Duchenne muscular dystrophy. TauT and SMIT expression levels were induced in patients' muscle fibers, mostly representing regenerating and atrophic fibers. In dermatomyositis, strong staining for AR, TauT, and SMIT in atrophic perifascicular fibers was accompanied by staining for other molecular NFAT5 targets, including chaperones, chemokines, and inducible nitric oxide synthase. In these fibers, NFAT5 and NFκB p65 staining coincided, linking both transcription factors with this important pathogenic hallmark. In sporadic inclusion body myositis, SMIT localized to inclusions inside muscle fibers. In addition, SMIT was expressed by a substantial subset of muscle-infiltrating macrophages and T cells in patient biopsies. Our results indicate that osmolyte pathways may contribute to normal muscle functioning, and that activation of AR, TauT, and SMIT in muscle inflammation possibly contributes to the tissue's failing program of damage control.
Collapse
Affiliation(s)
- Boel De Paepe
- Department of Neurology, Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Jean-Jacques Martin
- Department of Ultrastructural Neuropathology, Born-Bunge Institute, Antwerp University Hospital, Wilrijk, Belgium
| | - Sandrine Herbelet
- Department of Neurology, Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Cecilia Jimenez-Mallebrera
- Department of Neurology, Neuromuscular Unit, Hospital Sant Joan de DeuBarcelona, Esplugues de Llobregat, Spain
| | - Estibaliz Iglesias
- Department of Pediatrics, Hospital Sant Joan de Deu Barcelona, Esplugues de Llobregat, Spain
| | - Cristina Jou
- Department of Pathology and Biobank, Hospital Sant Joan de Deu Barcelona, Esplugues de Llobregat, Spain
| | - Joachim Weis
- Institute for Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jan L De Bleecker
- Department of Neurology, Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
8
|
De Paepe B, Zschüntzsch J. Scanning for Therapeutic Targets within the Cytokine Network of Idiopathic Inflammatory Myopathies. Int J Mol Sci 2015; 16:18683-713. [PMID: 26270565 PMCID: PMC4581266 DOI: 10.3390/ijms160818683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/17/2022] Open
Abstract
The idiopathic inflammatory myopathies (IIM) constitute a heterogeneous group of chronic disorders that include dermatomyositis (DM), polymyositis (PM), sporadic inclusion body myositis (IBM) and necrotizing autoimmune myopathy (NAM). They represent distinct pathological entities that, most often, share predominant inflammation in muscle tissue. Many of the immunopathogenic processes behind the IIM remain poorly understood, but the crucial role of cytokines as essential regulators of the intramuscular build-up of inflammation is undisputed. This review describes the extensive cytokine network within IIM muscle, characterized by strong expression of Tumor Necrosis Factors (TNFα, LTβ, BAFF), Interferons (IFNα/β/γ), Interleukins (IL-1/6/12/15/18/23) and Chemokines (CXCL9/10/11/13, CCL2/3/4/8/19/21). Current therapeutic strategies and the exploration of potential disease modifying agents based on manipulation of the cytokine network are provided. Reported responses to anti-TNFα treatment in IIM are conflicting and new onset DM/PM has been described after administration of anti-TNFα agents to treat other diseases, pointing to the complex effects of TNFα neutralization. Treatment with anti-IFNα has been shown to suppress the IFN type 1 gene signature in DM/PM patients and improve muscle strength. Beneficial effects of anti-IL-1 and anti-IL-6 therapy have also been reported. Cytokine profiling in IIM aids the development of therapeutic strategies and provides approaches to subtype patients for treatment outcome prediction.
Collapse
Affiliation(s)
- Boel De Paepe
- Neuromuscular Reference Center, Laboratory for Neuropathology, 10K12E, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Centre, Göttingen University, 37075 Göttingen, Germany.
| |
Collapse
|
9
|
De Paepe B, De Bleecker JL. Cytokines and chemokines as regulators of skeletal muscle inflammation: presenting the case of Duchenne muscular dystrophy. Mediators Inflamm 2013; 2013:540370. [PMID: 24302815 PMCID: PMC3835490 DOI: 10.1155/2013/540370] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/09/2013] [Indexed: 01/09/2023] Open
Abstract
Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary effects on muscle fiber damage control and tissue regeneration. In this review, current knowledge of cytokine and chemokine expression in Duchenne muscular dystrophy and its relevant animal disease models is listed, and implications for future therapeutic avenues are discussed.
Collapse
Affiliation(s)
- Boel De Paepe
- Laboratory for Myopathology, Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Jan L. De Bleecker
- Laboratory for Myopathology, Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
10
|
The tumor necrosis factor superfamily of cytokines in the inflammatory myopathies: potential targets for therapy. Clin Dev Immunol 2011; 2012:369432. [PMID: 22110532 PMCID: PMC3202109 DOI: 10.1155/2012/369432] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/28/2011] [Accepted: 08/15/2011] [Indexed: 12/11/2022]
Abstract
The idiopathic inflammatory myopathies (IM) represent a heterogeneous group of autoimmune diseases, of which dermatomyositis (DM), polymyositis (PM), and sporadic inclusion body myositis (IBM) are the most common. The crucial role played by tumor necrosis factor alpha (TNFα) in the IM has long been recognized. However, so far, 18 other members of the TNF superfamily have been characterized, and many of these have not yet received the attention they deserve. In this paper, we summarize current findings for all TNF cytokines in IM, pinpointing what we know already and where current knowledge fails. For each TNF family member, possibilities for treating inflammatory diseases in general and the IM in particular are explored.
Collapse
|