1
|
McDonald C, Camino E, Escandon R, Finkel RS, Fischer R, Flanigan K, Furlong P, Juhasz R, Martin AS, Villa C, Sweeney HL. Draft Guidance for Industry Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Related Dystrophinopathies - Developing Potential Treatments for the Entire Spectrum of Disease. J Neuromuscul Dis 2024; 11:499-523. [PMID: 38363616 DOI: 10.3233/jnd-230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Duchenne muscular dystrophy (DMD) and related dystrophinopathies are neuromuscular conditions with great unmet medical needs that require the development of effective medical treatments. Objective To aid sponsors in clinical development of drugs and therapeutic biological products for treating DMD across the disease spectrum by integrating advancements, patient registries, natural history studies, and more into a comprehensive guidance. Methods This guidance emerged from collaboration between the FDA, the Duchenne community, and industry stakeholders. It entailed a structured approach, involving multiple committees and boards. From its inception in 2014, the guidance underwent revisions incorporating insights from gene therapy studies, cardiac function research, and innovative clinical trial designs. Results The guidance provides a deeper understanding of DMD and its variants, focusing on patient engagement, diagnostic criteria, natural history, biomarkers, and clinical trials. It underscores patient-focused drug development, the significance of dystrophin as a biomarker, and the pivotal role of magnetic resonance imaging in assessing disease progression. Additionally, the guidance addresses cardiomyopathy's prominence in DMD and the burgeoning field of gene therapy. Conclusions The updated guidance offers a comprehensive understanding of DMD, emphasizing patient-centric approaches, innovative trial designs, and the importance of biomarkers. The focus on cardiomyopathy and gene therapy signifies the evolving realm of DMD research. It acts as a crucial roadmap for sponsors, potentially leading to improved treatments for DMD.
Collapse
Affiliation(s)
| | - Eric Camino
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rafael Escandon
- DGBI Consulting, LLC, Bainbridge Island, Washington, DC, USA
| | | | - Ryan Fischer
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Kevin Flanigan
- Center for Experimental Neurotherapeutics, Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pat Furlong
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rose Juhasz
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Ann S Martin
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Chet Villa
- Trinity Health Michigan, Grand Rapids, MI, USA
| | - H Lee Sweeney
- Cincinnati Children's Hospital Medical Center within the UC Department of Pediatrics, Cincinnati, OH, USA
| |
Collapse
|
2
|
Vandekerckhove I, Van den Hauwe M, De Beukelaer N, Stoop E, Goudriaan M, Delporte M, Molenberghs G, Van Campenhout A, De Waele L, Goemans N, De Groote F, Desloovere K. Longitudinal Alterations in Gait Features in Growing Children With Duchenne Muscular Dystrophy. Front Hum Neurosci 2022; 16:861136. [PMID: 35721358 PMCID: PMC9201072 DOI: 10.3389/fnhum.2022.861136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022] Open
Abstract
Prolonging ambulation is an important treatment goal in children with Duchenne muscular dystrophy (DMD). Three-dimensional gait analysis (3DGA) could provide sensitive parameters to study the efficacy of clinical trials aiming to preserve ambulation. However, quantitative descriptions of the natural history of gait features in DMD are first required. The overall goal was to provide a full delineation of the progressive gait pathology in children with DMD, covering the entire period of ambulation, by performing a so-called mixed cross-sectional longitudinal study. Firstly, to make our results comparable with previous literature, we aimed to cross-sectionally compare 31 predefined gait features between children with DMD and a typically developing (TD) database (1). Secondly, we aimed to explore the longitudinal changes in the 31 predefined gait features in growing boys with DMD using follow-up 3DGA sessions (2). 3DGA-sessions (n = 124) at self-selected speed were collected in 27 boys with DMD (baseline age: 4.6-15 years). They were repeatedly measured over a varying follow-up period (range: 6 months-5 years). The TD group consisted of 27 children (age: 5.4-15.6 years). Per measurement session, the spatiotemporal parameters, and the kinematic and kinetic waveforms were averaged over the selected gait cycles. From the averaged waveforms, discrete gait features (e.g., maxima and minima) were extracted. Mann-Whitney U tests were performed to cross-sectionally analyze the differences between DMD at baseline and TD (1). Linear mixed effect models were performed to assess the changes in gait features in the same group of children with DMD from both a longitudinal (i.e., increasing time) as well as a cross-sectional perspective (i.e., increasing baseline age) (2). At baseline, the boys with DMD differed from the TD children in 17 gait features. Additionally, 21 gait features evolved longitudinally when following-up the same boys with DMD and 25 gait features presented a significant cross-sectional baseline age-effect. The current study quantitatively described the longitudinal alterations in gait features in boys with DMD, thereby providing detailed insight into how DMD gait deteriorates. Additionally, our results highlight that gait features extracted from 3DGA are promising outcome measures for future clinical trials to quantify the efficacy of novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Marleen Van den Hauwe
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Elze Stoop
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Marije Goudriaan
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Margaux Delporte
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), KU Leuven, Leuven, Belgium
| | - Geert Molenberghs
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), KU Leuven, Leuven, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Anja Van Campenhout
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium
| | - Liesbeth De Waele
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Nathalie Goemans
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Trost JP, Chen M, Stark MM, Hodges JS, Richter S, Lindsay A, Warren GL, Lowe DA, Kimberley TJ. Voluntary and magnetically evoked muscle contraction protocol in males with Duchenne muscular dystrophy: Safety, feasibility, reliability, and validity. Muscle Nerve 2021; 64:190-198. [PMID: 33974714 DOI: 10.1002/mus.27323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 01/21/2023]
Abstract
INTRODUCTION/AIMS Clinical trials addressing treatments for Duchenne muscular dystrophy (DMD) require reliable and valid measurement of muscle contractile function across all disease severity levels. In this work we aimed to evaluate a protocol combining voluntary and evoked contractions to measure strength and excitability of wrist extensor muscles for safety, feasibility, reliability, and discriminant validity between males with DMD and controls. METHODS Wrist extensor muscle strength and excitability were assessed in males with DMD (N = 10; mean ± standard deviation: 15.4 ± 5.9 years of age), using the Brooke Upper Extremity Rating Scale (scored 1-6), and age-matched healthy male controls (N = 15; 15.5 ± 5.0 years of age). Torque and electromyographic (EMG) measurements were analyzed under maximum voluntary and stimulated conditions at two visits. RESULTS A protocol of multiple maximal voluntary contractions (MVCs) and evoked twitch contractions was feasible and safe, with 96% of the participants completing the protocol and having a less than 7% strength decrement on either measure for both DMD patients and controls (P ≥ .074). Reliability was excellent for voluntary and evoked measurements of torque and EMG (intraclass correlation coefficient [ICC] over 0.90 and over 0.85 within and between visits, respectively). Torque, EMG, and timing of twitch-onset measurements discriminated between DMD and controls (P < .001). Twitch contraction time did not differ significantly between groups (P = .10). DISCUSSION Findings from this study show that the protocol is a safe, feasible, reliable, and a valid method to measure strength and excitability of wrist extensors in males with DMD.
Collapse
Affiliation(s)
- Joyceann P Trost
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mo Chen
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Molly M Stark
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - James S Hodges
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sara Richter
- Professional Data Analysts, Minneapolis, Minnesota, USA
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia, USA
| | - Dawn A Lowe
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Teresa J Kimberley
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,School of Health and Rehabilitation Sciences, Department of Physical Therapy, MGH Institute of Health Professions, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Glover S, Hendron J, Taylor B, Long M. Understanding carer resilience in Duchenne muscular dystrophy: A systematic narrative review. Chronic Illn 2020; 16:87-103. [PMID: 30049227 DOI: 10.1177/1742395318789472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives This review synthesizes recent research on resilience in those who care for a family member with Duchenne muscular dystrophy, identifying the challenges and potential factors moderating resilience. Methods This systematic narrative review is informed by searches on six bibliographic databases between January and June 2016. Forty-one articles were identified to meet the inclusion criteria, and findings were synthesised around three key themes. Results Those who care for someone with Duchenne muscular dystrophy have been described as resilient through building strength in facing the adversity of caring. The main predictors of carer resilience were the child’s level of disability, perception of the caring experience and family functioning. The outcomes of resilience were identified as better psychological and physical health as well as psychological adaption. Coping abilities and social support, influenced by individual and environmental factors contribute to resilience. Discussion Research suggested that some carers have the ability to build resilience over time, although limited understanding of coping with the emotional experience of Duchenne muscular dystrophy is conveyed. Social support appears to be a protective factor for Duchenne muscular dystrophy carers but further research is required on its relationship with resilience.
Collapse
Affiliation(s)
- Suzanne Glover
- School of Communication, Ulster University, Newtownabbey, Belfast
| | - Jill Hendron
- School of Communication, Ulster University, Newtownabbey, Belfast
| | - Brian Taylor
- School of Sociology and Applied Social Studies, Ulster University, Belfast
| | - Maggie Long
- School of Communication, Ulster University, Newtownabbey, Belfast
| |
Collapse
|
5
|
McDonald CM, Sajeev G, Yao Z, McDonnell E, Elfring G, Souza M, Peltz SW, Darras BT, Shieh PB, Cox DA, Landry J, Signorovitch J, for the ACT DMD Study Group and the Tadalafil DMD Study Group. Deflazacort vs prednisone treatment for Duchenne muscular dystrophy: A meta-analysis of disease progression rates in recent multicenter clinical trials. Muscle Nerve 2020; 61:26-35. [PMID: 31599456 PMCID: PMC6973289 DOI: 10.1002/mus.26736] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION In this study we characterized disease progression over 48 weeks among boys receiving deflazacort vs prednisone/prednisolone placebo arm treatment in two recent Duchenne muscular dystrophy (DMD) clinical trials. METHODS Ambulatory boys with DMD receiving placebo in the phase 3 ataluren (N = 115) and tadalafil (N = 116) trials were included. The trials required at least 6 months of prior corticosteroid use and stable baseline dosing. Associations between corticosteroid use and 48-week changes in ambulatory function were estimated using mixed models. Adjusted differences between corticosteroid groups were pooled in a meta-analysis. RESULTS In the meta-analysis, deflazacort-treated patients vs prednisone/prednisolone-treated patients experienced, on average, lower declines of 28.3 meters on 6-minute walk distance (95% confidence interval [CI], 5.7, 50.9; 2.9 seconds on rise from supine [95% CI, 0.9, 4.9 seconds]; 2.3 seconds on 4-stair climb [95% CI, 0.5, 4.1 seconds]; and 2.9 [95% CI, 0.1, 5.8] points on the North Star Ambulatory Assessment linearized score). DISCUSSION Deflazacort-treated patients experienced significantly lower functional decline over 48 weeks.
Collapse
Affiliation(s)
- Craig M. McDonald
- Physical Medicine and Rehabilitation PediatricsUniversity of California Davis Health SystemSacramentoCalifornia
| | | | | | | | | | | | | | - Basil T. Darras
- Department of NeurologyBoston Children's HospitalBostonMassachusetts
| | - Perry B. Shieh
- NeurologyUniversity of California at Los AngelesLos AngelesCalifornia
| | | | | | | | | |
Collapse
|
6
|
Werneck LC, Lorenzoni PJ, Ducci RDP, Fustes OH, Kay CSK, Scola RH. Duchenne muscular dystrophy: an historical treatment review. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 77:579-589. [PMID: 31508685 DOI: 10.1590/0004-282x20190088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/29/2019] [Indexed: 11/22/2022]
Abstract
In this review, we discuss the therapies used in the treatment of patients with Duchenne muscular dystrophy since the first description of the disease. A short description is given of the various theories based on disease pathogenesis, which give the substrates for the many therapeutic interventions. A brief review of the methods of evaluation used in therapeutic trials is made. Of all the treatments, the only drugs that are still considered able to modify the course of the disease are the corticosteroids (prednisone/prednisolone/deflazacort). Other drugs (coenzyme Q10 and creatine) have had a little effect in a few functions without adverse reactions. Idebenone seems to improve the respiratory function in the long term. The trials with mRNA transcription, through nonsense mutations or exon 51 skipping, show some beneficial results in a few functional tests, but they are limited to a small set of DMD patients.
Collapse
Affiliation(s)
- Lineu Cesar Werneck
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Doenças Neuromusculares, Curitiba PR, Brasil
| | - Paulo José Lorenzoni
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Doenças Neuromusculares, Curitiba PR, Brasil
| | - Renata Dal-Prá Ducci
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Doenças Neuromusculares, Curitiba PR, Brasil
| | - Otto Hernández Fustes
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Doenças Neuromusculares, Curitiba PR, Brasil
| | - Cláudia Suemi Kamoi Kay
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Doenças Neuromusculares, Curitiba PR, Brasil
| | - Rosana Herminia Scola
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Doenças Neuromusculares, Curitiba PR, Brasil
| |
Collapse
|
7
|
Quintana M, Shrader J, Slota C, Joe G, McKew JC, Fitzgerald M, Gahl WA, Berry S, Carrillo N. Bayesian model of disease progression in GNE myopathy. Stat Med 2018; 38:1459-1474. [PMID: 30511500 DOI: 10.1002/sim.8050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/25/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022]
Abstract
One Sentence Summary: A Bayesian repeated measures model based on quantitative muscle strength data from a prospective Natural History Study was developed to determine disease progression and design clinical trials for GNE myopathy, a rare and slowly progressive muscle disease. GNE myopathy is a rare muscle disease characterized by slowly progressive weakness and atrophy of skeletal muscles. To address the significant challenges of defining the natural history and designing clinical trials for GNE myopathy, we developed a Bayesian latent variable repeated measures model to determine disease progression. The model is based on longitudinal quantitative muscle strength data collected as part of a prospective Natural History Study. The GNE Myopathy Progression Model provides an understanding of disease progression that would have otherwise required a natural history of unfeasible duration. "Disease age," the model-generated measure of disease progression, highly correlates with a variety of clinical, functional and patient-reported outcomes. With the incorporation of a treatment effect parameter to the GNE Disease Progression Model, we describe a novel GNE Myopathy Disease Modification Analysis that significantly increases power and reduces the number of subjects required to test the effectiveness of novel therapies when compared to more traditional analysis methods. The GNE Myopathy Disease Progression Model and Disease Modification Analysis can be applied to muscle diseases with prospectively collected muscle strength data, and a variety of rare and slowly progressive diseases.
Collapse
Affiliation(s)
| | - J Shrader
- Department of Rehabilitation Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - C Slota
- Therapeutics for Rare and Neglected Diseases Program, National Institutes of Health, Bethesda, Maryland.,RTI Health Solutions, Durham, North Carolina
| | - G Joe
- Department of Rehabilitation Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - J C McKew
- Therapeutics for Rare and Neglected Diseases Program, National Institutes of Health, Bethesda, Maryland
| | | | - W A Gahl
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - S Berry
- Berry Consultants, Austin, Texas.,Kansas University Medical Center, Kansas City, Kansas
| | - N Carrillo
- Therapeutics for Rare and Neglected Diseases Program, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Houang EM, Sham YY, Bates FS, Metzger JM. Muscle membrane integrity in Duchenne muscular dystrophy: recent advances in copolymer-based muscle membrane stabilizers. Skelet Muscle 2018; 8:31. [PMID: 30305165 PMCID: PMC6180502 DOI: 10.1186/s13395-018-0177-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
The scientific premise, design, and structure-function analysis of chemical-based muscle membrane stabilizing block copolymers are reviewed here for applications in striated muscle membrane injury. Synthetic block copolymers have a rich history and wide array of applications from industry to biology. Potential for discovery is enabled by a large chemical space for block copolymers, including modifications in block copolymer mass, composition, and molecular architecture. Collectively, this presents an impressive chemical landscape to leverage distinct structure-function outcomes. Of particular relevance to biology and medicine, stabilization of damaged phospholipid membranes using amphiphilic block copolymers, classified as poloxamers or pluronics, has been the subject of increasing scientific inquiry. This review focuses on implementing block copolymers to protect fragile muscle membranes against mechanical stress. The review highlights interventions in Duchenne muscular dystrophy, a fatal disease of progressive muscle deterioration owing to marked instability of the striated muscle membrane. Biophysical and chemical engineering advances are presented that delineate and expand upon current understanding of copolymer-lipid membrane interactions and the mechanism of stabilization. The studies presented here serve to underscore the utility of copolymer discovery leading toward the therapeutic application of block copolymers in Duchenne muscular dystrophy and potentially other biomedical applications in which membrane integrity is compromised.
Collapse
Affiliation(s)
- Evelyne M. Houang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455 USA
| | - Yuk Y. Sham
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455 USA
- University of Minnesota Informatics Institute, MN, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, MN, USA
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, MN, USA
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455 USA
| |
Collapse
|
9
|
Morse CI, Bostock EL, Twiss HM, Kapp LH, Orme P, Jacques MF. The cardiorespiratory response and physiological determinants of the assisted 6-minute handbike cycle test in adult males with muscular dystrophy. Muscle Nerve 2018; 58:427-433. [PMID: 29669172 PMCID: PMC6175197 DOI: 10.1002/mus.26146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The assisted 6-minute cycle test (A6MCT) distance was assessed in adults with muscular dystrophy (MD). METHODS Forty-eight males, including those with Duchenne MD (DMD), limb-girdle MD (LGMD), fascioscapulohumeral MD (FSHD), and Becker MD (BMD), as well as a group without MD (CTRL), completed handgrip strength (HGS), lung function [forced expiratory volume in 1 second (FEV1 ) and forced vital capacity (FVC)], body fat, and biceps thickness assessments. During the A6MCT, ventilation (VE), oxygen uptake (VO2 ), carbon dioxide (VCO2 ), and heart rate (HR) were recorded. RESULTS A6MCT and HGS were lower in MD than CTRL subjects. FEV1 , FVC, and biceps thickness were lower in MD than CTRL; lower in DMD than BMD, LGMD, and FSHD; but were not different between BMD, LGMD, and FSHD. A6MCT correlated with HGS, FEV1 , FVC, body fat, VO2 , VCO2 , HR, and VE (r = 0.455-0.708) in pooled BMD, LGMD, and FSHD participants. DISCUSSION A shorter A6MCT distance in adult males with MD was attributable to HGS and lung function. The A6MCT is appropriate for assessment of physical function in adults with MD. Muscle Nerve 58: 427-433, 2018.
Collapse
Affiliation(s)
- Christopher I. Morse
- Health, Exercise and Active Living Research Centre, Department of Sport and Exercise SciencesManchester Metropolitan University CheshireCreweCW1 5DUUK
| | - Emma L. Bostock
- Health, Exercise and Active Living Research Centre, Department of Sport and Exercise SciencesManchester Metropolitan University CheshireCreweCW1 5DUUK
| | - Harriet M. Twiss
- Health, Exercise and Active Living Research Centre, Department of Sport and Exercise SciencesManchester Metropolitan University CheshireCreweCW1 5DUUK
| | - Laura H. Kapp
- Health, Exercise and Active Living Research Centre, Department of Sport and Exercise SciencesManchester Metropolitan University CheshireCreweCW1 5DUUK
| | - Paul Orme
- The Neuromuscular CentreWinsfordCheshireUK
| | - Matthew F. Jacques
- Health, Exercise and Active Living Research Centre, Department of Sport and Exercise SciencesManchester Metropolitan University CheshireCreweCW1 5DUUK
| |
Collapse
|
10
|
Nutrition in Duchenne muscular dystrophy 16–18 March 2018, Zaandam, the Netherlands. Neuromuscul Disord 2018; 28:680-689. [DOI: 10.1016/j.nmd.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/09/2018] [Indexed: 11/17/2022]
|
11
|
Barnard AM, Willcocks RJ, Finanger EL, Daniels MJ, Triplett WT, Rooney WD, Lott DJ, Forbes SC, Wang DJ, Senesac CR, Harrington AT, Finkel RS, Russman BS, Byrne BJ, Tennekoon GI, Walter GA, Sweeney HL, Vandenborne K. Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne muscular dystrophy. PLoS One 2018; 13:e0194283. [PMID: 29554116 PMCID: PMC5858773 DOI: 10.1371/journal.pone.0194283] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/28/2018] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To provide evidence for quantitative magnetic resonance (qMR) biomarkers in Duchenne muscular dystrophy by investigating the relationship between qMR measures of lower extremity muscle pathology and functional endpoints in a large ambulatory cohort using a multicenter study design. METHODS MR spectroscopy and quantitative imaging were implemented to measure intramuscular fat fraction and the transverse magnetization relaxation time constant (T2) in lower extremity muscles of 136 participants with Duchenne muscular dystrophy. Measures were collected at 554 visits over 48 months at one of three imaging sites. Fat fraction was measured in the soleus and vastus lateralis using MR spectroscopy, while T2 was assessed using MRI in eight lower extremity muscles. Ambulatory function was measured using the 10m walk/run, climb four stairs, supine to stand, and six minute walk tests. RESULTS Significant correlations were found between all qMR and functional measures. Vastus lateralis qMR measures correlated most strongly to functional endpoints (|ρ| = 0.68-0.78), although measures in other rapidly progressing muscles including the biceps femoris (|ρ| = 0.63-0.73) and peroneals (|ρ| = 0.59-0.72) also showed strong correlations. Quantitative MR biomarkers were excellent indicators of loss of functional ability and correlated with qualitative measures of function. A VL FF of 0.40 was an approximate lower threshold of muscle pathology associated with loss of ambulation. DISCUSSION Lower extremity qMR biomarkers have a robust relationship to clinically meaningful measures of ambulatory function in Duchenne muscular dystrophy. These results provide strong supporting evidence for qMR biomarkers and set the stage for their potential use as surrogate outcomes in clinical trials.
Collapse
Affiliation(s)
- Alison M. Barnard
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Rebecca J. Willcocks
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Erika L. Finanger
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Portland, OR, United States of America
| | - Michael J. Daniels
- Department of Statistics, University of Florida, Gainesville, FL, United States of America
| | - William T. Triplett
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - William D. Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States of America
| | - Donovan J. Lott
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Sean C. Forbes
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Dah-Jyuu Wang
- Department of Radiology, Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Claudia R. Senesac
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Ann T. Harrington
- The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | | | - Barry S. Russman
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Portland, OR, United States of America
| | - Barry J. Byrne
- Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States of America
| | - Gihan I. Tennekoon
- The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States of America
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States of America
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
12
|
Carlier PG, Marty B, Scheidegger O, Loureiro de Sousa P, Baudin PY, Snezhko E, Vlodavets D. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials. J Neuromuscul Dis 2018; 3:1-28. [PMID: 27854210 PMCID: PMC5271435 DOI: 10.3233/jnd-160145] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have seen tremendous progress towards therapy of many previously incurable neuromuscular diseases. This new context has acted as a driving force for the development of novel non-invasive outcome measures. These can be organized in three main categories: functional tools, fluid biomarkers and imagery. In the latest category, nuclear magnetic resonance imaging (NMRI) offers a considerable range of possibilities for the characterization of skeletal muscle composition, function and metabolism. Nowadays, three NMR outcome measures are frequently integrated in clinical research protocols. They are: 1/ the muscle cross sectional area or volume, 2/ the percentage of intramuscular fat and 3/ the muscle water T2, which quantity muscle trophicity, chronic fatty degenerative changes and oedema (or more broadly, “disease activity”), respectively. A fourth biomarker, the contractile tissue volume is easily derived from the first two ones. The fat fraction maps most often acquired with Dixon sequences have proven their capability to detect small changes in muscle composition and have repeatedly shown superior sensitivity over standard functional evaluation. This outcome measure will more than likely be the first of the series to be validated as an endpoint by regulatory agencies. The versatility of contrast generated by NMR has opened many additional possibilities for characterization of the skeletal muscle and will result in the proposal of more NMR biomarkers. Ultra-short TE (UTE) sequences, late gadolinium enhancement and NMR elastography are being investigated as candidates to evaluate skeletal muscle interstitial fibrosis. Many options exist to measure muscle perfusion and oxygenation by NMR. Diffusion NMR as well as texture analysis algorithms could generate complementary information on muscle organization at microscopic and mesoscopic scales, respectively. 31P NMR spectroscopy is the reference technique to assess muscle energetics non-invasively during and after exercise. In dystrophic muscle, 31P NMR spectrum at rest is profoundly perturbed, and several resonances inform on cell membrane integrity. Considerable efforts are being directed towards acceleration of image acquisitions using a variety of approaches, from the extraction of fat content and water T2 maps from one single acquisition to partial matrices acquisition schemes. Spectacular decreases in examination time are expected in the near future. They will reinforce the attractiveness of NMR outcome measures and will further facilitate their integration in clinical research trials.
Collapse
Affiliation(s)
- Pierre G Carlier
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France.,National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Benjamin Marty
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Olivier Scheidegger
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | | | - Eduard Snezhko
- National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Dmitry Vlodavets
- N.I. Prirogov Russian National Medical Research University, Clinical Research Institute of Pediatrics, Moscow, Russian Federation
| |
Collapse
|
13
|
Trucco F, Pedemonte M, Fiorillo C, Tan HL, Carlucci A, Brisca G, Tacchetti P, Bruno C, Minetti C. Detection of early nocturnal hypoventilation in neuromuscular disorders. J Int Med Res 2018; 46:1153-1161. [PMID: 29210305 PMCID: PMC5972237 DOI: 10.1177/0300060517728857] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/02/2017] [Indexed: 11/30/2022] Open
Abstract
Objective Nocturnal hypoventilation (NH) is a complication of respiratory involvement in neuromuscular disorders (NMD) that can evolve into symptomatic daytime hypercapnia if not treated proactively with non-invasive ventilation. This study aimed to assess whether NH can be detected in the absence of other signs of nocturnal altered gas exchange. Methods We performed nocturnal transcutaneous coupled (tc) pCO2/SpO2 monitoring in 46 consecutive cases of paediatric-onset NMD with a restrictive respiratory defect (forced vital capacity < 60%). Nocturnal hypoventilation was defined as tcPCO2 > 50 mmHg for > 25% of recorded time, and hypoxemia as tcSpO2 < 88% for > 5 minutes. Daytime symptoms and bicarbonate were recorded after overnight monitoring. Results Twenty-nine of 46 consecutive patients showed NH. Twenty-three patients did not have nocturnal hypoxemia and 18 were clinically asymptomatic. In 20 patients, PaCO2 in daytime blood samples was normal. Finally, 13/29 patients with NH had isolated nocturnal hypercapnia without nocturnal hypoxia, clinical NH symptoms, or daytime hypercapnia. Conclusions Paediatric patients with NMD can develop NH in the absence of clinical symptoms or significant nocturnal desaturation. Therefore, monitoring of NH should be included among nocturnal respiratory assessments of these patients as an additional tool to determine when to commence non-invasive ventilation.
Collapse
MESH Headings
- Adolescent
- Blood Gas Monitoring, Transcutaneous
- Carbon Dioxide/blood
- Child
- Female
- Humans
- Hypercapnia/blood
- Hypercapnia/diagnosis
- Hypercapnia/physiopathology
- Hypoventilation/blood
- Hypoventilation/diagnosis
- Hypoventilation/physiopathology
- Male
- Muscular Dystrophies/blood
- Muscular Dystrophies/diagnosis
- Muscular Dystrophies/physiopathology
- Muscular Dystrophy, Duchenne/blood
- Muscular Dystrophy, Duchenne/diagnosis
- Muscular Dystrophy, Duchenne/physiopathology
- Myopathies, Structural, Congenital/blood
- Myopathies, Structural, Congenital/diagnosis
- Myopathies, Structural, Congenital/physiopathology
- Oximetry/methods
- Oxygen/blood
- Retrospective Studies
- Sclerosis/blood
- Sclerosis/diagnosis
- Sclerosis/physiopathology
- Spinal Muscular Atrophies of Childhood/blood
- Spinal Muscular Atrophies of Childhood/diagnosis
- Spinal Muscular Atrophies of Childhood/physiopathology
- Vital Capacity/physiology
Collapse
Affiliation(s)
| | - Marina Pedemonte
- Unit of Pediatric Neurology and Muscle Disease, Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Fiorillo
- Unit of Pediatric Neurology and Muscle Disease, Istituto Giannina Gaslini, Genova, Italy
| | - Hui-leng Tan
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | | | - Giacomo Brisca
- Unit of Pediatric Neurology and Muscle Disease, Istituto Giannina Gaslini, Genova, Italy
| | - Paola Tacchetti
- Unit of Pediatric Neurology and Muscle Disease, Istituto Giannina Gaslini, Genova, Italy
| | - Claudio Bruno
- Center of Myology and Neurodegenerative Disorders, Istituto Giannina Gaslini, Genova, Italy
| | - Carlo Minetti
- Unit of Pediatric Neurology and Muscle Disease, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
14
|
Willmann R, Buccella F, De Luca A, Grounds MD, Versnel J, Vroom E, Ribeiro D, Ambrosini A, Pavlath G, Porter J, Dziewczapolski G, Dubowitz V, Lochmüller H, Campbell K, Davies K, Roth KA, Clark A, Clementi E, Nagaraju K, Goemans N, Straub V, Klein A, Aartsma-Rus A, Grounds M, Willmann R, Buccella F, van Putten M, Fries M, Sheean M, Tinsley J, Girgenrath M. 227 th ENMC International Workshop:. Neuromuscul Disord 2018; 28:185-192. [DOI: 10.1016/j.nmd.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023]
|
15
|
226 th ENMC International Workshop:: Towards validated and qualified biomarkers for therapy development for Duchenne muscular dystrophy 20-22 January 2017, Heemskerk, The Netherlands. Neuromuscul Disord 2017; 28:77-86. [PMID: 29203356 DOI: 10.1016/j.nmd.2017.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022]
|
16
|
Wood CL, Cheetham T. Treatment of Duchenne muscular dystrophy: first small steps. Lancet 2017; 390:1467-1468. [PMID: 28728957 DOI: 10.1016/s0140-6736(17)31669-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022]
Affiliation(s)
- Claire L Wood
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK.
| | - Tim Cheetham
- Department of Paediatric Endocrinology, Royal Victoria Infirmary, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
17
|
McKay MJ, Baldwin JN, Ferreira P, Simic M, Vanicek N, Burns J. Reference values for developing responsive functional outcome measures across the lifespan. Neurology 2017; 88:1512-1519. [DOI: 10.1212/wnl.0000000000003847] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/20/2017] [Indexed: 01/25/2023] Open
Abstract
Objective:To generate a reference dataset of commonly performed functional outcome measures in 1,000 children and adults and investigate the influence of demographic, anthropometric, strength, and flexibility characteristics.Methods:Twelve functional outcome measures were collected from 1,000 healthy individuals aged 3–101 years: 6-minute walk test, 30-second chair stand test, timed stairs test, long jump, vertical jump, choice stepping reaction time, balance (Star Excursion Balance Test, tandem stance eyes open and closed, single-leg stance eyes closed), and dexterity (9-hole peg test, Functional Dexterity Test). Correlation and multiple regression analyses were performed to identify factors independently associated with each measure.Results:Age- and sex-stratified reference values for functional outcome measures were generated. Functional performance increased through childhood and adolescence, plateaued during adulthood, and declined in older adulthood. While balance did not differ between the sexes, male participants generally performed better at gross motor tasks while female participants performed better at dexterous tasks. Height was the most consistent correlate of functional performance in children, while lower limb muscle strength was a major determinant in adolescents and adults. In older adults, age, lower limb strength, and joint flexibility explained up to 63% of the variance in functional measures.Conclusions:These normative reference values provide a framework to accurately track functional decline associated with neuromuscular disorders and assist development and validation of responsive outcome measures for therapeutic trials.
Collapse
|
18
|
Fletcher S, Bellgard MI, Price L, Akkari AP, Wilton SD. Translational development of splice-modifying antisense oligomers. Expert Opin Biol Ther 2016; 17:15-30. [PMID: 27805416 DOI: 10.1080/14712598.2017.1250880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Antisense nucleic acid analogues can interact with pre-mRNA motifs and influence exon or splice site selection and thereby alter gene expression. Design of antisense molecules to target specific motifs can result in either exon exclusion or exon inclusion during splicing. Novel drugs exploiting the antisense concept are targeting rare, life-limiting diseases; however, the potential exists to treat a wide range of conditions by antisense-mediated splice intervention. Areas covered: In this review, the authors discuss the clinical translation of novel molecular therapeutics to address the fatal neuromuscular disorders Duchenne muscular dystrophy and spinal muscular atrophy. The review also highlights difficulties posed by issues pertaining to restricted participant numbers, variable phenotype and disease progression, and the identification and validation of study endpoints. Expert opinion: Translation of novel therapeutics for Duchenne muscular dystrophy and spinal muscular atrophy has been greatly advanced by multidisciplinary research, academic-industry partnerships and in particular, the engagement and support of the patient community. Sponsors, supporters and regulators are cooperating to deliver new drugs and identify and define meaningful outcome measures. Non-conventional and adaptive trial design could be particularly suited to clinical evaluation of novel therapeutics and strategies to treat serious, rare diseases that may be problematic to study using more conventional clinical trial structures.
Collapse
Affiliation(s)
- S Fletcher
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - M I Bellgard
- b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - L Price
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - A P Akkari
- b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia.,d Shiraz Pharmaceuticals, Inc , Chapel Hill , NC , USA
| | - S D Wilton
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| |
Collapse
|
19
|
Magnetic resonance imaging of the proximal upper extremity musculature in boys with Duchenne muscular dystrophy. J Neurol 2016; 264:64-71. [PMID: 27778157 DOI: 10.1007/s00415-016-8311-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 12/25/2022]
Abstract
There is a pressing need for biomarkers and outcomes that can be used across disease stages in Duchenne muscular dystrophy (DMD), to facilitate the inclusion of a wider range of participants in clinical trials and to improve our understanding of the natural history of DMD. Quantitative magnetic resonance imaging (qMRI) and spectroscopy (MRS) biomarkers show considerable promise in both the legs and forearms of individuals with DMD, but have not yet been examined in functionally important proximal upper extremity muscles such as the biceps brachii and deltoid. The primary objective of this study was to examine the feasibility of implementing qMRI and MRS biomarkers in the proximal upper extremity musculature, and the secondary objective was to examine the relationship between MR measures of arm muscle pathology and upper extremity functional endpoints. Biomarkers included MRS and MRI measures of fat fraction and transverse relaxation time (T 2). The MR exam was well tolerated in both ambulatory and non-ambulatory boys. qMR biomarkers differentiated affected and unaffected participants and correlated strongly with upper extremity function (r = 0.91 for biceps brachii T 2 versus performance of upper limb score). These qMR outcome measures could be highly beneficial to the neuromuscular disease community, allowing measurement of the quality of functionally important muscles across disease stages to understand the natural history of DMD and particularly to broaden the opportunity for clinical trial participation.
Collapse
|
20
|
Acosta AR, Van Wie E, Stoughton WB, Bettis AK, Barnett HH, LaBrie NR, Balog-Alvarez CJ, Nghiem PP, Cummings KJ, Kornegay JN. Use of the six-minute walk test to characterize golden retriever muscular dystrophy. Neuromuscul Disord 2016; 26:865-872. [PMID: 27818009 DOI: 10.1016/j.nmd.2016.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/27/2016] [Accepted: 09/28/2016] [Indexed: 12/29/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder in which loss of the dystrophin protein causes progressive skeletal/cardiac muscle degeneration and death within the third decade. For clinical trials and supportive animal studies, DMD disease progression and response to treatment must be established using outcome parameters (biomarkers). The 6-minute walk test (6MWT), defined as the distance an individual can walk in 6 minutes, is commonly used in DMD clinical trials and has been employed in dogs to characterize cardiac and respiratory disease severity. Building on methods established in DMD and canine clinical studies, we assessed the 6MWT in dogs with the DMD genetic homolog, golden retriever muscular dystrophy (GRMD). Twenty-one cross-bred golden retrievers were categorized as affected (DMD mutation and GRMD phenotype), carrier (female heterozygous for DMD mutation and no phenotype), and normal (wild type DMD gene and normal phenotype). When compared to grouped normal/carrier dogs, GRMD dogs walked shorter height-adjusted distances at 6 and 12 months of age and their distances walked declined with age. Percent change in creatine kinase after 6MWT was greater in GRMD versus normal/carrier dogs at 6 months, providing another potential biomarker. While these data generally support use of the 6MWT as a biomarker for preclinical GRMD treatment trials, there were certain limitations. Results of the 6MWT did not correlate with other outcome parameters for GRMD dogs when considered alone and an 80% increase in mean distance walked would be necessary to achieve satisfactory power.
Collapse
Affiliation(s)
- Austin R Acosta
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4458, USA
| | - Emiko Van Wie
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4458, USA
| | - William B Stoughton
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4458, USA
| | - Amanda K Bettis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4458, USA
| | - Heather H Barnett
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4458, USA
| | - Nicholas R LaBrie
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4458, USA
| | - Cynthia J Balog-Alvarez
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4458, USA
| | - Peter P Nghiem
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4458, USA
| | - Kevin J Cummings
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4458, USA.
| |
Collapse
|
21
|
Straub V, Balabanov P, Bushby K, Ensini M, Goemans N, De Luca A, Pereda A, Hemmings R, Campion G, Kaye E, Arechavala-Gomeza V, Goyenvalle A, Niks E, Veldhuizen O, Furlong P, Stoyanova-Beninska V, Wood MJ, Johnson A, Mercuri E, Muntoni F, Sepodes B, Haas M, Vroom E, Aartsma-Rus A. Stakeholder cooperation to overcome challenges in orphan medicine development: the example of Duchenne muscular dystrophy. Lancet Neurol 2016; 15:882-890. [DOI: 10.1016/s1474-4422(16)30035-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 01/05/2023]
|
22
|
Heberer K, Fowler E, Staudt L, Sienko S, Buckon CE, Bagley A, Sison-Williamson M, McDonald CM, Sussman MD. Hip kinetics during gait are clinically meaningful outcomes in young boys with Duchenne muscular dystrophy. Gait Posture 2016; 48:159-164. [PMID: 27267770 DOI: 10.1016/j.gaitpost.2016.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 02/02/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic neuromuscular disorder characterized by progressive proximal to distal muscle weakness. The success of randomized clinical trials for novel therapeutics depends on outcome measurements that are sensitive to change. As the development of motor skills may lead to functional improvements in young boys with DMD, their inclusion may potentially confound clinical trials. Three-dimensional gait analysis is an under-utilized approach that can quantify joint moments and powers, which reflect functional muscle strength. In this study, gait kinetics, kinematics, spatial-temporal parameters, and timed functional tests were quantified over a one-year period for 21 boys between 4 and 8 years old who were enrolled in a multisite natural history study. At baseline, hip moments and powers were inadequate. Between the two visits, 12 boys began a corticosteroid regimen (mean duration 10.8±2.4 months) while 9 boys remained steroid-naïve. Significant between-group differences favoring steroid use were found for primary kinetic outcomes (peak hip extensor moments (p=.007), duration of hip extensor moments (p=.007), peak hip power generation (p=.028)), and spatial-temporal parameters (walking speed (p=.016) and cadence (p=.021)). Significant between-group differences were not found for kinematics or timed functional tests with the exception of the 10m walk test (p=.03), which improves in typically developing children within this age range. These results indicate that hip joint kinetics can be used to identify weakness in young boys with DMD and are sensitive to corticosteroid intervention. Inclusion of gait analysis may enhance detection of a treatment effect in clinical trials particularly for young boys with more preserved muscle function.
Collapse
Affiliation(s)
- Kent Heberer
- Department of Orthopaedics, University of California, Los Angeles, 1000 Veteran Ave., Rehab. Building 22-64, Los Angeles, CA 90025, United States.
| | - Eileen Fowler
- Department of Orthopaedics, University of California, Los Angeles, 1000 Veteran Ave., Rehab. Building 22-64, Los Angeles, CA 90025, United States
| | - Loretta Staudt
- Department of Orthopaedics, University of California, Los Angeles, 1000 Veteran Ave., Rehab. Building 22-64, Los Angeles, CA 90025, United States
| | - Susan Sienko
- Department of Clinical Research, Shriners Hospitals for Children Portland, 3101 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Cathleen E Buckon
- Department of Clinical Research, Shriners Hospitals for Children Portland, 3101 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Anita Bagley
- Motion Analysis Laboratory, Shriners Hospitals for Children Northern California, 2425 Stockton Blvd., Sacramento, CA 95817, United States
| | - Mitell Sison-Williamson
- Motion Analysis Laboratory, Shriners Hospitals for Children Northern California, 2425 Stockton Blvd., Sacramento, CA 95817, United States
| | - Craig M McDonald
- Motion Analysis Laboratory, Shriners Hospitals for Children Northern California, 2425 Stockton Blvd., Sacramento, CA 95817, United States; University of California Davis Medical Center, 2315 Stockton Blvd., Sacramento, CA 95817, United States
| | - Michael D Sussman
- Department of Clinical Research, Shriners Hospitals for Children Portland, 3101 SW Sam Jackson Park Road, Portland, OR 97239, United States
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Antisense-mediated modulation of transcripts is a dynamic therapeutic field, especially for neuromuscular disorders. RECENT FINDINGS For three diseases, this approach has advanced to the clinical trial phase, that is Duchenne muscular dystrophy, spinal muscular atrophy and myotonic dystrophy. In parallel, numerous proof-of-concept studies in cell and animal models have been reported for additional neuromuscular disorders. SUMMARY This review discusses the most notable advances in preclinical and clinical studies in the past year. For Duchenne muscular dystrophy, spinal muscular atrophy and myotonic dystrophy trials are ongoing to assess safety and efficacy, while in parallel preclinical studies are being conducted to identify ways to improve efficiency and delivery. For other neuromuscular diseases, progress is made as well warranting future clinical trials. However, towards clinical trial readiness, it is important not only to optimize the therapy preclinically but to also develop the infrastructure that is needed to conduct trials.
Collapse
|
24
|
Namgoong JH, Bertoni C. Clinical potential of ataluren in the treatment of Duchenne muscular dystrophy. Degener Neurol Neuromuscul Dis 2016; 6:37-48. [PMID: 30050367 PMCID: PMC6053089 DOI: 10.2147/dnnd.s71808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an autosomal dominant, X-linked neuromuscular disorder caused by mutations in dystrophin, one of the largest genes known to date. Dystrophin gene mutations are generally transmitted from the mother to male offspring and can occur throughout the coding length of the gene. The majority of the methodologies aimed at treating the disorder have focused on restoring a shorter, although partially functional, dystrophin protein. The approach has the potential of converting a severe DMD phenotype into a milder form of the disease known as Becker muscular dystrophy. Others have focused on ameliorating the disease by targeting secondary pathologies such as inflammation or loss of regeneration. Of great potential is the development of strategies that are capable of restoring full-length dystrophin expression due to their ability to produce a normal, fully functional protein. Among these strategies, the use of read-through compounds (RTCs) that could be administered orally represents an ideal option. Gentamicin has been previously tested in clinical trials for DMD with limited or no success, and its use in the clinic has been dismissed due to issues of toxicity and lack of clear benefits to patients. More recently, new RTCs have been identified and tested in animal models for DMD. This review will focus on one of those RTCs known as ataluren that has now completed Phase III clinical studies for DMD and at providing an overview of the different stages that have led to its clinical development for the disease. The impact that this new drug may have on DMD and its future perspectives will also be described, with an emphasis on the importance of further assessing the clinical benefits of this molecule in patients as it becomes available on the market in different countries.
Collapse
Affiliation(s)
- John Hyun Namgoong
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA,
| | - Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA,
| |
Collapse
|
25
|
Mercuri E. Registries versus tertiary care centers: How do we measure standards of care in Duchenne muscular dystrophy? Neuromuscul Disord 2016; 26:261-3. [PMID: 27087610 DOI: 10.1016/j.nmd.2016.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Eugenio Mercuri
- Child Neurology Unit, Catholic University, Largo Gemelli, 00168 Roma, Italy; Nemo Rome, Policlinico Gemelli, Largo Gemelli, 00168 Roma, Italy
| | | |
Collapse
|
26
|
Willcocks RJ, Rooney WD, Triplett WT, Forbes SC, Lott DJ, Senesac CR, Daniels MJ, Wang DJ, Harrington AT, Tennekoon GI, Russman BS, Finanger EL, Byrne BJ, Finkel RS, Walter GA, Sweeney HL, Vandenborne K. Multicenter prospective longitudinal study of magnetic resonance biomarkers in a large duchenne muscular dystrophy cohort. Ann Neurol 2016; 79:535-47. [PMID: 26891991 DOI: 10.1002/ana.24599] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/11/2015] [Accepted: 01/02/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this study was to describe Duchenne muscular dystrophy (DMD) disease progression in the lower extremity muscles over 12 months using quantitative magnetic resonance (MR) biomarkers, collected across three sites in a large cohort. METHODS A total of 109 ambulatory boys with DMD (8.7 ± 2.0 years; range, 5.0-12.9) completed baseline and 1-year follow-up quantitative MR imaging (transverse relaxation time constant; MRI-T2 ), MR spectroscopy (fat fraction and (1) H2 O T2 ), and 6-minute walk test (6MWT) measurements. A subset of boys completed additional measurements after 3 or 6 months. RESULTS MRI-T2 and fat fraction increased significantly over 12 months in all age groups, including in 5- to 6.9-year-old boys. Significant increases in vastus lateralis (VL) fat fraction were observed in 3 and 6 months. Even in boys whose 6MWT performance improved or remained stable over 1 year, significant increases in MRI-T2 and fat fraction were found. Of all the muscles examined, the VL and biceps femoris long head were the most responsive to disease progression in boys with DMD. INTERPRETATION MR biomarkers are responsive to disease progression in 5- to 12.9-year-old boys with DMD and able to detect subclinical disease progression in DMD, even within short (3-6 months) time periods. The measured sensitivity of MR biomarkers in this multicenter study may be critically important to future clinical trials, allowing for smaller sample sizes and/or shorter study windows in this fatal rare disease.
Collapse
Affiliation(s)
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | | | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - Donovan J Lott
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - Claudia R Senesac
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - Michael J Daniels
- Department of Statistics & Data Sciences and Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Dah-Jyuu Wang
- Division of Neurology and Department of Radiology, the Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | - Barry S Russman
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Shriners Hospital for Children, Portland, OR
| | - Erika L Finanger
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Shriners Hospital for Children, Portland, OR
| | - Barry J Byrne
- Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center University of Florida, Gainesville, FL
| | - Richard S Finkel
- Nemours Children's Hospital, University of Central Florida College of Medicine, Orlando, FL
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL
| | - H Lee Sweeney
- Department of Physiology, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
27
|
Terrill JR, Pinniger GJ, Graves JA, Grounds MD, Arthur PG. Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy. J Physiol 2016; 594:3095-110. [PMID: 26659826 DOI: 10.1113/jp271418] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/18/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease associated with increased inflammation, oxidative stress and myofibre necrosis. Cysteine precursor antioxidants such as N-acetyl cysteine (NAC) and l-2-oxothiazolidine-4-carboxylate (OTC) reduce dystropathology in the mdx mouse model for DMD, and we propose this is via increased synthesis of the amino acid taurine. We compared the capacity of OTC and taurine treatment to increase taurine content of mdx muscle, as well as effects on in vivo and ex vivo muscle function, inflammation and oxidative stress. Both treatments increased taurine in muscles, and improved many aspects of muscle function and reduced inflammation. Taurine treatment also reduced protein thiol oxidation and was overall more effective, as OTC treatment reduced body and muscle weight, suggesting some adverse effects of this drug. These data suggest that increasing dietary taurine is a better candidate for a therapeutic intervention for DMD. ABSTRACT Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease for which there is no widely available cure. Whilst the mechanism of loss of muscle function in DMD and the mdx mouse model are not fully understood, disruptions in intracellular calcium homeostasis, inflammation and oxidative stress are implicated. We have shown that protein thiol oxidation is increased in mdx muscle, and that the indirect thiol antioxidant l-2-oxothiazolidine-4-carboxylate (OTC), which increases cysteine availability, decreases pathology and increases in vivo strength. We propose that the protective effects of OTC are a consequence of conversion of cysteine to taurine, which has itself been shown to be beneficial to mdx pathology. This study compares the efficacy of taurine with OTC in decreasing dystropathology in mdx mice by measuring in vivo and ex vivo contractile function and measurements of inflammation and protein thiol oxidation. Increasing the taurine content of mdx muscle improved both in vivo and ex vivo muscle strength and function, potentially via anti-inflammatory and antioxidant effects of taurine. OTC treatment increased taurine synthesis in the liver and taurine content of mdx muscle, improved muscle function and decreased inflammation. However, OTC was less effective than taurine treatment, with OTC also decreasing body and EDL muscle weights, suggesting that OTC had some detrimental effects. These data support continued research into the use of taurine as a therapeutic intervention for DMD, and suggest that increasing dietary taurine is the better strategy for increasing taurine content and decreasing severity of dystropathology.
Collapse
Affiliation(s)
- Jessica R Terrill
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia.,School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia
| | - Gavin J Pinniger
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia
| | - Jamie A Graves
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia
| | - Miranda D Grounds
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia
| | - Peter G Arthur
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia
| |
Collapse
|
28
|
Patterns of disease progression in type 2 and 3 SMA: Implications for clinical trials. Neuromuscul Disord 2015; 26:126-31. [PMID: 26776503 PMCID: PMC4762230 DOI: 10.1016/j.nmd.2015.10.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/11/2015] [Indexed: 02/03/2023]
Abstract
The paper reports for the first time patterns of progression in type 2 and 3 SMA. Different trajectories can be identified in ambulant and non-ambulant patients. Age appears to be an important factor in determining trajectories of progression.
The aim of the study was to establish 12-month changes in the Hammersmith Functional motor scale in a large cohort of SMA patients, to identify patterns of disease progression and the effect of different variables. 268 patients were included in this multicentric study. Their age ranged between 2.5 and 55.5 years at baseline, 68 were ambulant and 200 non-ambulant. The baseline scores ranged between 0 and 66 (mean 23.91, SD 20.09). The 12-month change was between −14 and +9 (mean −0.56, SD 2.72). Of the 268 patients, 206 (76.86%) had changes between −2 and +2 points. Ambulant and non-ambulant subjects had a different relationship between baseline values and age (p for age X ambulation interaction = 0.007). There was no association with age in ambulant subjects, while there was a significant heterogeneity at different age for non-ambulant patients (p < 0.001). The 12-month change (adjusted for baseline) was not associated with age in ambulant patients (p = 0.34), but it was significantly different among various age groups in non-ambulant patients. Our results suggest that there are different profiles of progression in ambulant and non-ambulant patients, and that age may play an important role in the progression of non-ambulant patients.
Collapse
|
29
|
Burch PM, Pogoryelova O, Goldstein R, Bennett D, Guglieri M, Straub V, Bushby K, Lochmüller H, Morris C. Muscle-Derived Proteins as Serum Biomarkers for Monitoring Disease Progression in Three Forms of Muscular Dystrophy. J Neuromuscul Dis 2015; 2:241-255. [PMID: 26870665 PMCID: PMC4746763 DOI: 10.3233/jnd-140066] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: Identifying translatable, non-invasive biomarkers of muscular dystrophy that better reflect the disease pathology than those currently available would aid the development of new therapies, the monitoring of disease progression and the response to therapy. Objective: The goal of this study was to evaluate a panel of serum protein biomarkers with the potential to specifically detect skeletal muscle injury. Method: Serum concentrations of skeletal troponin I (sTnI), myosin light chain 3 (Myl3), fatty acid binding protein 3 (FABP3) and muscle-type creatine kinase (CKM) proteins were measured in 74 Duchenne muscular dystrophy (DMD), 38 Becker muscular dystrophy (BMD) and 49 Limb-girdle muscular dystrophy type 2B (LGMD2B) patients and 32 healthy controls. Results: All four proteins were significantly elevated in the serum of these three muscular dystrophy patient populations when compared to healthy controls, but, interestingly, displayed different profiles depending on the type of muscular dystrophy. Additionally, the effects of patient age, ambulatory status, cardiac function and treatment status on the serum concentrations of the proteins were investigated. Statistical analysis revealed correlations between the serum concentrations and certain clinical endpoints including forced vital capacity in DMD patients and the time to walk ten meters in LGMD2B patients. Serum concentrations of these proteins were also elevated in two preclinical models of muscular dystrophy, the mdx mouse and the golden-retriever muscular dystrophy dog. Conclusions: These proteins, therefore, are potential muscular dystrophy biomarkers for monitoring disease progression and therapeutic response in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Peter M Burch
- Worldwide Research & Development, Pfizer Inc., Groton, CT, USA
| | - Oksana Pogoryelova
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Donald Bennett
- Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Kate Bushby
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Carl Morris
- Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
30
|
Merlini L, Sabatelli P. Improving clinical trial design for Duchenne muscular dystrophy. BMC Neurol 2015; 15:153. [PMID: 26306629 PMCID: PMC4549867 DOI: 10.1186/s12883-015-0408-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/14/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Currently, the most promising therapies for Duchenne muscular dystrophy (DMD) are exon skipping and stop codon read-through, two strategies aimed at restoring the expression of dystrophin. A phase 3 clinical trial with drisapersen, a drug designed to induce exon 51-skipping, has failed to show significant improvement of the primary outcome measure, the six-minute walk test. DISCUSSION Here, we review some key points that should be considered when designing clinical trials for these new therapies. First, younger patients have more functional abilities and more muscle fibers to preserve than older patients and therefore are better subjects for trials designed to demonstrate the success of new treatments. Second, the inclusion of patients on corticosteroids both in the treatment and placebo groups is of concern because the positive effect of corticosteroids might mask the effect of the treatment being tested. Additionally, the reasonable expectation from these therapies is the slowing of disease progression rather than improvement. Therefore, the appropriate clinical endpoints are the prolongation of the ability to stand from the floor, climb stairs, and walk, not an increase in muscle strength or function. Hence, the time frames for the detection of new dystrophin, which occurs within months, and the ability to demonstrate a slowing of disease progression, which requires years, are strikingly different. Finally, placebo-controlled trials are difficult to manage if years of blindness are required to demonstrate a slowing of disease progression. Thus, accelerated/conditional approval for new therapies should be based on surrogate biochemical outcomes: the demonstration of de novo dystrophin production and of its beneficial effect on the functional recovery of muscle fiber. These data suggest that clinical trials for DMD patients must be adapted to the particular characteristics of the disease in order to demonstrate the expected positive effect of new treatments.
Collapse
Affiliation(s)
- Luciano Merlini
- Laboratory of Musculoskeletal Cell Biology, Istituto Ortopedico Rizzoli, IRCCS, Via Di Barbiano 1/10, 40136, Bologna, Italy.
| | - Patrizia Sabatelli
- Laboratory of Musculoskeletal Cell Biology, Istituto Ortopedico Rizzoli, IRCCS, Via Di Barbiano 1/10, 40136, Bologna, Italy. .,CNR National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy.
| |
Collapse
|
31
|
Abstract
Duchenne muscular dystrophy is the most common form of muscular dystrophy. Genetic and biochemical research over the years has characterized the cause, pathophysiology and development of the disease providing several potential therapeutic targets and/or biomarkers. High throughput - omic technologies have provided a comprehensive understanding of the changes occurring in dystrophic muscles. Murine and canine animal models have been a valuable source to profile muscles and body fluids, thus providing candidate biomarkers that can be evaluated in patients. This review will illustrate known circulating biomarkers that could track disease progression and response to therapy in patients affected by Duchenne muscular dystrophy. We present an overview of the transcriptomic, proteomic, metabolomics and lipidomic biomarkers described in literature. We show how studies in muscle tissue have led to the identification of serum and urine biomarkers and we highlight the importance of evaluating biomarkers as possible surrogate endpoints to facilitate regulatory processes for new medicinal products.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
32
|
Pane M, Fanelli L, Mazzone ES, Olivieri G, D'Amico A, Messina S, Scutifero M, Battini R, Petillo R, Frosini S, Sivo S, Vita GL, Bruno C, Mongini T, Pegoraro E, De Sanctis R, Gardani A, Berardinelli A, Lanzillotta V, Carlesi A, Viggiano E, Cavallaro F, Sframeli M, Bello L, Barp A, Bianco F, Bonfiglio S, Rolle E, Palermo C, D'Angelo G, Pini A, Iotti E, Gorni K, Baranello G, Bertini E, Politano L, Sormani MP, Mercuri E. Benefits of glucocorticoids in non-ambulant boys/men with Duchenne muscular dystrophy: A multicentric longitudinal study using the Performance of Upper Limb test. Neuromuscul Disord 2015; 25:749-53. [PMID: 26248957 PMCID: PMC4597096 DOI: 10.1016/j.nmd.2015.07.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 11/29/2022]
Abstract
The paper reports the effect of steroids on upper limb function in non ambulant DMD boys. Boys continuing steroids after loss of ambulation perform better than those who stopped at the time of loss of ambulation. The Performance of Upper Limb test can reliably capture change over time and the effect of intervention.
The aim of this study was to establish the possible effect of glucocorticoid treatment on upper limb function in a cohort of 91 non-ambulant DMD boys and adults of age between 11 and 26 years. All 91 were assessed using the Performance of Upper Limb test. Forty-eight were still on glucocorticoid after loss of ambulation, 25 stopped steroids at the time they lost ambulation and 18 were GC naïve or had steroids while ambulant for less than a year. At baseline the total scores ranged between 0 and 74 (mean 41.20). The mean total scores were 47.92 in the glucocorticoid group, 36 in those who stopped at loss of ambulation and 30.5 in the naïve group (p < 0.001). The 12-month changes ranged between −20 and 4 (mean −4.4). The mean changes were −3.79 in the glucocorticoid group, −5.52 in those who stopped at loss of ambulation and −4.44 in the naïve group. This was more obvious in the patients between 12 and 18 years and at shoulder and elbow levels. Our findings suggest that continuing glucocorticoids throughout teenage years and adulthood after loss of ambulation appears to have a beneficial effect on upper limb function.
Collapse
Affiliation(s)
- Marika Pane
- Child Neurology and Psychiatry Unit, Catholic University, Rome, Italy
| | - Lavinia Fanelli
- Child Neurology and Psychiatry Unit, Catholic University, Rome, Italy
| | | | - Giorgia Olivieri
- Child Neurology and Psychiatry Unit, Catholic University, Rome, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, Rome, Italy
| | - Sonia Messina
- Department of Neurosciences and Nemo Sud Clinical Center, University of Messina, Messina, Italy
| | - Marianna Scutifero
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy
| | - Roberta Petillo
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Silvia Frosini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy
| | - Serena Sivo
- Child Neurology and Psychiatry Unit, Catholic University, Rome, Italy
| | - Gian Luca Vita
- Department of Neurosciences and Nemo Sud Clinical Center, University of Messina, Messina, Italy
| | - Claudio Bruno
- Center of Myology and Neurodegenerative Disorders and Physical and Rehabilitation Medicine Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Tiziana Mongini
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Torino, Turin, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | | | | | | | - Valentina Lanzillotta
- Center of Myology and Neurodegenerative Disorders and Physical and Rehabilitation Medicine Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Adelina Carlesi
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, Rome, Italy
| | - Emanuela Viggiano
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Filippo Cavallaro
- Department of Neurosciences and Nemo Sud Clinical Center, University of Messina, Messina, Italy
| | - Maria Sframeli
- Department of Neurosciences and Nemo Sud Clinical Center, University of Messina, Messina, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Andrea Barp
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Flaviana Bianco
- Child Neurology and Psychiatry Unit, Catholic University, Rome, Italy
| | - Serena Bonfiglio
- Child Neurology and Psychiatry Unit, IRCCS Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| | - Enrica Rolle
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Torino, Turin, Italy
| | - Concetta Palermo
- Child Neurology and Psychiatry Unit, Catholic University, Rome, Italy
| | | | - Antonella Pini
- Child Neurology and Psychiatry Unit, IRCCS Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| | - Elena Iotti
- Pediatric Neurology and Myopathology Units, Neurological Institute Carlo Besta, Milan, Italy
| | | | - Giovanni Baranello
- Pediatric Neurology and Myopathology Units, Neurological Institute Carlo Besta, Milan, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, Rome, Italy
| | - Luisa Politano
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Maria Pia Sormani
- Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Eugenio Mercuri
- Child Neurology and Psychiatry Unit, Catholic University, Rome, Italy.
| |
Collapse
|
33
|
Affiliation(s)
- Eugenio Mercuri
- Pediatric Neurology Unit, Catholic University, Policlinico Gemelli, Rome 00168, Italy.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Diseases, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|